1
|
Galzerano D, Savo MT, Castaldi B, Kholaif N, Khaliel F, Pozza A, Aljheish S, Cattapan I, Martini M, Lassandro E, Cordoni G, Tansella D, Cozac DA, Alamro B, Di Salvo G. Transforming Heart Failure Management: The Power of Strain Imaging, 3D Imaging, and Vortex Analysis in Echocardiography. J Clin Med 2024; 13:5759. [PMID: 39407819 PMCID: PMC11476592 DOI: 10.3390/jcm13195759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Heart failure (HF) remains a critical global health challenge, necessitating advancements in diagnostic and therapeutic strategies. This review explores the evolution of imaging technologies and their impact on HF management, focusing on three-dimensional echocardiography (3DE), myocardial strain imaging, and vortex dynamics imaging. Three-dimensional echocardiography enhances traditional echocardiography by providing more accurate assessments of cardiac structures, while myocardial strain imaging offers the early detection of subclinical myocardial dysfunction, crucial in conditions such as chemotherapy-induced cardiotoxicity and ischemic heart disease. Vortex dynamics imaging, a novel technique, provides insights into intracardiac flow patterns, aiding in the evaluation of left ventricular function, valve diseases, and congenital heart anomalies. The integration of these advanced imaging modalities into clinical practice facilitates personalized treatment strategies, enabling the earlier diagnosis and more precise monitoring of disease progression. The ongoing refinement of these imaging techniques holds promise for improving patient outcomes and advancing the field of precision medicine in HF care.
Collapse
Affiliation(s)
- Domenico Galzerano
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (N.K.); (B.A.)
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11564, Saudi Arabia; (F.K.); (S.A.)
| | - Maria Teresa Savo
- Cardiology Unit, Cardio-Thoraco-Vascular and Public Health Department, Padova University Hospital, 35121 Padova, Italy; (M.T.S.); (M.M.); (E.L.); (G.C.); (D.T.)
| | - Biagio Castaldi
- Division of Pediatric Cardiology, Department for Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (B.C.); (I.C.); (G.D.S.)
| | - Naji Kholaif
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (N.K.); (B.A.)
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11564, Saudi Arabia; (F.K.); (S.A.)
| | - Feras Khaliel
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11564, Saudi Arabia; (F.K.); (S.A.)
| | - Alice Pozza
- Division of Pediatric Cardiology, Department for Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (B.C.); (I.C.); (G.D.S.)
| | - Saif Aljheish
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11564, Saudi Arabia; (F.K.); (S.A.)
| | - Irene Cattapan
- Division of Pediatric Cardiology, Department for Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (B.C.); (I.C.); (G.D.S.)
| | - Marika Martini
- Cardiology Unit, Cardio-Thoraco-Vascular and Public Health Department, Padova University Hospital, 35121 Padova, Italy; (M.T.S.); (M.M.); (E.L.); (G.C.); (D.T.)
| | - Eleonora Lassandro
- Cardiology Unit, Cardio-Thoraco-Vascular and Public Health Department, Padova University Hospital, 35121 Padova, Italy; (M.T.S.); (M.M.); (E.L.); (G.C.); (D.T.)
| | - Gabriele Cordoni
- Cardiology Unit, Cardio-Thoraco-Vascular and Public Health Department, Padova University Hospital, 35121 Padova, Italy; (M.T.S.); (M.M.); (E.L.); (G.C.); (D.T.)
| | - Donatella Tansella
- Cardiology Unit, Cardio-Thoraco-Vascular and Public Health Department, Padova University Hospital, 35121 Padova, Italy; (M.T.S.); (M.M.); (E.L.); (G.C.); (D.T.)
| | - Dan Alexandru Cozac
- Emergency Institute for Cardiovascular Diseases and Transplantation of Targu Mures, 540136 Targu Mures, Romania;
| | - Bandar Alamro
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (N.K.); (B.A.)
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11564, Saudi Arabia; (F.K.); (S.A.)
| | - Giovanni Di Salvo
- Division of Pediatric Cardiology, Department for Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (B.C.); (I.C.); (G.D.S.)
| |
Collapse
|
2
|
Ngiam JN, Liong TS, Pramotedham T, Sia CH, Jou E, Kong WKF, Poh KK. Left ventricular vortex formation time: emerging clinical applications and limitations. Singapore Med J 2023:389617. [PMID: 38037777 DOI: 10.4103/singaporemedj.smj-2022-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Vortex formation during left ventricular diastolic filling may provide clinically useful insights into cardiac health. In recent years, there has been growing interest in the measurement of vortex formation time (VFT), especially because it is derived noninvasively. There are important applications of VFT in valvular heart disease, athletic physiology, heart failure and hypertrophic cardiomyopathy. The formation of the vortex as fluid propagates into the left ventricle from the left atrium is important for efficient fluid transport. Quantifying VFT may thus help in evaluating and understanding disease and pathophysiological processes.
