1
|
Elder S, Chenault H, Gloth P, Webb K, Recinos R, Wright E, Moran D, Butler J, Borazjani A, Cooley A. Effects of antigen removal on a porcine osteochondral xenograft for articular cartilage repair. J Biomed Mater Res A 2018; 106:2251-2260. [PMID: 29577591 DOI: 10.1002/jbm.a.36411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 11/06/2022]
Abstract
Given the limited availability of fresh osteochondral allografts and uncertainty regarding performance of decellularized allografts, this study was undertaken as part of an effort to develop an osteochondral xenograft for articular cartilage repair. The purpose was to evaluate a simple antigen removal procedure based mainly on treatment with SDS and nucleases. Histology demonstrated a preservation of collagenous structure and removal of most nuclei. Immunohistochemistry revealed the apparent retention of α-Gal within osteocyte lacunae unless the tissue underwent an additional α-galactosidase processing step. Cytoplasmic protein was completely removed as shown by Western blot. Quantitatively, the antigen removal protocol was found to extract approximately 90% of DNA from cartilage and bone, and it extracted over 80% of glycosaminoglycan from cartilage. Collagen content was not affected. Mechanical testing of cartilage and bone were performed separately, in addition to testing the cartilage-bone interface, and the main effect of antigen removal was an increase in cartilage hydraulic permeability. In vivo immunogenicity was assessed by subcutaneous implantation into DBA/1 J mice, and the response was typical of a foreign body rather than immune reaction. Thus, an osteochondral xenograft produced as described has the potential for further development into a treatment for osteochondral lesions in the human knee. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2251-2260, 2018.
Collapse
Affiliation(s)
- Steve Elder
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Hudson Chenault
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Paul Gloth
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Katie Webb
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Ruth Recinos
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Emily Wright
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Dalton Moran
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - James Butler
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi
| | - Abdolsamad Borazjani
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi
| | - Avery Cooley
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi
| |
Collapse
|