1
|
Zhao P, Qiao C, Wang J, Zhou Y, Zhang C. Histone lactylation facilitates hepatocellular carcinoma progression by upregulating endothelial cell-specific molecule 1 expression. Mol Carcinog 2024; 63:2078-2089. [PMID: 39016629 DOI: 10.1002/mc.23794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor. Histone lactylation, a novel epigenetic modification, plays a crucial role in various cancers. However, the functional role and underlying mechanism of histone lactylation in HCC progression have not yet been investigated. Histone lactylation levels in HCC tissues and cells were assessed using a densitometric kit and western blot analysis. The role of histone lactylation in cell malignant phenotypes was determined through functional assays in vitro, and a xenograft tumor model was established to verify the function of histone lactylation in vivo. ChIP assay was performed to explore the interaction between histone lactylation and endothelial cell-specific molecule 1 (ESM1). Additionally, gain-and-loss-of-function assays were conducted to investigate the regulatory role of ESM1 in HCC pathogenesis. Histone lactylation levels were increased in HCC tissues and cells, and H3K9 lactylation (H3K9la) and H3K56 lactylation (H3K56la) were identified as the histone modification sites. We observed that H3K9la and H3K56la caused abnormal histone lactylation and were associated with poor prognosis. Functionally, histone lactylation was found to promote HCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process in vitro. However, histone lactylation inhibition with 2-deoxy-d-glucose (2-DG) reduced the malignant phenotypes of HCC cells. In vivo, 2-DG treatment reduced tumor growth and metastasis in the HCC mouse model. Mechanistically, it was revealed that histone lactylation activated ESM1 transcription in HCC cells. ESM1 was expressed at a high level in HCC and exerted a carcinogenic role. Histone lactylation facilitates cell malignant phenotypes, tumor growth, and metastasis by upregulating ESM1 expression in HCC, which reveals the downstream molecular mechanism of histone lactylation and might provide a novel therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Peng Zhao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Chunzhong Qiao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jiawei Wang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Ye Zhou
- Department of Postanesthesia Care Unit, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Changhe Zhang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
2
|
Zhang H, Zhao L, Ren P, Sun X. LncRNA MBNL1-AS1 knockdown increases the sensitivity of hepatocellular carcinoma to tripterine by regulating miR-708-5p-mediated glycolysis. Biotechnol Genet Eng Rev 2024; 40:1407-1424. [PMID: 36951619 DOI: 10.1080/02648725.2023.2193776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Hepatocellular carcinoma (HCC) is identified as a common cancer type across the world and needs novel and efficient treatment. Tripterine, a well-known compound, exerts suppressive role in HCC development. However, the related molecular mechanism of tripterine in HCC remains unclear. The expression of MBNL1-AS1in HCC tissues and cells was measured via qRT-PCR assay. MTT assay was employed to estimate cell viability. Besides, cell migration as well as invasion was determined through transwell assay. Additionally, the binding ability of miR-708-5p and MBNL1-AS1or HK2 was proved by starBase database and luciferase reporter gene assay. Moreover, the HK2 level was detected by immunoblotting. MBNL1-AS1 was reduced in HCC tissues and cells. Overexpression of MBNL1-AS1 decreased the sensitivity of HCC cells to tripterine while MBNL1-AS1 silence played opposite effect. In addition, miR-708-5p was the target of MBNL1-AS1 and was down-regulated through MBNL1-AS1 in HCC cells. Moreover, miR-708-5p suppressed glycolysis rate and reduced the expression of vital glycolytic enzyme (HK2, LDHA and PKM2) in HCC cells. Furthermore, miR-708-5p reduced HK2 expression by binding to it directly. In this investigation, we proved that LncRNA MBNL1-AS1 increased the tripterine resistance of HCC cells at least partly by mediating miR-708-5p-related glycolysis. These findings revealed a potent therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Houbin Zhang
- Major of integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Lei Zhao
- Department of Thyroid Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Peiyou Ren
- Department of Thyroid Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - XiangJun Sun
- Department of General Surgery, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
3
|
Thangavelu L, Altamimi ASA, Ghaboura N, Babu MA, Roopashree R, Sharma P, Pal P, Choudhary C, Prasad GVS, Sinha A, Balaraman AK, Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract 2024; 263:155652. [PMID: 39437639 DOI: 10.1016/j.prp.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer is a major health epidemic worldwide, mainly due to its high mortality rates and limited treatment options. The association of cellular senescence to tumorigenesis and the cancer hallmarks remains a subject of interest in cancer biology. The p53-p21 signalling axis is an important regulator in restoring the cell's balance by supporting tumor suppression and tumorigenesis in liver cancer. We review the novel molecular mechanisms that p53 and its downstream effector, p21, employ to induce cellular senescence, making it last longer, and halt the proliferation of damaged hepatocytes to become tumorous cells. We also examine how dysregulation of this pathway contributes to HCC pathogenesis, proliferation, survival, acquired resistance to apoptosis, and increased invasiveness. Furthermore, we comprehensively describe the molecular cross-talk between the p53-p21 signalling axis and major cell cycle signalling pathways, including Wnt/β-catenin, PI3K/Akt, and TGF-β in liver cancer and provide an overview of promising candidates for chemoprevention and future therapeutic strategies. This review article explores the roles of the p53-p21 pathway in liver cancer, examining its function in promoting cellular senescence under normal conditions and its potential role in cancer progression. It also highlights novel therapeutic drugs and drug targets within the pathway and discusses the implications for treatment strategies and prognosis in liver cancer.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pusparghya Pal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Chhavi Choudhary
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| |
Collapse
|
4
|
Yang K, Ding Y, Han J, He R. CircROBO1 knockdown improves the radiosensitivity of hepatocellular carcinoma by regulating RAD21. Ann Hepatol 2024; 29:101536. [PMID: 39151890 DOI: 10.1016/j.aohep.2024.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION AND OBJECTIVES Radioresistance is a common problem in the treatment of many cancers, including hepatocellular carcinoma (HCC). Previous studies have shown that circROBO1 is highly expressed in HCC tissues and acts as a cancer promoter to accelerate the malignant progression of HCC. However, the role and mechanism of circROBO1 in HCC radioresistance remain unclear. MATERIALS AND METHODS CircROBO1, microRNA (miR)-136-5p and RAD21 expression levels were analyzed by quantitative real-time PCR. Cell function and radioresistance were evaluated by colony formation assay, cell counting kit 8 assay, EdU assay and flow cytometry. Protein expression was determined using western blot analysis. RNA interaction was analyzed by dual-luciferase reporter assay and RNA pull-down assay. In vivo experiments were performed by constructing mice xenograft models. RESULTS CircROBO1 was highly expressed in HCC, and its knockdown inhibited HCC cell proliferation and promoted apoptosis to enhance cell radiosensitivity. On the mechanism, circROBO1 could serve as miR-136-5p sponge to positively regulate RAD21. MiR-136-5p inhibitor or RAD21 overexpression reversed the regulation of circROBO1 knockdown on the radiosensitivity of HCC cells. Also, circROBO1 interference improved the radiosensitivity of HCC tumors in vivo. CONCLUSIONS CircROBO1 might be a promising target for treating HCC radioresistance.
