1
|
Bong CL, Balanza GA, Khoo CEH, Tan JSK, Desel T, Purdon PL. A Narrative Review Illustrating the Clinical Utility of Electroencephalogram-Guided Anesthesia Care in Children. Anesth Analg 2023; 137:108-123. [PMID: 36729437 DOI: 10.1213/ane.0000000000006267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The major therapeutic end points of general anesthesia include hypnosis, amnesia, and immobility. There is a complex relationship between general anesthesia, responsiveness, hemodynamic stability, and reaction to noxious stimuli. This complexity is compounded in pediatric anesthesia, where clinicians manage children from a wide range of ages, developmental stages, and body sizes, with their concomitant differences in physiology and pharmacology. This renders anesthetic requirements difficult to predict based solely on a child's age, body weight, and vital signs. Electroencephalogram (EEG) monitoring provides a window into children's brain states and may be useful in guiding clinical anesthesia management. However, many clinicians are unfamiliar with EEG monitoring in children. Young children's EEGs differ substantially from those of older children and adults, and there is a lack of evidence-based guidance on how and when to use the EEG for anesthesia care in children. This narrative review begins by summarizing what is known about EEG monitoring in pediatric anesthesia care. A key knowledge gap in the literature relates to a lack of practical information illustrating the utility of the EEG in clinical management. To address this gap, this narrative review illustrates how the EEG spectrogram can be used to visualize, in real time, brain responses to anesthetic drugs in relation to hemodynamic stability, surgical stimulation, and other interventions such as cardiopulmonary bypass. This review discusses anesthetic management principles in a variety of clinical scenarios, including infants, children with altered conscious levels, children with atypical neurodevelopment, children with hemodynamic instability, children undergoing total intravenous anesthesia, and those undergoing cardiopulmonary bypass. Each scenario is accompanied by practical illustrations of how the EEG can be visualized to help titrate anesthetic dosage to avoid undersedation or oversedation when patients experience hypotension or other physiological challenges, when surgical stimulation increases, and when a child's anesthetic requirements are otherwise less predictable. Overall, this review illustrates how well-established clinical management principles in children can be significantly complemented by the addition of EEG monitoring, thus enabling personalized anesthesia care to enhance patient safety and experience.
Collapse
Affiliation(s)
- Choon Looi Bong
- From the Department of Pediatric Anesthesia, KK Women's and Children's Hospital, Duke-NUS Medical School, Singapore
| | - Gustavo A Balanza
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charis Ern-Hui Khoo
- From the Department of Pediatric Anesthesia, KK Women's and Children's Hospital, Duke-NUS Medical School, Singapore
| | - Josephine Swee-Kim Tan
- From the Department of Pediatric Anesthesia, KK Women's and Children's Hospital, Duke-NUS Medical School, Singapore
| | - Tenzin Desel
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Patrick Lee Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Pharmacokinetics of Fentanyl and Its Derivatives in Children: A Comprehensive Review. Clin Pharmacokinet 2019; 57:125-149. [PMID: 28688027 DOI: 10.1007/s40262-017-0569-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fentanyl and its derivatives sufentanil, alfentanil, and remifentanil are potent opioids. A comprehensive review of the use of fentanyl and its derivatives in the pediatric population was performed using the National Library of Medicine PubMed. Studies were included if they contained original pharmacokinetic parameters or models using established routes of administration in patients younger than 18 years of age. Of 372 retrieved articles, 44 eligible pharmacokinetic studies contained data of 821 patients younger than 18 years of age, including more than 46 preterm infants, 64 full-term neonates, 115 infants/toddlers, 188 children, and 28 adolescents. Underlying diagnoses included congenital heart and pulmonary disease and abdominal disorders. Routes of drug administration were intravenous, epidural, oral-transmucosal, intranasal, and transdermal. Despite extensive use in daily clinical practice, few studies have been performed. Preterm and term infants have lower clearance and protein binding. Pharmacokinetics was not altered by chronic renal or hepatic disease. Analyses of the pooled individual patients' data revealed that clearance maturation relating to body weight could be best described by the Hill function for sufentanil (R 2 = 0.71, B max 876 mL/min, K 50 16.3 kg) and alfentanil (R 2 = 0.70, B max (fixed) 420 mL/min, K 50 28 kg). The allometric exponent for estimation of clearance of sufentanil was 0.99 and 0.75 for alfentanil clearance. Maturation of remifentanil clearance was described by linear regression to bodyweight (R 2 = 0.69). The allometric exponent for estimation of remifentanil clearance was 0.76. For fentanyl, linear regression showed only a weak correlation between clearance and bodyweight in preterm and term neonates (R 2 = 0.22) owing to a lack of data in older age groups. A large heterogeneity regarding study design, clinical setting, drug administration, laboratory assays, and pharmacokinetic estimation was observed between studies introducing bias into the analyses performed in this review. A limitation of this review is that pharmacokinetic data, based on different modes of administration, dosing schemes, and parameter estimation methods, were combined.