Collapse
Affiliation(s)
| | - Tze Sian Liong
- Department of Medicine, National University Health System, Singapore
| | | | - Ching-Hui Sia
- Department of Medicine; Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore
| | - Eric Jou
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - William Kok-Fai Kong
- Department of Medicine; Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore
| | - Kian-Keong Poh
- Department of Medicine; Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore
| |
Collapse
|
3
|
Ambhore A, Ngiam JN, Chew NWS, Pramotedham T, Loh JPY, Kang GS, Poh KK. Optimal vortex formation time index in mitral valve stenosis. Int J Cardiovasc Imaging 2021; 37:1595-1600. [PMID: 33433748 DOI: 10.1007/s10554-020-02140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Left ventricular vortex formation time (VFT) is a novel dimensionless index of flow propagation during left ventricular diastole, which has been demonstrated to be useful in heart failure and cardiomyopathy. In mitral stenosis (MS), flow propagation in the LV may be suboptimal. We studied VFT in varying degrees of MS. Echocardiography was performed on 20 healthy controls and 50 cases of rheumatic MS. Patients with atrial fibrillation, LV ejection fraction < 50% and other valvular heart diseases were excluded. VFT was obtained using the length-to-diameter ratio (L/D), where L is the continuous-wave Doppler velocity time integral stroke distance, divided by D, the mitral leaflet separation index. This was correlated against varying degrees of MS severity, left atrial (LA) volume and function. In controls, VFT was 3.92 ± 2.00 (optimal range) and was higher (suboptimal) with increasing severity of mitral stenosis (4.98 ± 2.43 in mild MS; 7.22 ± 2.98 in moderate MS; 11.55 ± 2.67 in severe MS, p < 0.001). VFT negatively correlated with mitral valve area (R2 = 0.463, p < 0.001) and total LA emptying fraction (R2 = 0.348, p < 0.001), and positively correlated with LA volume index (R2 = 0.440, p < 0.001) and mean transmitral pressure gradient (R2 = 0.336, p < 0.001). More severe MS correlated with suboptimal (higher) VFT. The restricted mitral valve opening may disrupt vortex formation and optimal fluid propagation in the LV. Despite the compensatory increase in LA size with increasingly severe MS, reduced LA function also contributed to the suboptimal LV vortex formation.
Collapse
Affiliation(s)
- Anand Ambhore
- Department of Cardiology, National University Heart Centre, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
| | | | - Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
| | | | - Joshua P Y Loh
- Department of Cardiology, National University Heart Centre, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
| | - Giap Swee Kang
- Department of Cardiothoracic and Vascular Surgery, National University Health System, Singapore, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Pagel PS, Dye L, Boettcher BT, Freed JK. Advanced Age Attenuates Left Ventricular Filling Efficiency Quantified Using Vortex Formation Time: A Study of Octogenarians With Normal Left Ventricular Systolic Function Undergoing Coronary Artery Surgery. J Cardiothorac Vasc Anesth 2018. [PMID: 29525195 DOI: 10.1053/j.jvca.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Blood flow across the mitral valve during early left ventricular (LV) filling produces a 3-dimensional rotational fluid body, known as a vortex ring, that enhances LV filling efficiency. Diastolic dysfunction is common in elderly patients, but the influence of advanced age on vortex formation is unknown. The authors tested the hypothesis that advanced age is associated with a reduction in LV filling efficiency quantified using vortex formation time (VFT) in octogenarians undergoing coronary artery bypass graft (CABG) surgery. DESIGN Observational study. SETTING Veterans Affairs medical center. PARTICIPANTS After institutional review board approval, octogenarians (n = 7; 82 ± 2 year [mean ± standard deviation]; ejection fraction 56% ± 7%) without valve disease or atrial arrhythmias undergoing CABG were compared with a younger cohort (n = 7; 55 ± 6 year; ejection fraction 57% ± 7%) who were undergoing coronary revascularization. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS All patients were monitored using radial and pulmonary arterial catheters and transesophageal echocardiography. Peak early LV filling (E) and atrial systole (A) blood flow velocities and their corresponding velocity-time integrals were obtained using pulse-wave Doppler echocardiography to determine E/A, atrial filling fraction (β), and E wave deceleration time. Pulse-wave Doppler also was used to measure pulmonary venous blood flow during systole and diastole. Mitral valve diameter (D) was calculated as the average of major and minor axis lengths obtained in the midesophageal LV bicommissural and long-axis transesophageal echocardiography imaging planes, respectively. VFT was calculated as 4 × (1 - β) × SV/(πD3), where SV is the stroke volume measured using thermodilution. Systemic and pulmonary hemodynamics, LV diastolic function, and VFT were determined during steady-state conditions 30 minutes before cardiopulmonary bypass. A delayed relaxation pattern of LV filling (E/A 0.81 ± 0.16 v 1.29 ± 0.19, p = 0.00015; β 0.44 ± 0.05 v 0.35 ± 0.03, p = 0.0008; E wave deceleration time 294 ± 58 v 166 ± 28 ms, p < 0.0001; ratio of peak pulmonary venous systolic and diastolic blood flow velocity 1.42 ± 0.23 v 1.14 ± 0.20, p = 0.0255) was observed in octogenarians compared with younger patients. Mitral valve diameter was similar between groups (2.7 ± 0.2 and 2.6 ± 0.2 cm, respectively, in octogenarians v younger patients, p = 0.299). VFT was reduced in octogenarians compared with younger patients (3.0 ± 0.9 v 4.5 ± 1.2; p = 0.0171). An inverse correlation between age and VFT was shown using linear regression analysis (VFT = -0.0627 × age + 8.24; r2 = 0.408; p = 0.0139). CONCLUSION The results indicate that LV filling efficiency quantified using VFT is reduced in octogenarians compared with younger patients undergoing coronary artery bypass grafting.
Collapse
Affiliation(s)
- Paul S Pagel
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI.
| | - Lonnie Dye
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| | - Brent T Boettcher
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| | - Julie K Freed
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| |
Collapse
|