Collapse
Affiliation(s)
- Kai Yang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, PR China
| | - Yanpeng Ding
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, PR China
| | - Jun Han
- Department of Interventional Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, PR China.
| | - Rui He
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, PR China.
| |
Collapse
|
5
|
Zeng L, Zhu L, Fu S, Li Y, Hu K. Mitochondrial Dysfunction-Molecular Mechanisms and Potential Treatment approaches of Hepatocellular Carcinoma. Mol Cell Biochem 2024:10.1007/s11010-024-05144-4. [PMID: 39463200 DOI: 10.1007/s11010-024-05144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Primary liver cancer (PLC), also known as hepatocellular carcinoma (HCC), is a common type of malignant tumor of the digestive system. Its pathological form has a significant negative impact on the patients' quality of life and ability to work, as well as a significant financial burden on society. Current researches had identified chronic hepatitis B virus infection, aflatoxin B1 exposure, and metabolic dysfunction-associated steatotic liver disease (MASLD) as the main causative factors of HCC. Numerous variables, including inflammatory ones, oxidative stress, apoptosis, autophagy, and others, have been linked to the pathophysiology of HCC. On the other hand, autoimmune regulation, inflammatory response, senescence of the hepatocytes, and mitochondrial dysfunction are all closely related to the pathogenesis of HCC. In fact, a growing number of studies have suggested that mitochondrial dysfunction in hepatocytes may be a key factor in the pathogenesis of HCC. In disorders linked to cancer, mitochondrial dysfunction has gained attention in recent 10 years. As the primary producer of adenosine triphosphate (ATP) in liver cells, mitochondria are essential for preserving cell viability and physiological processes. By influencing multiple pathological processes, including mitochondrial fission/fusion, mitophagy, cellular senescence, and cell death, mitochondrial dysfunction contributes to the development of HCC. We review the molecular mechanisms of HCC-associated mitochondrial dysfunction and discuss new directions for quality control of mitochondrial disorders as a treatment for HCC.
Collapse
Affiliation(s)
- Lianlin Zeng
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Lutao Zhu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Shasha Fu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Yangan Li
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Kehui Hu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China.
| |
Collapse
|
6
|
Ning J, Wang Y, Tao Z. The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions. Front Immunol 2024; 15:1483834. [PMID: 39502703 PMCID: PMC11534672 DOI: 10.3389/fimmu.2024.1483834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer that poses significant challenges regarding morbidity and mortality rates. In the context of HCC, immune cells play a vital role, especially concerning the presentation of antigens. This review explores the intricate interactions among immune cells within HCC, focusing on their functions in antigen presentation and the modulation of T-cell responses. We begin by summarizing the strategies that HCC uses to escape immune recognition, emphasizing the delicate equilibrium between immune surveillance and evasion. Next, we investigate the specific functions of various types of immune cells, including dendritic cells, natural killer (NK) cells, and CD8+ T cells, in the process of antigen presentation. We also examine the impact of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the pathways involving programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), on antigen presentation, while taking into account the clinical significance of checkpoint inhibitors. The review further emphasizes the importance of immune-based therapies, including cancer vaccines and CAR-T cell therapy, in improving antigen presentation. In conclusion, we encapsulate the latest advancements in research, propose future avenues for exploration, and stress the importance of innovative technologies and customized treatment strategies. By thoroughly analyzing the interactions of immune cells throughout the antigen presentation process in HCC, this review provides an up-to-date perspective on the field, setting the stage for new therapeutic approaches.
Collapse
Affiliation(s)
- Jianbo Ning
- The Fourth Clinical College, China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijia Tao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Ren Q, Chen G, Wan Q, Xiao L, Zhang Z, Feng Y. Unravelling the role of natural and synthetic products as DNA topoisomerase inhibitors in hepatocellular carcinoma. Bioorg Chem 2024; 153:107860. [PMID: 39442463 DOI: 10.1016/j.bioorg.2024.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Topoisomerase is a ubiquitous enzyme in the control of DNA chain topology. There have been extensive research on topoisomerase inhibitors derived from natural sources, which act as partial inducers of tumor cell apoptosis. However, their specific efficacy in treating hepatocellular carcinoma is relatively unexplored. Hence, this comprehensive review focuses on the structural characteristics and anti-cancer properties of topoisomerase inhibitors in hepatocellular carcinoma. Furthermore, this review is also elucidating the mechanism of action, structure-activity relationships, therapeutic limitations, stage of clinical trials of described classes of natural bioactive compounds as well as their potential application in cancer chemotherapies. This broad understanding of topoisomerase medical biology will provide indispensable framework for enhancing the efficiency of rational anti-hepatocellular carcinoma drug discovery.
Collapse
Affiliation(s)
- Qing Ren
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Guoming Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Qi Wan
- Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Liangman Xiao
- Acupuncture Rehabilitation Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhitong Zhang
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
8
|
Fan M, Hu J, Xu X, Chen J, Zhang W, Zheng X, Pan J, Xu W, Feng S. Mass spectrometry-based multi-omics analysis reveals distinct molecular features in early and advanced stages of hepatocellular carcinoma. Heliyon 2024; 10:e38182. [PMID: 39381095 PMCID: PMC11456867 DOI: 10.1016/j.heliyon.2024.e38182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Hepatocellular Carcinoma (HCC) is a serious primary solid tumor that is prevalent worldwide. Due to its high mortality rate, it is crucial to explore both early diagnosis and advanced treatment for HCC. In recent years, multi-omics approaches have emerged as promising tools to identify biomarkers and investigate molecular mechanisms of biological processes and diseases. In this study, we performed proteomics, phosphoproteomics, metabolomics, and lipidomics to reveal the molecular features of early- and advanced-stage HCC. The data obtained from these omics were analyzed separately and then integrated to provide a comprehensive understanding of the disease. The multi-omics results unveiled intricate biological pathways and interaction networks underlying the initiation and progression of HCC. Moreover, we proposed specific potential biomarker panels for both early- and advanced-stage HCC by overlapping our data with CPTAC database for HCC diagnosis, and deduced novel insights and mechanisms related to HCC origination and development, such as glucose depletion during tumor progression, ROCK1 deactivation and GSK3A activation.
Collapse
Affiliation(s)
- Mingzhu Fan
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Jin Hu
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Xiaoyan Xu
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Jia Chen
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Wenwen Zhang
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Xiaoping Zheng
- Pathology Department, Shulan (Hangzhou) Hospital, Hangzhou, 311112, Zhejiang, China
| | - Jinheng Pan
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Wei Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Hangzhou Tongchuang Medical Laboratory, Shulan Health Group, Hangzhou, 310015, Zhejiang, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| |
Collapse
|
9
|
Zhang H, Pei S, Li J, Zhu J, Li H, Wu G, Weng R, Chen R, Fang Z, Sun J, Chen K. Insights about exosomal circular RNAs as novel biomarkers and therapeutic targets for hepatocellular carcinoma. Front Pharmacol 2024; 15:1466424. [PMID: 39444611 PMCID: PMC11496148 DOI: 10.3389/fphar.2024.1466424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most prevalent pathological types of Primary Liver Cancer (PLC) is the Hepatocellular Carcinoma (HCC) poses a global health issue. The high recurrence and metastasis rate of HCC, coupled with a low 5-year survival rate, result in a bleak prognosis. Exosomes, small extracellular vesicles released by various cells, contain diverse non-coding RNA molecules, including circular RNAs (circRNAs), which play a significant role in intercellular communication and can impact HCC progression. Studies have revealed the potential clinical applications of exosomal circRNAs as biomarkers and therapeutic targets for HCC. These circRNAs can be transferred via exosomes to nearby non-cancerous cells, thereby regulating HCC progression and influencing malignant phenotypes, such as cell proliferation, invasion, metastasis, and drug resistance. This review provides a comprehensive overview of the identified exosomal circRNAs, highlighting their potential as non-invasive biomarkers for HCC, and suggesting new perspectives for HCC diagnosis and treatment. The circRNA from exosomal organelles promotes metastasis and immune scape because of their unique chirality which is different from the Biomolecular Homochirality.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Zhejiang Chinese Medical University, Shuren College, Hangzhou, China
| | - Shanshan Pei
- School of Pharmacy, Beihua University, Jilin, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingbo Sun
- School of Pharmacy, Beihua University, Jilin, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
10
|
Cai Q, Zhu H, Dai Y, Zhou Q, Zhang Q, Zhu Q. ATP citrate lyase promotes the progression of hepatocellular carcinoma by activating the REGγ-proteasome pathway. Mol Carcinog 2024; 63:1874-1891. [PMID: 38888205 DOI: 10.1002/mc.23777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
The search for novel tumor biomarkers and targets is of significant importance for the early clinical diagnosis and treatment of Hepatocellular Carcinoma (HCC). The mechanisms by which ATP citrate lyase (ACLY) promotes HCC progression remain unclear, and the connection between ACLY and REGγ has not been reported in the literature. In vitro, we will perform overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to investigate the impact of ACLY on HCC cells and its underlying mechanisms. In vivo, we will establish mouse tumor models with overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to study the effect of ACLY on mouse tumors and its mechanisms. Firstly, ACLY overexpression upregulated REGγ expression and activated the REGγ-proteasome pathway, leading to changes in the expression of downstream signaling pathway proteins. This promoted HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Secondly, ACLY overexpression increased acetyl-CoA production, upregulated the acetylation level of the REGγ promoter region histone H3K27ac, and subsequently induced REGγ expression. Lastly, enhanced acetylation of the REGγ promoter region histone H3K27ac resulted in upregulated REGγ expression, activation of the REGγ-proteasome pathway, changes in downstream signaling pathway protein expression, and promotion of HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Conversely, REGγ knockdown reversed these effects. ACLY and REGγ may serve as potential biomarkers and clinical therapeutic targets for HCC.
