Ansari Z, Battikha J, Singh C, Perlman CE. Alveolar distribution of nebulized solution in health and lung injury assessed by confocal microscopy.
Physiol Rep 2024;
12:e70018. [PMID:
39450926 PMCID:
PMC11503722 DOI:
10.14814/phy2.70018]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 10/26/2024] Open
Abstract
Parenchymal distribution of nebulized drug in healthy and diseased lungs has not, as evident from a literature review, been well characterized. We use a vibrating mesh nebulizer to deliver fluorescein solution in vivo to healthy or intratracheal-lipopolysaccharide (LPS)-instilled anesthetized rats in dorsal recumbency, or ex vivo to the lungs of LPS-instilled rats. Following in vivo nebulization (healthy/LPS-instilled), we quantify fluorescein intensity distribution by confocal microscopy in standard locations on the surface of freshly isolated lungs. Following LPS instillation (in vivo/ex vivo nebulization), we quantify fluorescein intensity in visibly injured locations. In standard locations, there is uniform, low-intensity basal fluorescein deposition. Focal regions receive high deposition that is, in upper (cranial), middle, and lower (caudal) locations, 6.4 ± 4.9, 3.3 ± 3.0, and 2.3 ± 2.8 times greater, respectively, than average basal intensity. Following LPS instillation, deposition in moderately injured regions can be high or low; deposition in severely injured regions is low. Further, actively phagocytic cells are observed in healthy and LPS-instilled lungs. And LPS particularly impairs mechanics and activates phagocytic cells in the male sex. We conclude that a low level of nebulized drug can be distributed across the parenchyma excepting to severely injured regions.
Collapse