Collapse
|
3
|
Correction to: Pharmacokinetics of Fentanyl and Its Derivatives in Children: A Comprehensive Review. Clin Pharmacokinet 2017; 57:393-417. [PMID: 29178007 DOI: 10.1007/s40262-017-0609-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fentanyl and its derivatives sufentanil, alfentanil, and remifentanil are potent opioids. A comprehensive review of the use of fentanyl and its derivatives in the pediatric population was performed using the National Library of Medicine PubMed. Studies were included if they contained original pharmacokinetic parameters or models using established routes of administration in patients younger than 18 years of age. Of 372 retrieved articles, 44 eligible pharmacokinetic studies contained data of 821 patients younger than 18 years of age, including more than 46 preterm infants, 64 full-term neonates, 115 infants/toddlers, 188 children, and 28 adolescents. Underlying diagnoses included congenital heart and pulmonary disease and abdominal disorders. Routes of drug administration were intravenous, epidural, oral-transmucosal, intranasal, and transdermal. Despite extensive use in daily clinical practice, few studies have been performed. Preterm and term infants have lower clearance and protein binding. Pharmacokinetics was not altered by chronic renal or hepatic disease. Analyses of the pooled individual patients' data revealed that clearance maturation relating to body weight could be best described by the Hill function for sufentanil (R 2 = 0.71, B max 876 mL/min, K 50 16.3 kg) and alfentanil (R 2 = 0.70, B max (fixed) 420 mL/min, K 50 28 kg). The allometric exponent for estimation of clearance of sufentanil was 0.99 and 0.75 for alfentanil clearance. Maturation of remifentanil clearance was described by linear regression to bodyweight (R 2 = 0.69). The allometric exponent for estimation of remifentanil clearance was 0.76. For fentanyl, linear regression showed only a weak correlation between clearance and bodyweight in preterm and term neonates (R 2 = 0.22) owing to a lack of data in older age groups. A large heterogeneity regarding study design, clinical setting, drug administration, laboratory assays, and pharmacokinetic estimation was observed between studies introducing bias into the analyses performed in this review. A limitation of this review is that pharmacokinetic data, based on different modes of administration, dosing schemes, and parameter estimation methods, were combined.
Collapse
|
4
|
Clinical guidelines for the management of patients with transposition of the great arteries with intact ventricular septum. Cardiol Young 2017; 27:530-569. [PMID: 28249633 DOI: 10.1017/s1047951117000014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Sarris GE, Balmer C, Bonou P, Comas JV, da Cruz E, Chiara LD, Di Donato RM, Fragata J, Jokinen TE, Kirvassilis G, Lytrivi I, Milojevic M, Sharland G, Siepe M, Stein J, Büchel EV, Vouhé PR. Clinical guidelines for the management of patients with transposition of the great arteries with intact ventricular septum. Eur J Cardiothorac Surg 2017; 51:e1-e32. [DOI: 10.1093/ejcts/ezw360] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Abstract
Hypothermia, along with acidosis and coagulopathy, is part of the lethal triad that worsen the prognosis of severe trauma patients. While accidental hypothermia is easy to identify by a simple measurement, it is no less pernicious if it is not detected or treated in the initial phase of patient care. It is a multifactorial process and is a factor of mortality in severe trauma cases. The consequences of hypothermia are many: it modifies myocardial contractions and may induce arrhythmias; it contributes to trauma-induced coagulopathy; from an immunological point of view, it diminishes inflammatory response and increases the chance of pneumonia in the patient; it inhibits the elimination of anaesthetic drugs and can complicate the calculation of dosing requirements; and it leads to an over-estimation of coagulation factor activities. This review will detail the pathophysiological consequences of hypothermia, as well as the most recent principle recommendations in dealing with it.