Collapse
Affiliation(s)
- Qihong Cai
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Honghua Zhu
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yile Dai
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Qingqing Zhou
- Departments of Nursing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Qiyu Zhang
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Qiandong Zhu
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
11
|
Zhang Q, Yu M, Yang L, Sun D. MiR-875-5p suppresses Gli1 to alter the hedgehog signaling pathway, which in turn has hepatocellular cancer-related tumor suppressing properties. Heliyon 2024; 10:e37771. [PMID: 39381215 PMCID: PMC11459020 DOI: 10.1016/j.heliyon.2024.e37771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Background One of the most prevalent cancers worldwide is HCC, which has put patient health at risk. Increasing evidence indicated that messenger RNAs (mRNAs) played significant roles in modulating tumorigenesis. It has been established that Gli1 acts as an oncogene in a number of malignancies. However, more research was necessary to understand the Gli1 regulation mechanism in HCC. Methods Microarray technology was used to evaluate the expression of mRNAs. RT-qPCR was utilized to evaluate Gli1 and miR-875-5p expression. To investigate the role of Gli1, tests using CCK-8, EdU, transwell, immunofluorescence, and Western blot analysis was performed. RIP, RNA pull down, and luciferase reporter assays were employed to verify the interaction between Gli1 and miR-875-5p. Results In tissues and cells of HCC, Gli1 expression appeared to be upregulated, especially in metastatic samples and advanced stages of the disease. A worse outcome was predicted by elevated Gli1 expression. Additionally, in HCC, Gli1 inhibition impeded the growth, migration, and development of the EMT. Since miR-875-5p was shown to have a molecular target in Gli1, miR-875-5p mediated the negative regulation of Gli1. In HCC tissues, its expression pattern was less prominent. In HCC tissues, there was an inverse relationship between Gli1 expression and miR-875-5p expression. Overexpressing Gli1 helped to partially counteract the suppression of HCC migration, proliferation, and EMT formation by miR-875-5p overexpression. Conclusions MiR-875-5p in HCC suppresses tumors by downregulating Gli1, which supplies a novel treatment for HCC patients.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pathology, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| | - Miao Yu
- Department of Clinical Laboratory, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| | - Leilei Yang
- Department of Hepatobiliary Surgery, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| | - Defeng Sun
- Department of Hepatobiliary Surgery, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| |
Collapse
|
12
|
Li D, Bao Q, Ren S, Ding H, Guo C, Gao K, Wan J, Wang Y, Zhu M, Xiong Y. Comprehensive Analysis of the Mechanism of Anoikis in Hepatocellular Carcinoma. Genet Res (Camb) 2024; 2024:8217215. [PMID: 39297018 PMCID: PMC11410409 DOI: 10.1155/2024/8217215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/25/2024] [Accepted: 08/10/2024] [Indexed: 09/21/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC), ranking as the second-leading cause of global mortality among malignancies, poses a substantial burden on public health worldwide. Anoikis, a type of programmed cell death, serves as a barrier against the dissemination of cancer cells to distant organs, thereby constraining the progression of cancer. Nevertheless, the mechanism of genes related to anoikis in HCC is yet to be elucidated. Methods This paper's data (TCGA-HCC) were retrieved from the database of the Cancer Genome Atlas (TCGA). Differential gene expression with prognostic implications for anoikis was identified by performing both the univariate Cox and differential expression analyses. Through unsupervised cluster analysis, we clustered the samples according to these DEGs. By employing the least absolute shrinkage and selection operator Cox regression analysis (CRA), a clinical predictive gene signature was generated from the DEGs. The Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to determine the proportions of immune cell types. The external validation data (GSE76427) were procured from Gene Expression Omnibus (GEO) to verify the performance of the clinical prognosis gene signature. Western blotting and immunohistochemistry (IHC) analysis confirmed the expression of risk genes. Results In total, 23 prognostic DEGs were identified. Based on these 23 DEGs, the samples were categorized into four distinct subgroups (clusters 1, 2, 3, and 4). In addition, a clinical predictive gene signature was constructed utilizing ETV4, PBK, and SLC2A1. The gene signature efficiently distinguished individuals into two risk groups, specifically low and high, demonstrating markedly higher survival rates in the former group. Significant correlations were observed between the expression of these risk genes and a variety of immune cells. Moreover, the outcomes from the validation cohort analysis aligned consistently with those obtained from the training cohort analysis. The results of Western blotting and IHC showed that ETV4, PBK, and SLC2A1 were upregulated in HCC samples. Conclusion The outcomes of this paper underscore the effectiveness of the clinical prognostic gene signature, established utilizing anoikis-related genes, in accurately stratifying patients. This signature holds promise in advancing the development of personalized therapy for HCC.
Collapse
Affiliation(s)
- Dongqian Li
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Qian Bao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Shiqi Ren
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Haoxiang Ding
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Chengfeng Guo
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Kai Gao
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yao Wang
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - MingYan Zhu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yicheng Xiong
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
13
|
Ye Z, Li W, Ouyang H, Ruan Z, Liu X, Lin X, Chen X. Natural killer (NK) cells-related gene signature reveals the immune environment heterogeneity in hepatocellular carcinoma based on single cell analysis. Discov Oncol 2024; 15:406. [PMID: 39231877 PMCID: PMC11374944 DOI: 10.1007/s12672-024-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
The early diagnosis of liver cancer is crucial for the treatment and depends on the coordinated use of several test procedures. Early diagnosis is crucial for precision therapy in the treatment of the hepatocellular carcinoma (HCC). Therefore, in this study, the NK cell-related gene prediction model was used to provide the basis for precision therapy at the gene level and a novel basis for the treatment of patients with liver cancer. Natural killer (NK) cells have innate abilities to recognize and destroy tumor cells and thus play a crucial function as the "innate counterpart" of cytotoxic T cells. The natural killer (NK) cells is well recognized as a prospective approach for tumor immunotherapy in treating patients with HCC. In this research, we used publicly available databases to collect bioinformatics data of scRNA-seq and RNA-seq from HCC patients. To determine the NK cell-related genes (NKRGs)-based risk profile for HCC, we isolated T and natural killer (NK) cells and subjected them to analysis. Uniform Manifold Approximation and Projection plots were created to show the degree of expression of each marker gene and the distribution of distinct clusters. The connection between the immunotherapy response and the NKRGs-based signature was further analyzed, and the NKRGs-based signature was established. Eventually, a nomogram was developed using the model and clinical features to precisely predict the likelihood of survival. The prognosis of HCC can be accurately predicted using the NKRGs-based prognostic signature, and thorough characterization of the NKRGs signature of HCC may help to interpret the response of HCC to immunotherapy and propose a novel tumor treatment perspective.
