1
|
Zhang Y, Feng S, Cheng X, Lou K, Liu X, Zhuo M, Chen L, Ye J. The potential value of exosomes as adjuvants for novel biologic local anesthetics. Front Pharmacol 2023; 14:1112743. [PMID: 36778004 PMCID: PMC9909291 DOI: 10.3389/fphar.2023.1112743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
The side effects of anesthetic drugs are a key preoperative concern for anesthesiologists. Anesthetic drugs used for general anesthesia and regional blocks are associated with a potential risk of systemic toxicity. This prompted the use of anesthetic adjuvants to ameliorate these side effects and improve clinical outcomes. However, the adverse effects of anesthetic adjuvants, such as neurotoxicity and gastrointestinal reactions, have raised concerns about their clinical use. Therefore, the development of relatively safe anesthetic adjuvants with fewer side effects is an important area for future anesthetic drug research. Exosomes, which contain multiple vesicles with genetic information, can be released by living cells with regenerative and specific effects. Exosomes released by specific cell types have been found to have similar effects as many local anesthetic adjuvants. Due to their biological activity, carrier efficacy, and ability to repair damaged tissues, exosomes may have a better efficacy and safety profile than the currently used anesthetic adjuvants. In this article, we summarize the contemporary literature about local anesthetic adjuvants and highlight their potential side effects, while discussing the potential of exosomes as novel local anesthetic adjuvant drugs.
Collapse
Affiliation(s)
- Yunmeng Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xin Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xin Liu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ming Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,*Correspondence: Li Chen, ; Junming Ye,
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,*Correspondence: Li Chen, ; Junming Ye,
| |
Collapse
|
2
|
Haney MJ, Zhao Y, Fallon JK, Yue W, Li SM, Lentz EE, Erie D, Smith PC, Batrakova EV. Extracellular Vesicles as Drug Delivery System for Treatment of Neurodegenerative Disorders: Optimization of the Cell Source. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100064. [PMID: 34927169 PMCID: PMC8680291 DOI: 10.1002/anbr.202100064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) represent a next generation drug delivery system that combines nanoparticle size with extraordinary ability to cross biological barriers, reduced immunogenicity, and low offsite toxicity profiles. A successful application of this natural way of delivering biological compounds requires deep understanding EVs intrinsic properties inherited from their parent cells. Herein, we evaluated EVs released by cells of different origin, with respect to drug delivery to the brain for treatment of neurodegenerative disorders. The morphology, size, and zeta potential of EVs secreted by primary macrophages (mEVs), neurons (nEVs), and astrocytes (aEVs) were examined by nanoparticle NTA, DLS, cryoTEM, and AFM. Spherical nanoparticles with average size 110-130 nm and zeta potential around -20 mV were identified for all EVs types. mEVs showed the highest levels of tetraspanins and integrins compared to nEVs and aEVs, suggesting superior adhesion and targeting to the inflamed tissues by mEVs. Strikingly, aEVs were preferentially taken up by neuronal cells in vitro, followed by mEVs and nEVs. Nevertheless, the brain accumulation levels of mEVs in a transgenic mouse model of Parkinson's disease were significantly higher than those of nEVs or aEVs. Therefore, mEVs were suggested as the most promising nanocarrier system for drug delivery to the brain.
Collapse
Affiliation(s)
- Matthew J. Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John K. Fallon
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wang Yue
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Samuel M. Li
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emily E. Lentz
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dorothy Erie
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philip C. Smith
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Ramsingh D, Staab J, Flynn B. Application of perioperative hemodynamics today and potentials for tomorrow. Best Pract Res Clin Anaesthesiol 2021; 35:551-564. [PMID: 34801217 DOI: 10.1016/j.bpa.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/18/2022]
Abstract
Hemodynamic (HD) monitoring remains integral to the assessment and management of perioperative and critical care patients. This review article seeks to provide an update on the different types of flow-guided HD monitoring technologies available, highlight their limitations, and review the therapies associated with the application of these technologies. Additionally, we will also comment on the expanding roles of HD monitoring in the future.