Collapse
Affiliation(s)
- Fanny Vardon
- Équipe d'accueil « Modélisation de l'agression tissulaire et nociceptive », Toulouse University Teaching Hospital, Université Toulouse III Paul-Sabatier, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, place du Dr-Baylac, 31059 Toulouse cedex 09, France
| | - Ségolène Mrozek
- Équipe d'accueil « Modélisation de l'agression tissulaire et nociceptive », Toulouse University Teaching Hospital, Université Toulouse III Paul-Sabatier, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, place du Dr-Baylac, 31059 Toulouse cedex 09, France
| | - Thomas Geeraerts
- Équipe d'accueil « Modélisation de l'agression tissulaire et nociceptive », Toulouse University Teaching Hospital, Université Toulouse III Paul-Sabatier, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, place du Dr-Baylac, 31059 Toulouse cedex 09, France.
| | - Olivier Fourcade
- Équipe d'accueil « Modélisation de l'agression tissulaire et nociceptive », Toulouse University Teaching Hospital, Université Toulouse III Paul-Sabatier, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, place du Dr-Baylac, 31059 Toulouse cedex 09, France
| |
Collapse
|
7
|
Clinical pharmacology of fentanyl in preterm infants. A review. Pediatr Neonatol 2015; 56:143-8. [PMID: 25176283 DOI: 10.1016/j.pedneo.2014.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/29/2014] [Accepted: 06/30/2014] [Indexed: 11/21/2022] Open
Abstract
Fentanyl is a synthetic opioid that is very important in anesthetic practice because of its relatively short time to peak analgesic effect and the rapid termination of action after small bolus doses. The objective of this survey is to review the clinical pharmacology of fentanyl in preterm infants. The bibliographic search was performed using PubMed and EMBASE databases as search engines. In addition, the books Neofax: A manual of drugs used in neonatal care and Neonatal formulary were consulted. Fentanyl is N-dealkylated by CYP3A4 into the inactive norfentanyl. Fentanyl may be administered as bolus doses or as a continuous infusion. In neonates, there is a remarkable interindividual variability in the kinetic parameters. In neonates, fentanyl half-life ranges from 317 minutes to 1266 minutes and in adults it is 222 minutes. Respiratory depression occurs when fentanyl doses are >5 μg/kg. Chest wall rigidity may occur in neonates and occasionally is associated with laryngospasm. Tolerance to fentanyl may develop after prolonged use of this drug. Significant withdrawal symptoms have been reported in infants treated with continuous infusion for 5 days or longer. Fentanyl is an extremely potent analgesic and is the opioid analgesic most frequently used in the neonatal intensive care unit.
Collapse
|
8
|
|
9
|
Chavez-Valdez R, Kovell L, Ahlawat R, McLemore GL, Wills-Karp M, Gauda EB. Opioids and clonidine modulate cytokine production and opioid receptor expression in neonatal immune cells. J Perinatol 2013; 33:374-82. [PMID: 23047422 PMCID: PMC3640758 DOI: 10.1038/jp.2012.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Opioids and clonidine, used in for sedation, analgesia and control of opioid withdrawal in neonates, directly or indirectly activate opioid receptors (OPRs) expressed in immune cells. Therefore, our objective is to study how clinically relevant concentrations of different opioids and clonidine change cytokine levels in cultured whole blood from preterm and full-term infants. STUDY DESIGN Using blood from preterm (≤ 30 weeks gestational age (GA), n=7) and full-term ( ≥ 37 weeks GA, n=19) infants, we investigated the changes in cytokine profile (IL-1β, IL-6, IL-8, IL-10, IL-12p70 and TNF-α), cyclic adenosine monophosphate (cAMP) levels and μ-, δ- and κ- opioid receptor (OPR) gene and protein expression, following in-vitro exposure to morphine, methadone, fentanyl or clonidine at increasing concentrations ranging from 0 to 1 mM. RESULT Following lipopolysaccharide activation, IL-10 levels were 146-fold greater in cultured blood from full-term than from preterm infants. Morphine and methadone, but not fentanyl, at >10(-5) M decreased all tested cytokines except IL-8. In contrast, clonidine at <10(-9) M increased IL-6, while at >10(-5) M increased IL-1β and decreased TNF-α levels. All cytokine changes followed the same patterns in preterm and full-term infant cultured blood and matched increases in cAMP levels. All three μ-, δ- and κ-OPR genes were expressed in mononuclear cells (MNC) from preterm and full-term infants. Morphine, methadone and clonidine, but not fentanyl, at >10(-5)M decreased the expression of μ-OPR, but not δ- or κ-OPRs. CONCLUSION Generalized cytokine suppression along with downregulation of μ-OPR expression observed in neonatal MNC exposed to morphine and methadone at clinically relevant concentrations contrast with the modest effects observed with fentanyl and clonidine. Therefore, we speculate that fentanyl and clonidine may be safer therapeutic choices for sedation and control of opioid withdrawal and pain in neonates.