Collapse
Affiliation(s)
- Zhirong Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Guangdong Medical University, No. 12, Minyou Road, Xiashan District, Zhanjiang, 524000, Guangdong, China
| | - Wenjun Li
- Department of Anesthesia, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, 528400, China
| | - Hao Ouyang
- Department of Clinical Laboratory, Dongguan Binhaiwan Central Hospital, Dongguan, 523903, Guangdong, China
| | - Zikang Ruan
- Department of Hepatobiliary Surgery, The People's Hospital of Gaozhou, No. 89, Xiguan Road, Gaozhou, Maoming, 525200, Guangdong, China
| | - Xun Liu
- Department of Clinical Laboratory, The People's Hospital of Xingning, Meizhou, 514500, Guangdong, China
| | - Xiaoxia Lin
- Department of Hepatobiliary Surgery, The People's Hospital of Gaozhou, No. 89, Xiguan Road, Gaozhou, Maoming, 525200, Guangdong, China.
| | - Xuanting Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Guangdong Medical University, No. 12, Minyou Road, Xiashan District, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
14
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
15
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
16
|
Zhou K, Xie M, Liu Y, Zheng L, Pu J, Wang C. Virtual screening and network pharmacology-based synergistic coagulation mechanism identification of multiple components contained in compound Kushen Injection against hepatocellular carcinoma. J Ayurveda Integr Med 2024; 15:101055. [PMID: 39427483 PMCID: PMC11533665 DOI: 10.1016/j.jaim.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a primary liver malignancy commonly encountered in the setting of chronic liver disease and cirrhosis. Compound Kushen Injection (CKI) has been widely used in HCC, however, the underlying mechanisms are scarce. OBJECTIVE To explore the molecular mechanisms of CKI for HCC. MATERIALS AND METHODS The chemical ingredients of CKI were reviewed from published articles and the potential targets were got from Herbal Ingredients' Targets Platform. Coagulation-related targets were from Kyoto Encyclopedia of Genes and Genomes and HCC-related targets were from Therapeutic Target Database, Gene Expression Omnibus, and The Cancer Genome Atlas. Then the CKI-Herb-Target and CKI-Herb-Target-HCC networks were built. The shared targets between CKI and HCC were used for functional enrichment through Metascape and the shared coagulation-related target was used for molecular docking and survival analysis. RESULTS A total of 23 chemical ingredients and 41 potential targets shared between CKI and HCC were obtained. The results of functional enrichment indicated that several canonical pathways of CKI mostly participated in the treatment of HCC. Furthermore, a chemical ingredient of CKI formed a stable hydrogen bond link with the ASN-189 on PLG, with a best binding energy of -4.7 kcal/mol. Finally, PLG was confirmed as the shared coagulation-related target and interrelated with the prognosis of HCC. CONCLUSION CKI probably improves HCC prognosis through PLG. Our research undoubtedly deepened the understanding of the molecular mechanism of CKI anti-HCC.
Collapse
Affiliation(s)
- Kejun Zhou
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mengyi Xie
- Hepatobiliary Research Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu Liu
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lei Zheng
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Juan Pu
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Cheng Wang
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
17
|
Mata-Martínez E, Ramírez-Ledesma MG, Vázquez-Victorio G, Hernández-Muñoz R, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Signaling in Non-Parenchymal Liver Cells. Int J Mol Sci 2024; 25:9447. [PMID: 39273394 PMCID: PMC11394727 DOI: 10.3390/ijms25179447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Guadalupe Ramírez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| |
Collapse
|
18
|
AmeliMojarad M, AmeliMojarad M, Cui X. Discovering the lipid metabolism-related hub genes of HCC-treated samples with PPARα agonist through weighted correlation network analysis. Sci Rep 2024; 14:19591. [PMID: 39179766 PMCID: PMC11344068 DOI: 10.1038/s41598-024-69998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Liver cancer is the 4th most lethal form of cancer with a poor prognosis for patients worldwide. Dysregulation of lipid metabolism is related to FA oxidation alternation which can be modified by peroxisome proliferator-activated receptor-α (PPARα). Therefore, it is important to identify the lipid metabolism-related genes regulated by PPARα in liver cancer. Hub genes related to the lipid metabolism pathway of HCC samples treated with PPARα agonist (WY-14,643) were identified through a weighted gene co-expression network analysis (WGCNA). Gene expression and clinical information were obtained from the Gene Expression Omnibus (GEO) database. The network of top main hub genes was visualized by the Cytoscape software using MCODE and CytoHubba plugins. Finally, the expression and clinical association of each hub gene were evaluated using enrichment analysis, TCGA data, GEPIA, GSCA, and q-PCR. Based on our results, the top 5 co-expressed genes including (CPT2, ACSL1, ACSL3, ACOX1, and SLC27A2) were selected as the main hub genes participating in fatty acid metabolism, fatty acid beta-oxidation, and PPAR signaling pathway. All association of higher ACSL3 expression with lower outcomes and survival rates was detected in HCC patients. Therefore, lipid metabolism-related Hub genes regulated by PPARα are potential biomarkers, and they may offer a therapeutical foundation for targeted therapy directed against the HCC antitumor strategy.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Mandana AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116011, Liaoning, China.
| |
Collapse
|
19
|
Ruishi X, Linyi X, Yunfan B, Wenbo Y, Xiaoying Z, Xiaoxue F, Difu Z, Xintian L, Ming Z, Haoming L. New perspectives on chemokines in hepatocellular carcinoma therapy: a critical pathway for natural products regulation of the tumor microenvironment. Front Immunol 2024; 15:1456405. [PMID: 39206194 PMCID: PMC11349538 DOI: 10.3389/fimmu.2024.1456405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary neoplasms of the liver and one of the most common solid tumors in the world. Its global incidence is increasing and it has become the third leading cause of cancer-related deaths. There is growing evidence that chemokines play an important role in the tumor microenvironment, regulating the migration and localization of immune cells in tissues and are critical for the function of the immune system. This review comprehensively analyses the expression and activity of chemokines in the TME of HCC and describes their interrelationship with hepatocarcinogenesis and progression. Special attention is given to the role of chemokine-chemokine receptors in the regulation of immune cell accumulation in the TME. Therapeutic strategies targeting tumor-promoting chemokines or the induction/release of beneficial chemokines are reviewed, highlighting the potential value of natural products in modulating chemokines and their receptors in the treatment of HCC. The in-depth discussion in this paper provides a theoretical basis for the treatment of HCC. It is an important reference for new drug development and clinical research.
Collapse
Affiliation(s)
- Xie Ruishi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Linyi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bai Yunfan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Wenbo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhang Xiaoying
- The First Hospital of Jilin University, Changchun, China
| | - Fang Xiaoxue
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Difu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lan Xintian
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Ming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Luo Haoming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
20
|
Ma W, Liu R, Wang J, Liu L, Qiu Z, Yu J, Wang W. High tumor burden score indicated the unfavorable prognosis in patients with hepatocellular carcinoma: A meta-analysis. PLoS One 2024; 19:e0308570. [PMID: 39116157 PMCID: PMC11309382 DOI: 10.1371/journal.pone.0308570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Tumor burden score (TBS) based on maximum tumor diameter and number has been shown to correlate with prognosis in patients with hepatocellular carcinoma (HCC). Nevertheless, the results are conflicting. Hence, we conducted a meta-analysis to analyze the association between TBS and survival outcomes of HCC patients. METHODS A comprehensively search of the databases including PubMed, Embase and Web of Science was performed to retrieve studies satisfying the inclusion criteria until August 31, 2023. The hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. All the data analyses were carried out by STATA 12.0. RESULTS 10 retrospective studies containing 25073 patients were incorporated in the study. The results demonstrated that high TBS was markedly association with poor overall survival (OS) (HR: 1.79, 95% CI: 1.45-2.23) and relapse-free survival / progression-free survival(RFS/PFS) (HR: 1.71; 95% CI: 1.42-2.07). Subgroup analysis showed that the prognostic value of TBS in HCC was not affected by any subgroup. CONCLUSIONS TBS may be an efficient prognostic index in HCC patients.
