1
|
El-Nashar H, Sabry M, Tseng YT, Francis N, Latif N, Parker KH, Moore JE, Yacoub MH. Multiscale structure and function of the aortic valve apparatus. Physiol Rev 2024; 104:1487-1532. [PMID: 37732828 PMCID: PMC11495199 DOI: 10.1152/physrev.00038.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Whereas studying the aortic valve in isolation has facilitated the development of life-saving procedures and technologies, the dynamic interplay of the aortic valve and its surrounding structures is vital to preserving their function across the wide range of conditions encountered in an active lifestyle. Our view is that these structures should be viewed as an integrated functional unit, here referred to as the aortic valve apparatus (AVA). The coupling of the aortic valve and root, left ventricular outflow tract, and blood circulation is crucial for AVA's functions: unidirectional flow out of the left ventricle, coronary perfusion, reservoir function, and support of left ventricular function. In this review, we explore the multiscale biological and physical phenomena that underlie the simultaneous fulfillment of these functions. A brief overview of the tools used to investigate the AVA, such as medical imaging modalities, experimental methods, and computational modeling, specifically fluid-structure interaction (FSI) simulations, is included. Some pathologies affecting the AVA are explored, and insights are provided on treatments and interventions that aim to maintain quality of life. The concepts explained in this article support the idea of AVA being an integrated functional unit and help identify unanswered research questions. Incorporating phenomena through the molecular, micro, meso, and whole tissue scales is crucial for understanding the sophisticated normal functions and diseases of the AVA.
Collapse
Affiliation(s)
- Hussam El-Nashar
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Malak Sabry
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Yuan-Tsan Tseng
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nadine Francis
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Najma Latif
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kim H Parker
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - James E Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Magdi H Yacoub
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Peng Y, Hu H, Shu X, Lin Y, Huang W, Xu S, Nie R. The myth of aortic valve annulus changes in aortic valve disease. Front Cardiovasc Med 2023; 10:1302992. [PMID: 38162138 PMCID: PMC10755897 DOI: 10.3389/fcvm.2023.1302992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Background The characteristics of aortic annulus changes in aortic regurgitation (AR) patients are poorly understood, and predictive factors among aortic valve disease are yet to be established. Objective This study seeks to elucidate the pattern of annular size fluctuations across different cardiac phases in AR patients and to identify predictors for annular enlargement during either systole or diastole in aortic valve diseases. Methods A retrospective analysis was conducted on 55 patients with severe aortic valve diseases, including 26 patients with aortic stenosis (AS) and 29 with AR, to discern the two groups' contrasting and analogous patterns of annular changes. The patient sample was expanded to 107 to investigate the factors influencing the size of the annulus during different cardiac phases. Based on our findings, patients were then divided into two groups: those with an annulus that is larger during systole (83 patients) and those where the annulus is larger during diastole (24 patients). Results Typically, AR patients exhibit a dynamic annulus, with both perimeter and area being largest during mid-systole. These dimensions diminish progressively and then increase again in early diastole, a pattern consistent with observations in AS patients. Among 107 patients, 21% had diastolic enlargement. Systolic measurements would lead to prosthesis undersizing in 17% of these. Male gender and lower systolic annulus minimum relative to body surface area (AnMin index) were predictors of diastolic enlargement, with ROC curve areas of 0.70 and 0.87 for AR and AS, respectively. Conclusions Systolic measurements are recommended for AR patients. Gender and the AnMin index are significant predictors, particularly potent in AS patients.
Collapse
Affiliation(s)
- Yanren Peng
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Xiaorong Shu
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yongqing Lin
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Weibin Huang
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Shuwan Xu
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Ruqiong Nie
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
3
|
Thalappillil R, Datta P, Datta S, Zhan Y, Wells S, Mahmood F, Cobey FC. Artificial Intelligence for the Measurement of the Aortic Valve Annulus. J Cardiothorac Vasc Anesth 2020; 34:65-71. [DOI: 10.1053/j.jvca.2019.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
|
4
|
Queirós S, Morais P, Fehske W, Papachristidis A, Voigt JU, Fonseca JC, D'hooge J, Vilaça JL. Assessment of aortic valve tract dynamics using automatic tracking of 3D transesophageal echocardiographic images. Int J Cardiovasc Imaging 2019; 35:881-895. [PMID: 30701439 DOI: 10.1007/s10554-019-01532-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
The assessment of aortic valve (AV) morphology is paramount for planning transcatheter AV implantation (TAVI). Nowadays, pre-TAVI sizing is routinely performed at one cardiac phase only, usually at mid-systole. Nonetheless, the AV is a dynamic structure that undergoes changes in size and shape throughout the cardiac cycle, which may be relevant for prosthesis selection. Thus, the aim of this study was to present and evaluate a novel software tool enabling the automatic sizing of the AV dynamically in three-dimensional (3D) transesophageal echocardiography (TEE) images. Forty-two patients who underwent preoperative 3D-TEE images were retrospectively analyzed using the software. Dynamic measurements were automatically extracted at four levels, including the aortic annulus. These measures were used to assess the software's ability to accurately and reproducibly quantify the conformational changes of the aortic root and were validated against automated sizing measurements independently extracted at distinct time points. The software extracted physiological dynamic measurements in less than 2 min, that were shown to be accurate (error 2.2 ± 26.3 mm2 and 0.0 ± 2.53 mm for annular area and perimeter, respectively) and highly reproducible (0.85 ± 6.18 and 0.65 ± 7.90 mm2 of intra- and interobserver variability, respectively, in annular area). Using the maximum or minimum measured values rather than mid-systolic ones for device sizing resulted in a potential change of recommended size in 7% and 60% of the cases, respectively. The presented software tool allows a fast, automatic and reproducible dynamic assessment of the AV morphology from 3D-TEE images, with the extracted measures influencing the device selection depending on the cardiac moment used to perform its sizing. This novel tool may thus ease and potentially increase the observer's confidence during prosthesis' size selection at the preoperative TAVI planning.
Collapse
Affiliation(s)
- Sandro Queirós
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Lab on Cardiovascular Imaging and Dynamics, KU Leuven, Leuven, Belgium. .,Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal.
| | - Pedro Morais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Lab on Cardiovascular Imaging and Dynamics, KU Leuven, Leuven, Belgium.,2Ai-Polytechnic Institute of Cávado and Ave, Barcelos, Portugal
| | - Wolfgang Fehske
- Department of Cardiology, St Vinzenz-Hospital, Cologne, Germany
| | | | - Jens-Uwe Voigt
- Department of Cardiology, University Hospital Leuven, Leuven, Belgium
| | - Jaime C Fonseca
- Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal
| | - Jan D'hooge
- Lab on Cardiovascular Imaging and Dynamics, KU Leuven, Leuven, Belgium
| | - João L Vilaça
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,2Ai-Polytechnic Institute of Cávado and Ave, Barcelos, Portugal
| |
Collapse
|