Collapse
Affiliation(s)
- Raul Chavez-Valdez
- Department of Pediatrics, Division of Neonatology, Johns Hopkins University - School of Medicine. Baltimore, Maryland 21287, United States, Department of Pediatrics, Division of Neonatology. Texas Tech University – Health Sciences Center. Odessa, Texas 79763, United States
| | - Lara Kovell
- Department of Pediatrics, Division of Neonatology, Johns Hopkins University - School of Medicine. Baltimore, Maryland 21287, United States
| | - Rajni Ahlawat
- Department of Pediatrics, Division of Neonatology, Johns Hopkins University - School of Medicine. Baltimore, Maryland 21287, United States
| | - Gabrielle L. McLemore
- Department of Pediatrics, Division of Neonatology, Johns Hopkins University - School of Medicine. Baltimore, Maryland 21287, United States, Department of Biology, Morgan State University, Baltimore, Maryland 21251Biology, , United States
| | - Marsha Wills-Karp
- Division of Immunobiology. Children's Hospital of Cincinnati. University of Cincinnati College of Medicine. Cincinnati, OH 45229, United States
| | - Estelle B. Gauda
- Department of Pediatrics, Division of Neonatology, Johns Hopkins University - School of Medicine. Baltimore, Maryland 21287, United States
| |
Collapse
|
10
|
Wildschut ED, van Saet A, Pokorna P, Ahsman MJ, Van den Anker JN, Tibboel D. The impact of extracorporeal life support and hypothermia on drug disposition in critically ill infants and children. Pediatr Clin North Am 2012; 59:1183-204. [PMID: 23036251 PMCID: PMC4709257 DOI: 10.1016/j.pcl.2012.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) support is an established lifesaving therapy for potentially reversible respiratory or cardiac failure. In 10% of all pediatric patients receiving ECMO, ECMO therapy is initiated during or after cardiopulmonary resuscitation. Therapeutic hypothermia is frequently used in children after cardiac arrest, despite the lack of randomized controlled trials that show its efficacy. Hypothermia is frequently used in children and neonates during cardiopulmonary bypass (CPB). By combining data from pharmacokinetic studies in children on ECMO and CPB and during hypothermia, this review elucidates the possible effects of hypothermia during ECMO on drug disposition.
Collapse
Affiliation(s)
- Enno D. Wildschut
- Department of Pediatric Surgery, Intensive Care, Erasmus MC-Sophia Children’s Hospital, Dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands,Corresponding author. Department of Pediatric Surgery, Intensive Care, Erasmus MC-Sophia Children’s Hospital, Dr Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands.
| | - Annewil van Saet
- Department of Pediatric Surgery, Intensive Care, Erasmus MC-Sophia Children’s Hospital, Dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands,Department of Cardio-Thoracic Anesthesiology, Erasmus MC, Dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands
| | - Pavla Pokorna
- Department of Pediatric Surgery, Intensive Care, Erasmus MC-Sophia Children’s Hospital, Dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands,Faculty of Medicine, Department of Pediatrics, PICU/NICU, Charles University, ke Karlovu 2, Praha 2, 121 00 Prague, Czech Republic
| | - Maurice J. Ahsman
- LAP&P Consultants BV, Archimedesweg 31, 2333 CM, Leiden, The Netherlands
| | - John N. Van den Anker
- Department of Pediatric Surgery, Intensive Care, Erasmus MC-Sophia Children’s Hospital, Dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands,Division of Pediatric Clinical Pharmacology, Children’s National Medical Center, Sheikh Zayed Campus for Advanced Children’s Medicine, 111 Michigan Avenue, NW, Washington, DC 20010, USA,Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA,Department of Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Dick Tibboel
- Department of Pediatric Surgery, Intensive Care, Erasmus MC-Sophia Children’s Hospital, Dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands
| |
Collapse
|
11
|
Hasni N, Lemaitre F, Fernandez C, Combes A, Farinotti R. Impact de l’ECMO sur la pharmacocinétique des médicaments. Therapie 2011; 66:405-12. [DOI: 10.2515/therapie/2011054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/10/2011] [Indexed: 11/20/2022]
|
12
|
Qian TL, Wang XH, Liu S, Ma L, Lu Y. Fentanyl inhibits glucose-stimulated insulin release from β-cells in rat pancreatic islets. World J Gastroenterol 2009; 15:4163-9. [PMID: 19725151 PMCID: PMC2738813 DOI: 10.3748/wjg.15.4163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effects of fentanyl on insulin release from freshly isolated rat pancreatic islets in static culture.