Collapse
Affiliation(s)
- Wangbin Ma
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Rongqiang Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jianguo Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Li Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhendong Qiu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jia Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Weixing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Zhang R, Liao Y, Yang X, Tian H, Wu S, Zeng Q, He Q, Zhang R, Wei C, Liu J. Effect of lidocaine pumped through hepatic artery to relieve pain of hepatic artery infusion chemotherapy. Front Surg 2024; 11:1378307. [PMID: 39170099 PMCID: PMC11335477 DOI: 10.3389/fsurg.2024.1378307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background This study aims to explore the analgesic effect of lidocaine administered through the hepatic artery during hepatic artery infusion chemotherapy (HAIC) for hepatocellular carcinoma (HCC). Methods A total of 45 HCC patients were randomly divided into a study group and a control group. Both groups received oxaliplatin (OXA) based FOLFOX protocol via electronic infusion pump. The study group was continuously infused with 100 mg of lidocaine during HAIC, while 5% glucose solution was infused in the same way as described above. Changes in vital signs, visual analogue score (VAS) and general comfort score (GCQ scale) were recorded before surgery (Time point 0), at the end of infusion (Time point 01), 1 h after HAIC (Time point 02), 3 h after HAIC (Time point 03) and 6 h after HAIC (Time point 04). Results At each point of time from Time point 0 through Time point 04, the differences in MAP, RR and SPO2 between the two groups were not statistically significant (P > 0.05). At each point of time from Time point 01 through Time point 04, the mean VAS scores in the study group were smaller and GCQ scores were higher than those in the control group, and the differences were both statistically significant (P < 0.05). Conclusions Lidocaine infusion through the hepatic artery during HAIC effectively reduces intraoperative and postoperative pain and improves patient satisfaction with pain management, making it a valuable technique for clinical practice.
Collapse
Affiliation(s)
- Renjie Zhang
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yiling Liao
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaoya Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Hengyu Tian
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Shenfeng Wu
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qingteng Zeng
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qinghua He
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ruikun Zhang
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Chunshan Wei
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jialin Liu
- Department of General Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Kotulkar M, Paine-Cabrera D, Apte U. Role of Hepatocyte Nuclear Factor 4 Alpha in Liver Cancer. Semin Liver Dis 2024; 44:383-393. [PMID: 38901435 DOI: 10.1055/a-2349-7236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Liver cancer is the sixth most common cancer and the fourth leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the incidence of HCC is on the rise. Liver cancers in general and HCC in particular do not respond to chemotherapy. Radiological ablation, surgical resection, and liver transplantation are the only medical therapies currently available. Hepatocyte nuclear factor 4 α (HNF4α) is an orphan nuclear receptor expressed only in hepatocytes in the liver. HNF4α is considered the master regulator of hepatic differentiation because it regulates a significant number of genes involved in various liver-specific functions. In addition to maintaining hepatic differentiation, HNF4α also acts as a tumor suppressor by inhibiting hepatocyte proliferation by suppressing the expression of promitogenic genes and inhibiting epithelial to mesenchymal transition in hepatocytes. Loss of HNF4α expression and function is associated with rapid progression of chronic liver diseases that ultimately lead to liver cirrhosis and HCC, including metabolism-associated steatohepatitis, alcohol-associated liver disease, and hepatitis virus infection. This review summarizes the role of HNF4α in liver cancer pathogenesis and highlights its potential as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
23
|
Pastras P, Zazas E, Kalafateli M, Aggeletopoulou I, Tsounis EP, Kanaloupitis S, Zisimopoulos K, Kottaridou EEK, Antonopoulou A, Drakopoulos D, Diamantopoulou G, Tsintoni A, Thomopoulos K, Triantos C. Predictive Risk Factors and Scoring Systems Associated with the Development of Hepatocellular Carcinoma in Chronic Hepatitis B. Cancers (Basel) 2024; 16:2521. [PMID: 39061161 PMCID: PMC11274905 DOI: 10.3390/cancers16142521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic hepatitis B (CHB) infection constitutes a leading cause of hepatocellular carcinoma (HCC) development. The identification of HCC risk factors and the development of prognostic risk scores are essential for early diagnosis and prognosis. The aim of this observational, retrospective study was to evaluate baseline risk factors associated with HCC in CHB. Six hundred thirty-two consecutive adults with CHB (n = 632) [median age: 46 (IQR: 24)], attending the outpatients' Hepatology clinics between 01/1993-09/2020 were evaluated. Core promoter mutations and cirrhosis-HCC (GAG-HCC), Chinese University-HCC (CU-HCC), risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B), Fibrosis-4 (FIB-4), and Platelet Age Gender-HBV (PAGE-B) prognostic scores were calculated, and receiver operating curves were used to assess their prognostic performance. HCC was developed in 34 (5.38%) patients. In the multivariable Cox regression analysis, advanced age (HR: 1.086, 95% CI: 1.037-1.137), male sex (HR: 7.696, 95% CI: 1.971-30.046), alcohol abuse (HR: 2.903, 95% CI: 1.222-6.987) and cirrhosis (HR: 21.239, 95% CI: 6.001-75.167) at baseline were independently associated with the development of HCC. GAG-HCC and PAGE-B showed the highest performance with c-statistics of 0.895 (95% CI: 0.829-0.961) and 0.857 (95% CI: 0.791-0.924), respectively. In the subgroup of patients with cirrhosis, the performance of all scores declined. When treated and untreated patients were studied separately, the discriminatory ability of the scores differed. In conclusion, HCC development was independently associated with advanced age, male sex, alcohol abuse, and baseline cirrhosis among a diverse population with CHB. GAG-HCC and PAGE-B showed high discriminatory performance to assess the risk of HCC development in these patients, but these performances declined in the subgroup of patients with cirrhosis. Further research to develop scores more specific to certain CHB subgroups is needed.
Collapse
Affiliation(s)
- Ploutarchos Pastras
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Evaggelos Zazas
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Maria Kalafateli
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Stavros Kanaloupitis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Konstantinos Zisimopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Eirini-Eleni-Konstantina Kottaridou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Aspasia Antonopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Dimosthenis Drakopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Georgia Diamantopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Aggeliki Tsintoni
- Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (E.Z.); (M.K.); (I.A.); (E.P.T.); (S.K.); (K.Z.); (E.-E.-K.K.); (A.A.); (D.D.); (G.D.); (K.T.)
| |
Collapse
|
24
|
Liu L, Chen J, Ye F, Chu F, Rao C, Wang Y, Yan Y, Wu J. Prognostic value of oxidative phosphorylation-related genes in hepatocellular carcinoma. Discov Oncol 2024; 15:258. [PMID: 38960931 PMCID: PMC11222354 DOI: 10.1007/s12672-024-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the most prevalent malignancies worldwide. Recently, oxidative phosphorylation (OXPHOS) has received extensive concern as an emerging target in antitumor therapy. However, the OXPHOS-involved underlying genes and clinical utilization in HCC remain worth exploring. The present research aimed to create an OXPHOS-relevant signature in HCC. PATIENTS AND METHODS In this study, the prognostic signature genes linked with OXPHOS were identified, and prognostic models were built using least absolute shrinkage and selection operator (LASSO) cox regression analysis. Furthermore, the combination study of immune microenvironment and signature genes looked into the involvement of immune cells in signature-based genes in HCC. Following that, chemotherapeutic drug sensitivity and immunotherapy analysis was implemented to predict clinical efficacy in HCC patients. Finally, clinical samples were collected to measure the expression of OXPHOS-related signature genes. RESULTS Following a series of screens, six prognostic signature genes related with OXPHOS were identified: MRPS23, MPV17, MAPK3, IGF2BP2, CDK5, and IDH2, on which a risk model was built. The findings revealed a significant drop in the survival rate of HCC patients as their risk score increased. Meanwhile, independent prognostic study demonstrated that the risk score could accurately identify HCC patients. Immuno-microenvironmental correlation research suggested that the prognostic characteristics could serve as a reference index for both immunotherapy and chemotherapy. Finally, RT-qPCR exhibited a trend in signature gene expression that was consistent with the results. CONCLUSION In this study, a total of six prognostic genes associated with OXPHOS were selected and a prognostic model was constructed, providing an essential reference for the study of OXPHOS in HCC.
Collapse
Affiliation(s)
- Luzheng Liu
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Fei Ye
- Department of Blood Cell Therapy, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Fengran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Chaoluan Rao
- Department of Nursing, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yanggang Yan
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China.
