1
|
Sayed ZS, Khattap MG, Madkour MA, Yasen NS, Elbary HA, Elsayed RA, Abdelkawy DA, Wadan AHS, Omar I, Nafady MH. Circulating tumor cells clusters and their role in Breast cancer metastasis; a review of literature. Discov Oncol 2024; 15:94. [PMID: 38557916 PMCID: PMC10984915 DOI: 10.1007/s12672-024-00949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Breast cancer is a significant and deadly threat to women globally. Moreover, Breast cancer metastasis is a complicated process involving multiple biological stages, which is considered a substantial cause of death, where cancer cells spread from the original tumor to other organs in the body-representing the primary mortality factor. Circulating tumor cells (CTCs) are cancer cells detached from the primary or metastatic tumor and enter the bloodstream, allowing them to establish new metastatic sites. CTCs can travel alone or in groups called CTC clusters. Studies have shown that CTC clusters have more potential for metastasis and a poorer prognosis than individual CTCs in breast cancer patients. However, our understanding of CTC clusters' formation, structure, function, and detection is still limited. This review summarizes the current knowledge of CTC clusters' biological properties, isolation, and prognostic significance in breast cancer. It also highlights the challenges and future directions for research and clinical application of CTC clusters.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Mohamed G Khattap
- Technology of Radiology and Medical Imaging Program, Faculty of Applied Health Sciences Technology, Galala University, Suez, 435611, Egypt
| | | | - Noha S Yasen
- Radiology and Imaging Technology Department, Faculty of Applied Health Science Technology, Delta University for Science and Technology, Gamasa, Al Mansurah, Egypt
| | - Hanan A Elbary
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Reem A Elsayed
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Dalia A Abdelkawy
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | | | - Islam Omar
- Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Mohamed H Nafady
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, 6th of october, Egypt.
| |
Collapse
|
2
|
Kania B, Sotelo A, Ty D, Wisco JJ. The Prevention of Inflammation and the Maintenance of Iron and Hepcidin Homeostasis in the Gut, Liver, and Brain Pathologies. J Alzheimers Dis 2023; 92:769-789. [PMID: 36846996 PMCID: PMC10116142 DOI: 10.3233/jad-220224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The human gut microbiome consists of a variety of microorganisms that inhabit the intestinal tract. This flora has recently been shown to play an important role in human disease. The crosstalk between the gut and brain axis has been investigated through hepcidin, derived from both hepatocytes and dendritic cells. Hepcidin could potentially play an anti-inflammatory role in the process of gut dysbiosis through a means of either a localized approach of nutritional immunity, or a systemic approach. Like hepcidin, mBDNF and IL-6 are part of the gut-brain axis: gut microbiota affects their levels of expression, and this relationship is thought to play a role in cognitive function and decline, which could ultimately lead to a number of neurodegenerative diseases such as Alzheimer's disease. This review will focus on the interplay between gut dysbiosis and the crosstalk between the gut, liver, and brain and how this is mediated by hepcidin through different mechanisms including the vagus nerve and several different biomolecules. This overview will also focus on the gut microbiota-induced dysbiotic state on a systemic level, and how gut dysbiosis can contribute to beginnings and the progression of Alzheimer's disease and neuroinflammation.
Collapse
Affiliation(s)
- Barbara Kania
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| | - Alexis Sotelo
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| | - Darren Ty
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| | - Jonathan J Wisco
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Kapsetaki SE, Marquez Alcaraz G, Maley CC, Whisner CM, Aktipis A. Diet, Microbes, and Cancer Across the Tree of Life: a Systematic Review. Curr Nutr Rep 2022; 11:508-525. [PMID: 35704266 PMCID: PMC9197725 DOI: 10.1007/s13668-022-00420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cancers are a leading cause of death in humans and for many other species. Diet has often been associated with cancers, and the microbiome is an essential mediator between diet and cancers. Here, we review the work on cancer and the microbiome across species to search for broad patterns of susceptibility associated with different microbial species. RECENT FINDINGS Some microbes, such as Helicobacter bacteria, papillomaviruses, and the carnivore-associated Fusobacteria, consistently induce tumorigenesis in humans and other species. Other microbes, such as the milk-associated Lactobacillus, consistently inhibit tumorigenesis in humans and other species. We systematically reviewed over a thousand published articles and identified links between diet, microbes, and cancers in several species of mammals, birds, and flies. Future work should examine a larger variety of host species to discover new model organisms for human preclinical trials, to better understand the observed variance in cancer prevalence across species, and to discover which microbes and diets are associated with cancers across species. Ultimately, this could help identify microbial and dietary interventions to diagnose, prevent, and treat cancers in humans as well as other animals.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA.