METHODS: Islets were isolated from the pancreas of mature Sprague Dawley rats by common bile duct intraductal collagenase V digestion and were purified by discontinuous Ficoll density gradient centrifugation. The islets were divided into four groups according to the fentanyl concentration: control group (0 ng/mL), group I (0.3 ng/mL), group II (3.0 ng/mL), and group III (30 ng/mL). In each group, the islets were co-cultured for 48 h with drugs under static conditions with fentanyl alone, fentanyl + 0.1 μg/mL naloxone or fentanyl + 1.0 μg/mL naloxone. Cell viability was assessed by the MTT assay. Insulin release in response to low and high concentrations (2.8 mmol/L and 16.7 mmol/L, respectively) of glucose was investigated and electron microscopy morphological assessment was performed.
RESULTS: Low- and high-glucose-stimulated insulin release in the control group was significantly higher than in groups II and III (62.33 ± 9.67 μIU vs 47.75 ± 8.47 μIU, 39.67 ± 6.18 μIU and 125.5 ± 22.04 μIU vs 96.17 ± 14.17 μIU, 75.17 ± 13.57 μIU, respectively, P < 0.01) and was lowest in group III (P < 0.01). After adding 1 μg/mL naloxone, insulin release in groups II and III was not different from the control group. Electron microscopy studies showed that the islets were damaged by 30 ng/mL fentanyl.
CONCLUSION: Fentanyl inhibited glucose-stimulated insulin release from rat islets, which could be prevented by naloxone. Higher concentrations of fentanyl significantly damaged β-cells of rat islets.
Collapse
|
13
|
Tortorici MA, Kochanek PM, Poloyac SM. Effects of hypothermia on drug disposition, metabolism, and response: A focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med 2007; 35:2196-204. [PMID: 17855837 DOI: 10.1097/01.ccm.0000281517.97507.6e] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Therapeutic hypothermia has been shown to decrease neurologic damage in patients experiencing out-of-hospital cardiac arrest. In addition to being treated with hypothermia, critically ill patients are treated with an extensive pharmacotherapeutic regimen. The effects of hypothermia on drug disposition increase the probability for unanticipated toxicity, which could limit its putative benefit. This review examines the effects of therapeutic hypothermia on the disposition, metabolism, and response of drugs commonly used in the intensive care unit, with a focus on the cytochrome P450 enzyme system. DATA SOURCES AND STUDY SELECTION A MEDLINE/PubMed search from 1965 to June 2006 was conducted using the search terms hypothermia, drug metabolism, P450, critical care, cardiac arrest, traumatic brain injury, and pharmacokinetics. DATA EXTRACTION AND SYNTHESIS Twenty-one studies were included in this review. The effects of therapeutic hypothermia on drug disposition include both the effects during cooling and the effects after rewarming on drug metabolism and response. The studies cited in this review demonstrate that the addition of mild to moderate hypothermia decreases the systemic clearance of cytochrome P450 metabolized drugs between approximately 7% and 22% per degree Celsius below 37degreesC during cooling. The addition of hypothermia decreases the potency and efficacy of certain drugs. CONCLUSIONS This review provides evidence that the therapeutic index of drugs is narrowed during hypothermia. The magnitude of these alterations indicates that intensivists must be aware of these alterations in order to maximize the therapeutic efficacy of this modality. In addition to increased clinical attention, future research efforts are essential to delineate precise dosing guidelines and mechanisms of the effect of hypothermia on drug disposition and response.
Collapse
Affiliation(s)
- Michael A Tortorici
- University of Pittsburgh School of Pharmacy, Department of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | | | | |
Collapse
|