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
25
|
Cui Y, Lan L, Lv J, Zhao B, Kong J, Lai Y. Chalcomoracin promotes apoptosis and endoplasmic reticulum stress in hepatocellular carcinoma cells. J Antibiot (Tokyo) 2024; 77:428-435. [PMID: 38724630 DOI: 10.1038/s41429-024-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
Chalcomoracin (CMR), a Diels-Alder adduct obtained from mulberry leaves, demonstrated wide-spectrum anti-cancer activity. Herein, we aimed to explore the function of CMR and how it works in hepatocellular carcinoma (HCC). Human HCC cell lines Hep3B and SNU-387 were cultured and treated with various concentrations of CMR (1.5, 3, and 6 µM). Subsequently, the effects of CMR on cell viability, colony formation, apoptosis, migration, and invasion abilities were studied in vitro. Furthermore, the levels of endoplasmic reticulum (ER) stress-related proteins and mitogen-activated protein kinase (MAPK) pathway-related proteins in cells under CMR exposure were detected using western blot. Experiments in vivo were conducted to examine the effects of CMR on tumor growth in HCC. CMR administration inhibited the viability and clonogenic, migration, and invasion abilities, as well as promoted cell apoptosis and ER stress in Hep3B and SNU-387 cells. In addition, CMR treatment reduced the phosphorylation levels of ERK, P38, and JNK in the MAPK pathway. Moreover, an in vivo study showed that CMR administration could inhibit tumorigenesis and MAPK pathway activity in HCC. Our data indicate that CMR has the potential to inhibit the development of HCC, potentially through the inhibition of the MAPK pathway. These findings suggest that CMR may have promising applications as an anticancer agent in future therapeutics for HCC.
Collapse
Affiliation(s)
- Yongliang Cui
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Liqin Lan
- Department of Intensive Care Unit, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jiahui Lv
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jinfeng Kong
- Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| | - Yongping Lai
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| |
Collapse
|
26
|
Feng Z, Luan M, Zhu W, Xing Y, Ma X, Wang Y, Jia Y. Targeted ferritinophagy in gastrointestinal cancer: from molecular mechanisms to implications. Arch Toxicol 2024; 98:2007-2018. [PMID: 38602537 DOI: 10.1007/s00204-024-03745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.
Collapse
Affiliation(s)
- Zhaotian Feng
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yanfei Jia
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
27
|
Kraglund F, Skou N, Villadsen GE, Jepsen P. Landmark analysis of the risk of recurrence after resection or ablation for HCC: A nationwide study. Hepatol Commun 2024; 8:e0472. [PMID: 38896083 PMCID: PMC11186808 DOI: 10.1097/hc9.0000000000000472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The risk of HCC recurrence at particular landmarks since the initial treatment is unknown. With this registry-based study, we aimed to provide a nuanced description of the prognosis following resection or ablation for HCC, including landmark analyses. METHODS Using the Danish nationwide health care registries, we identified all patients who received resection or ablation in 2000-2018 as the first HCC treatment. HCC recurrence was defined as a new HCC treatment > 90 days after the first treatment. We conducted competing risk landmark analyses of the cumulative risk of recurrence and death. RESULTS Among 4801 patients with HCC, we identified 426 patients who received resection and 544 who received ablation. The 2 treatment cohorts differed in cirrhosis prevalence and tumor stage. The 5-year recurrence risk was 40.7% (95% CI 35.5%-45.8%) following resection and 60.7% (95% CI: 55.9%-65.1%) following ablation. The 1-year recurrence risk decreased over the landmarks from 20.4% (95% CI: 16.6%-24.6%) at the time of resection to 4.7% (95% CI: 0.9%-13.9%) at the 5-year landmark. For ablation, the risk decreased from 36.1% (95% CI: 31.9%-40.4%) at the time of treatment to 5.3% (95% CI: 0.4%-21.4%) at the 5-year landmark. The risk of death without recurrence was stable over the landmarks following both resection and ablation. CONCLUSIONS In conclusion, the risk of recurrence or death following resection or ablation for HCC is high from the treatment date, but the risk of recurrence decreases greatly over the survival landmarks. This information is valuable for clinicians and their patients.
Collapse
Affiliation(s)
- Frederik Kraglund
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Nikolaj Skou
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Peter Jepsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
28
|
Li R, Yan X, Zhong W, Zheng J, Li X, Liang J, Hu Z, Liu H, Chen G, Yang Y, Zhang J, Qu E, Liu W. Stratifin promotes the malignant progression of HCC via binding and hyperactivating AKT signaling. Cancer Lett 2024; 592:216761. [PMID: 38490326 DOI: 10.1016/j.canlet.2024.216761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with limited treatment options and poor prognosis. In this study, we reveal the pivotal role of Stratifin (SFN), also recognized as 14-3-3σ, in driving HCC progression. Our investigation underscores a substantial upregulation of SFN within HCC tissues, manifesting a significant association with worse prognostic outcomes among HCC patients. In vitro and in vivo experiments reveal that SFN overexpression significantly amplifies proliferation, mitigates sorafenib-induced effects on HCC cells, and enhances tumorigenesis. While SFN silencing exerts converse effects on HCC progression. Additionally, we unveil a critical interaction between SFN and AKT, where SFN boosts AKT kinase activity by disrupting the binding of PHLPP2 and AKT, thereby intensifying the malignant progression of HCC cells. In conclusion, this study identifies the oncogenic role of SFN and elucidates the regulatory mechanism of the SFN/AKT axis in HCC, which may provide valuable insights into the mechanisms of HCC progression and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China; Guangdong Province Engineering Laboratory for Transplantation Medicine, Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
| | - Xijing Yan
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenhui Zhong
- Department of Pancreatic and Gastric Surgery, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Huanyi Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Guihua Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China; Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yang Yang
- Guangdong Province Engineering Laboratory for Transplantation Medicine, Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China; Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Jianwei Zhang
- Department of Pancreatic and Gastric Surgery, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Enze Qu
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China; Guangdong Province Engineering Laboratory for Transplantation Medicine, Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China.
| |
Collapse
|
29
|
Zhao LJ, Wang ZY, Liu WT, Yu LL, Qi HN, Ren J, Zhang CG. Aspirin suppresses hepatocellular carcinoma progression by inhibiting platelet activity. World J Gastrointest Oncol 2024; 16:2742-2756. [PMID: 38994144 PMCID: PMC11236245 DOI: 10.4251/wjgo.v16.i6.2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. Platelets (PLTs) are known to play a key role in the maintenance of liver homeostasis and the pathophysiological processes of a variety of liver diseases. Aspirin is the most classic antiplatelet agent. However, the molecular mechanism of platelet action and whether aspirin can affect HCC progression by inhibiting platelet activity need further study. AIM To explore the impact of the antiplatelet effect of aspirin on the development of HCC. METHODS Platelet-rich plasma, platelet plasma, pure platelet, and platelet lysate were prepared, and a coculture model of PLTs and HCC cells was established. CCK-8 analysis, apoptosis analysis, Transwell analysis, and real-time polymerase chain reaction (RT-PCR) were used to analyze the effects of PLTs on the growth, metastasis, and inflammatory microenvironment of HCC. RT-PCR and Western blot were used to detect the effects of platelet activation on tumor-related signaling pathways. Aspirin was used to block the activation and aggregation of PLTs both in vitro and in vivo, and the effect of PLTs on the progression of HCC was detected. RESULTS PLTs significantly promoted the growth, invasion, epithelial-mesenchymal transition, and formation of an inflammatory microenvironment in HCC cells. Activated PLTs promoted HCC progression by activating the mitogen-activated protein kinase/protein kinase B/signal transducer and activator of transcription three (MAPK/ AKT/STAT3) signaling axis. Additionally, aspirin inhibited HCC progression in vitro and in vivo by inhibiting platelet activation. CONCLUSION PLTs play an important role in the pathogenesis of HCC, and aspirin can affect HCC progression by inhibiting platelet activity. These results suggest that antiplatelet therapy has promising application prospects in the treatment and combined treatment of HCC.
Collapse
Affiliation(s)
- Li-Jun Zhao
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Zhi-Yin Wang
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
| | - Wei-Ting Liu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Li-Li Yu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Hao-Nan Qi
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Jie Ren
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Chen-Guang Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| |
Collapse
|
30
|
Zhao LJ, Wang ZY, Liu WT, Yu LL, Qi HN, Ren J, Zhang CG. Aspirin suppresses hepatocellular carcinoma progression by inhibiting platelet activity. World J Gastrointest Oncol 2024; 16:2730-2744. [DOI: 10.4251/wjgo.v16.i6.2730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. Platelets (PLTs) are known to play a key role in the maintenance of liver homeostasis and the pathophysiological processes of a variety of liver diseases. Aspirin is the most classic antiplatelet agent. However, the molecular mechanism of platelet action and whether aspirin can affect HCC progression by inhibiting platelet activity need further study.