| | - Gissel Marquez Alcaraz
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
4
|
Khan I. Microbiome. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1735599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Imran Khan
- Department of Medical Oncology, Artemis Hospitals, Gurugram, Haryana, India
| |
Collapse
|
5
|
The dysbiosis signature of Fusobacterium nucleatum in colorectal cancer-cause or consequences? A systematic review. Cancer Cell Int 2021; 21:194. [PMID: 33823861 PMCID: PMC8025348 DOI: 10.1186/s12935-021-01886-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer globally and the fourth attributable cause of mortality and morbidity due to cancer. An emerging factor contributing to CRC is the gut microbiota and the cellular changes associated with it. Further insights on this may help in the prevention, diagnosis and new therapeutic approaches to colorectal cancer. In most cases of CRC, genetic factors appear to contribute less to its aetiology than environmental and epigenetic factors; therefore, it may be important to investigate these environmental factors, their effects, and the mechanisms that may contribute to this cancer. The gut microbiota has recently been highlighted as a potential risk factor that may affect the structural components of the tumor microenvironment, as well as free radical and enzymatic metabolites directly, or indirectly. Many studies have reported changes in the gut microbiota of patients with colorectal cancer. What is controversial is whether the cancer is the cause or consequence of the change in the microbiota. There is strong evidence supporting both possibilities. The presence of Fusobacterium nucleatum in human colorectal specimens has been demonstrated by RNA-sequencing. F. nucleatum has been shown to express high levels of virulence factors such as FadA, Fap2 and MORN2 proteins. Our review of the published data suggest that F. nucleatum may be a prognostic biomarker of CRC risk, and hence raises the potential of antibiotic treatment of F. nucleatum for the prevention of CRC.
Collapse
|
6
|
Reynolds BA, Oli MW, Oli MK. Eco-oncology: Applying ecological principles to understand and manage cancer. Ecol Evol 2020; 10:8538-8553. [PMID: 32884638 PMCID: PMC7452771 DOI: 10.1002/ece3.6590] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is a disease of single cells that expresses itself at the population level. The striking similarities between initiation and growth of tumors and dynamics of biological populations, and between metastasis and ecological invasion and community dynamics suggest that oncology can benefit from an ecological perspective to improve our understanding of cancer biology. Tumors can be viewed as complex, adaptive, and evolving systems as they are spatially and temporally heterogeneous, continually interacting with each other and with the microenvironment and evolving to increase the fitness of the cancer cells. We argue that an eco-evolutionary perspective is essential to understand cancer biology better. Furthermore, we suggest that ecologically informed therapeutic approaches that combine standard of care treatments with strategies aimed at decreasing the evolutionary potential and fitness of neoplastic cells, such as disrupting cell-to-cell communication and cooperation, and preventing successful colonization of distant organs by migrating cancer cells, may be effective in managing cancer as a chronic condition.