Collapse
Affiliation(s)
- Davinder Ramsingh
- Department of Anesthesiology Loma Linda University Medical Center, Loma Linda, CA, USA; VP for Clinical and Medical Affairs, Edwards Lifesciences Critical Care Division, USA.
| | - Jared Staab
- Director of Perioperative Ultrasound, Program Director Critical Care Anesthesiology Fellowship, Department of Anesthesiology, University of Kansas Medical Center, USA.
| | - Brigid Flynn
- Chief, Division of Critical Care, Co-Director Cardiothoracic ICUChair Anesthesia Research Committee, Department of Anesthesiology, University of Kansas Medical, USA.
| |
Collapse
|
4
|
Mastoris I, Flynn BC. High-risk coronary artery bypass grafting: Is there evidence…and do we need it? J Cardiothorac Vasc Anesth 2021; 36:353-355. [PMID: 34615598 DOI: 10.1053/j.jvca.2021.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Ioannis Mastoris
- University of Kansas Health System, University of Kansas School of Medicine, Department of Cardiovascular Medicine, Kansas City, KS
| | - Brigid C Flynn
- University of Kansas Health System, University of Kansas School of Medicine, Department of Anesthesiology, Kansas City, KS.
| |
Collapse
|
5
|
Klyachko NL, Arzt CJ, Li SM, Gololobova OA, Batrakova EV. Extracellular Vesicle-Based Therapeutics: Preclinical and Clinical Investigations. Pharmaceutics 2020; 12:E1171. [PMID: 33271883 PMCID: PMC7760239 DOI: 10.3390/pharmaceutics12121171] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Drug nanoformulations hold remarkable promise for the efficient delivery of therapeutics to a disease site. Unfortunately, artificial nanocarriers, mostly liposomes and polymeric nanoparticles, show limited applications due to the unfavorable pharmacokinetics and rapid clearance from the blood circulation by the reticuloendothelial system (RES). Besides, many of them have high cytotoxicity, low biodegradability, and the inability to cross biological barriers, including the blood brain barrier. Extracellular vesicles (EVs) are novel candidates for drug delivery systems with high bioavailability, exceptional biocompatibility, and low immunogenicity. They provide a means for intercellular communication and the transmission of bioactive compounds to targeted tissues, cells, and organs. These features have made them increasingly attractive as a therapeutic platform in recent years. However, there are many obstacles to designing EV-based therapeutics. In this review, we will outline the main hurdles and limitations for therapeutic and clinical applications of drug loaded EV formulations and describe various attempts to solve these problems.
Collapse
Affiliation(s)
- Natalia L. Klyachko
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (N.L.K.); (O.A.G.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.J.A.); (S.M.L.)
| | - Camryn J. Arzt
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.J.A.); (S.M.L.)
| | - Samuel M. Li
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.J.A.); (S.M.L.)
| | - Olesia A. Gololobova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (N.L.K.); (O.A.G.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.J.A.); (S.M.L.)
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (N.L.K.); (O.A.G.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.J.A.); (S.M.L.)
| |
Collapse
|
6
|
Zarà M, Amadio P, Campodonico J, Sandrini L, Barbieri SS. Exosomes in Cardiovascular Diseases. Diagnostics (Basel) 2020; 10:E943. [PMID: 33198302 PMCID: PMC7696149 DOI: 10.3390/diagnostics10110943] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are nano-sized biovesicles of endocytic origin physiologically released by nearly all cell types into surrounding body fluids. They carry cell-specific cargos of protein, lipids, and genetic materials and can be selectively taken up by neighboring or distant cells. Since the intrinsic properties of exosomes are strictly influenced by the state of the parental cell and by the cellular microenvironment, the analysis of exosome origin and content, and their cell-targeting specificity, make them attractive as possible diagnostic and prognostic biomarkers. While the possible role of exosomes as messengers and a regenerative tool in cardiovascular diseases (CVDs) is actively investigated, the evidence about their usefulness as biomarkers is still limited and incomplete. Further complications are due to the lack of consensus regarding the most appropriate approach for exosome isolation and characterization, both important issues for their effective clinical translation. As a consequence, in this review, we will discuss the few information currently accessible about the diagnostic/prognostic potential of exosomes in CVDs and on the methodologies available for exosome isolation, analysis, and characterization.
Collapse
Affiliation(s)
- Marta Zarà
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Patrizia Amadio
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Jeness Campodonico
- Intensive Cardiac Care Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy;
| | - Leonardo Sandrini
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Silvia S. Barbieri
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| |
Collapse
|