AIM To explore the impact of the antiplatelet effect of aspirin on the development of HCC.
METHODS Platelet-rich plasma, platelet plasma, pure platelet, and platelet lysate were prepared, and a coculture model of PLTs and HCC cells was established. CCK-8 analysis, apoptosis analysis, Transwell analysis, and real-time polymerase chain reaction (RT-PCR) were used to analyze the effects of PLTs on the growth, metastasis, and inflammatory microenvironment of HCC. RT-PCR and Western blot were used to detect the effects of platelet activation on tumor-related signaling pathways. Aspirin was used to block the activation and aggregation of PLTs both in vitro and in vivo, and the effect of PLTs on the progression of HCC was detected.
RESULTS PLTs significantly promoted the growth, invasion, epithelial-mesenchymal transition, and formation of an inflammatory microenvironment in HCC cells. Activated PLTs promoted HCC progression by activating the mitogen-activated protein kinase/protein kinase B/signal transducer and activator of transcription three (MAPK/ AKT/STAT3) signaling axis. Additionally, aspirin inhibited HCC progression in vitro and in vivo by inhibiting platelet activation.
CONCLUSION PLTs play an important role in the pathogenesis of HCC, and aspirin can affect HCC progression by inhibiting platelet activity. These results suggest that antiplatelet therapy has promising application prospects in the treatment and combined treatment of HCC.
Collapse
Affiliation(s)
- Li-Jun Zhao
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Zhi-Yin Wang
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
| | - Wei-Ting Liu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Li-Li Yu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Hao-Nan Qi
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Jie Ren
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Chen-Guang Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| |
Collapse
|
31
|
Du J, Zhang Y, Chen J, Jin L, Pan L, Lei P, Lin S. Phenethyl isothiocyanate inhibits the carcinogenic properties of hepatocellular carcinoma Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. PeerJ 2024; 12:e17532. [PMID: 38873643 PMCID: PMC11172670 DOI: 10.7717/peerj.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.
Collapse
Affiliation(s)
- Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiajia Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Pengyu Lei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
32
|
Bhat AA, Gupta G, Dahiya R, Thapa R, Gahtori A, Shahwan M, Jakhmola V, Tiwari A, Kumar M, Dureja H, Singh SK, Dua K, Kumarasamy V, Subramaniyan V. CircRNAs: Pivotal modulators of TGF-β signalling in cancer pathogenesis. Noncoding RNA Res 2024; 9:277-287. [PMID: 38505309 PMCID: PMC10945146 DOI: 10.1016/j.ncrna.2024.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 03/21/2024] Open
Abstract
The intricate molecular landscape of cancer pathogenesis continues to captivate researchers worldwide, with Circular RNAs (circRNAs) emerging as pivotal players in the dynamic regulation of biological functions. The study investigates the elusive link between circRNAs and the Transforming Growth Factor-β (TGF-β) signalling pathway, exploring their collective influence on cancer progression and metastasis. Our comprehensive investigation begins by profiling circRNA expression patterns in diverse cancer types, revealing a repertoire of circRNAs intricately linked to the TGF-β pathway. Through integrated bioinformatics analyses and functional experiments, we elucidate the specific circRNA-mRNA interactions that modulate TGF-β signalling, unveiling the regulatory controls governing this crucial pathway. Furthermore, we provide compelling evidence of the impact of circRNA-mediated TGF-β modulation on key cellular processes, including epithelial-mesenchymal transition (EMT), migration, and cell proliferation. In addition to their mechanistic roles, circRNAs have shown promise as diagnostic and prognostic biomarkers, as well as potential molecular targets for cancer therapy. Their ability to modulate critical pathways, such as the TGF-β signalling axis, underscores their significance in cancer biology and clinical applications. The intricate interplay between circRNAs and TGF-β is dissected, uncovering novel regulatory circuits that contribute to the complexity of cancer biology. This review unravels a previously unexplored dimension of carcinogenesis, emphasizing the crucial role of circRNAs in shaping the TGF-β signalling landscape.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Archana Gahtori
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, 248001, Uttarakhand, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Vikas Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, (U.P.), 244102, India
| | - Mahish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
33
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
34
|
Chen Z, Su J, You N, Lin H, Lin S, Zhang Z, Chen Y. A novel model based on ubiquitination-related gene to predict prognosis and immunotherapy response in hepatocellular carcinoma. Heliyon 2024; 10:e29387. [PMID: 38628739 PMCID: PMC11019200 DOI: 10.1016/j.heliyon.2024.e29387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common cancer that is increasingly becoming a global health problem and a major public health concern. In order to improve patient outcomes, additional biomarkers and targets must be explored. Ubiquitination-related genes (URGs), as tumor regulators, exhibit multiple functions in tumor development. Our objective was to examine the influence of URGs on the prognosis of patients with HCC. Methods By utilizing unsupervised cluster analysis, we were able to identify URGs in the database and create a risk score profile for predicting the prognosis of patients with HCC. The model's clinical application was explored using subject operating characteristic curves, survival analysis, and correlation analysis. We additionally examined the variances in clinical traits, immune infiltration, somatic genetic alterations, and responsiveness to treatment among high- and low-risk populations identified by the prognostic model. Scores for immune cell infiltration and immune-related pathway activity were determined by performing ssGSEA enrichment analysis. Additionally, to investigate potential mechanisms, we utilized GO, KEGG and GSVA analyses. Results We developed a risk scoring model that relies on genes associated with ubiquitination. As the risk score increased, the malignancy and prognosis of the tumor worsened. The high-risk and low-risk groups exhibited notable disparities in relation to the immune microenvironment, genes associated with immune checkpoints, sensitivity to drugs, and response to immunotherapy. Conclusion The utilization of a risk model that relies on genes associated with ubiquitination can serve as a biomarker to assess the prognosis of patients with HCC, and aid in the selection of suitable therapeutic agents.
Collapse
Affiliation(s)
- Zhiyu Chen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jing Su
- Hematology Laboratory, Suqian First People's Hospital Affiliated to Nanjing Medical University, Suqian, China
| | - Ningning You
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Hong Lin
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Shanshan Lin
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Zhenjiang Zhang
- Department of Infectious Diseases, Suqian First People's Hospital Affiliated to Nanjing Medical University, Suqian, China
| | - Yi Chen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
35
|
Yao ZX, Tu JH, Liu YL, Xue XF, Qin L. Long Non-coding RNA LINC00342 Promotes the Proliferation, Invasion, and Migration of Primary Hepatocellular Carcinoma Cells by Regulating the Expression of miRNA-19a-3p, miRNA-545-5p, and miRNA-203a-3p. Biochem Genet 2024; 62:675-697. [PMID: 37395850 DOI: 10.1007/s10528-023-10420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to investigate the role of the long non-coding RNA (lncRNA) LINC00342-207 (LINC00342) in the development and progression of primary hepatocellular carcinoma (HCC). Forty-two surgically resected HCC tissues and corresponding paracancerous tissues were collected from October 2019 to December 2020 and examined for lncRNA LINC00342, microRNA (miR)-19a-3p, miR-545-5p, miR-203a-3p, cell cycle protein D1 (CyclinD1/CCND1), murine double minute 2 (MDM2), and fibroblast growth factor 2 (FGF2) expression. The disease-free survival and overall survival of patients with HCC were followed up. HCC cell lines and the normal hepatocyte cell line HL-7702 were cultured and the expression level of LINC00342 was measured. HepG2 cells were transfected with LINC00342 siRNA, LINC00342 overexpression plasmid, miR-19a-3p mimics and their corresponding suppressors, miR-545-5p mimics and their corresponding suppressors, and miR-203a-3p mimics and their corresponding suppressors. The proliferation, apoptosis, migration, and invasion of HepG2 cells were detected. Stably transfected HepG2 cells were inoculated into the left axilla of male BALB/c nude mice, and the volume and quality of transplanted tumors as well as the expression levels of LINC00342, miR-19a-3p, miR-545-5p, miR-203a-3p, CCND1, MDM2, and FGF2 were examined. LINC00342 played an oncogenic role in HCC and exhibited inhibitory effects on proliferation, migration, and invasion, and promoted the apoptosis of HepG2 cells. Moreover, it inhibited the growth of transplanted tumors in vivo in mice. Mechanistically, the oncogenic effect of LINC00342 was associated with the targeted regulation of the miR-19a-3p/CCND1, miR-545-5p/MDM2, and miR-203a-3p/FGF2 axes.