Collapse
Affiliation(s)
- Brent A. Reynolds
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFLUSA
| | - Monika W. Oli
- Department of Microbiology and Cell ScienceInstitute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFLUSA
| | - Madan K. Oli
- Department of Wildlife Ecology and ConservationInstitute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
7
|
Chadha J, Nandi D, Atri Y, Nag A. Significance of human microbiome in breast cancer: Tale of an invisible and an invincible. Semin Cancer Biol 2020; 70:112-127. [PMID: 32717337 DOI: 10.1016/j.semcancer.2020.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023]
Abstract
The human microbiome is a mysterious treasure of the body playing endless important roles in the well-being of the host metabolism, digestion, and immunity. On the other hand, it actively participates in the development of a variety of pathological conditions including cancer. With the Human Microbiome Project initiative, metagenomics, and next-generation sequencing technologies in place, the last decade has witnessed immense explorations and investigations on the enigmatic association of breast cancer with the human microbiome. However, the connection between the human microbiome and breast cancer remains to be explored in greater detail. In fact, there are several emerging questions such as whether the host microbiota contributes to disease initiation, or is it a consequence of the disease is an irrevocably important question that demands a valid answer. Since the microbiome is an extremely complex community, gaps still remain on how this vital microbial organ plays a role in orchestrating breast cancer development. Nevertheless, undeniable evidence from studies has pinpointed the presence of specific microbial elements of the breast and gut to play a role in governing breast cancer. It is still unclear if an alteration in microbiome/dysbiosis leads to breast cancer or is it vice versa. Though specific microbial signatures have been detected to be associated with various breast cancer subtypes, the structure and composition of a core "healthy" microbiome is yet to be established. Probiotics seem to be a promising antidote for targeted prevention and treatment of breast cancer. Interestingly, these microbial communities can serve as potential biomarkers for prognosis, diagnosis, and treatment of breast cancer, thereby leading to the rise of a completely new era of personalized medicine. This review is a humble attempt to summarize the research findings on the human microbiome and its relation to breast cancer.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Deeptashree Nandi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Yama Atri
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
8
|
Cooperative and Escaping Mechanisms between Circulating Tumor Cells and Blood Constituents. Cells 2019; 8:cells8111382. [PMID: 31684193 PMCID: PMC6912439 DOI: 10.3390/cells8111382] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Metastasis is the leading cause of cancer-related deaths and despite measurable progress in the field, underlying mechanisms are still not fully understood. Circulating tumor cells (CTCs) disseminate within the bloodstream, where most of them die due to the attack of the immune system. On the other hand, recent evidence shows active interactions between CTCs and platelets, myeloid cells, macrophages, neutrophils, and other hematopoietic cells that secrete immunosuppressive cytokines, which aid CTCs to evade the immune system and enable metastasis. Platelets, for instance, regulate inflammation, recruit neutrophils, and cause fibrin clots, which may protect CTCs from the attack of Natural Killer cells or macrophages and facilitate extravasation. Recently, a correlation between the commensal microbiota and the inflammatory/immune tone of the organism has been stablished. Thus, the microbiota may affect the development of cancer-promoting conditions. Furthermore, CTCs may suffer phenotypic changes, as those caused by the epithelial–mesenchymal transition, that also contribute to the immune escape and resistance to immunotherapy. In this review, we discuss the findings regarding the collaborative biological events among CTCs, immune cells, and microbiome associated to immune escape and metastatic progression.
Collapse
|
9
|
Whisner CM, Athena Aktipis C. The Role of the Microbiome in Cancer Initiation and Progression: How Microbes and Cancer Cells Utilize Excess Energy and Promote One Another's Growth. Curr Nutr Rep 2019; 8:42-51. [PMID: 30758778 PMCID: PMC6426824 DOI: 10.1007/s13668-019-0257-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We use an ecological lens to understand how microbes and cancer cells coevolve inside the ecosystems of our bodies. We describe how microbe-cancer cell interactions contribute to cancer progression, including cooperation between microbes and cancer cells. We discuss the role of the immune system in preventing this apparent 'collusion' and describe how microbe-cancer cell interactions lead to opportunities and challenges in treating cancer. RECENT FINDINGS Microbiota influence many aspects of our health including our cancer risk. Since both microbes and cancer cells rely on incoming resources for their survival and replication, excess energy and nutrient input from the host can play a role in cancer initiation and progression. Certain microbes enhance cancer cell fitness by promoting proliferation and protecting cancer cells from the immune system. How diet influences these interactions remains largely unknown but recent evidence suggests a role for nutrients across the cancer continuum.
Collapse
Affiliation(s)
- Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - C Athena Aktipis
- Department of Psychology, Center for Social Dynamics and Complexity, Center for Evolution and Medicine, Biodesign Institute, Arizona State University, PO Box 871104, Tempe, AZ, 85287-1104, USA.
| |
Collapse
|