Collapse
Affiliation(s)
- Zong-Xi Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215031, China
- Department of General Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Jun-Hao Tu
- Department of General Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Yu-Lin Liu
- Department of General Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Xiao-Feng Xue
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215031, China.
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215031, China.
| |
Collapse
|
36
|
Du M, Qu Y, Qin L, Zheng J, Sun W. The cell death-related genes machine learning model for precise therapy and clinical drug selection in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18168. [PMID: 38494848 PMCID: PMC10945081 DOI: 10.1111/jcmm.18168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the prevailing subtype of hepatocellular malignancy. While previous investigations have evidenced a robust link with programmed cell death (PCD) and tumorigenesis, a comprehensive inquiry targeting the relationship between multiple PCDs and HCC remains scant. Our aim was to develop a predictive model for different PCD patterns in order to investigate their impact on survival rates, prognosis and drug response rates in HCC patients. We performed functional annotation and pathway analysis on identified PCD-related genes (PCDRGs) using multiple bioinformatics tools. The prognostic value of these PCDRGs was verified through a dataset obtained from GEO. Consensus clustering analysis was utilized to elucidate the correlation between diverse PCD clusters and pertinent clinical characteristics. To comprehensively uncover the distinct PCD regulatory patterns, our analysis integrated gene expression profiling, immune cell infiltration and enrichment analysis. To predict survival differences in HCC patients, we established a PCD model. To enhance the clinical applicability for the model, we developed a highly accurate nomogram. To address the treatment of HCC, we identified several promising chemotherapeutic agents and novel targeted drugs. These drugs may be effective in treating HCC and could improve patient outcomes. To develop a cell death feature for HCC patients, we conducted an analysis of 12 different PCD mechanisms using eligible data obtained from public databases. Through this analysis, we were able to identify 1254 PCDRGs likely to contribute to cell death on HCC. Further analysis of 1254 PCDRGs identified 37 genes with prognostic value in HCC patients. These genes were then categorized into two PCD clusters A and B. The categorization was based on the expression patterns of the genes in the different clusters. Patients in PCD cluster B had better survival probabilities. This suggests that PCD mechanisms, as represented by the genes in cluster B, may have a protective effect against HCC progression. Furthermore, the expression of PCDRGs was significantly higher in PCD cluster A, indicating that this cluster may be more closely associated with PCD mechanisms. Furthermore, our observations indicate that patients exhibiting elevated tumour mutation burden (TMB) are at an augmented risk of mortality, in comparison to those displaying low TMB and low-risk statuses, who are more likely to experience prolonged survival. In addition, we have investigated the potential distinctions in the susceptibility of diverse risk cohorts towards emerging targeted therapies, designed for the treatment of HCC. Moreover, our investigation has shown that AZD2014, SB505124, LJI308 and OSI-207 show a greater efficacy in patients in the low-risk category. Conversely, for the high-risk group patients, PD173074, ZM447439 and CZC24832 exhibit a stronger response. Our findings suggest that the identification of risk groups and personalized treatment selection could lead to better clinical outcomes for patients with HCC. Furthermore, significant heterogeneity in clinical response to ICI therapy was observed among HCC patients with varying PCD expression patterns. This novel discovery underscores the prospective usefulness of these expression patterns as prognostic indicators for HCC patients and may aid in tailoring targeted treatment for those of distinct risk strata. Our investigation introduces a novel prognostic model for HCC that integrates diverse PCD expression patterns. This innovative model provides a novel approach for forecasting prognosis and assessing drug sensitivity in HCC patients, driving a more personalized and efficacious treatment paradigm, elevating clinical outcomes. Nonetheless, additional research endeavours are required to confirm the model's precision and assess its potential to inform clinical decision-making for HCC patients.
Collapse
Affiliation(s)
- Mingyang Du
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yonggang Qu
- Department of clinical medicineChina medical university Second HospitalShenyangLiaoningChina
| | - Lingshan Qin
- Department of clinical medicineFourth Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jiahe Zheng
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Wei Sun
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
37
|
de Sousa DJM, Feitosa de Oliveira KG, Pereira IC, do Nascimento GTM, Barrense CO, Martins JA, Pereira Rêgo BDM, Oliveira da Silva TE, Carneiro da Silva FC, Torres-Leal FL. Dietary restriction and hepatic cancer: Systematic review and meta-analysis of animal studies. Crit Rev Oncol Hematol 2024; 196:104264. [PMID: 38341120 DOI: 10.1016/j.critrevonc.2024.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
The effect of calorie restriction, fasting, and ketogenic diets on the treatment of liver cancer remains uncertain. Therefore, we conducted a systematic review to evaluate the effect of restrictive diets on the development and progression of liver cancer in animal models. We did a meta-analysis using the Cochrane Collaboration's Review Manager software, with the random effects model and the inverse variance technique. We examined 19 studies that were conducted between 1983 and 2020. Of these, 63.2% investigated calorie restriction, 21.0% experimented with a ketogenic diet, and 15.8% investigated the effects of fasting. The intervention lasted anything from 48 h to 221 weeks. Results showed that restrictive diets may reduce tumor incidence and progression, with a significant reduction in the risk of liver cancer development. Thereby, our results suggest that putting limits on what you eat may help treat liver cancer in more ways than one.
Collapse
Affiliation(s)
- Dallyla Jennifer Morais de Sousa
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Kynnara Gabriella Feitosa de Oliveira
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Irislene Costa Pereira
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Glauto Tuquarre Melo do Nascimento
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Clenio Oliveira Barrense
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Jorddam Almondes Martins
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Beatriz de Mello Pereira Rêgo
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | | | | | - Francisco Leonardo Torres-Leal
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil.
| |
Collapse
|
38
|
Syed RU, Afsar S, Aboshouk NAM, Salem Alanzi S, Abdalla RAH, Khalifa AAS, Enrera JA, Elafandy NM, Abdalla RAH, Ali OHH, Satheesh Kumar G, Alshammari MD. LncRNAs in necroptosis: Deciphering their role in cancer pathogenesis and therapy. Pathol Res Pract 2024; 256:155252. [PMID: 38479121 DOI: 10.1016/j.prp.2024.155252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
Necroptosis, a controlled type of cell death that is different from apoptosis, has become a key figure in the aetiology of cancer and offers a possible target for treatment. A growing number of biological activities, including necroptosis, have been linked to long noncoding RNAs (lncRNAs), a varied family of RNA molecules with limited capacity to code for proteins. The complex interactions between LncRNAs and important molecular effectors of necroptosis, including mixed lineage kinase domain-like pseudokinase (MLKL) and receptor-interacting protein kinase 3 (RIPK3), will be investigated. We will explore the many methods that LncRNAs use to affect necroptosis, including protein-protein interactions, transcriptional control, and post-transcriptional modification. Additionally, the deregulation of certain LncRNAs in different forms of cancer will be discussed, highlighting their dual function in influencing necroptotic processes as tumour suppressors and oncogenes. The goal of this study is to thoroughly examine the complex role that LncRNAs play in controlling necroptotic pathways and how that regulation affects the onset and spread of cancer. In the necroptosis for cancer treatment, this review will also provide insight into the possible therapeutic uses of targeting LncRNAs. Techniques utilising LncRNA-based medicines show promise in controlling necroptotic pathways to prevent cancer from spreading and improve the effectiveness of treatment.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | | | - Amna Abakar Suleiman Khalifa
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nancy Mohammad Elafandy
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Randa Abdeen Husien Abdalla
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Omar Hafiz Haj Ali
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - G Satheesh Kumar
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
39
|
Wu Y, Tang H, Liao Q, Tu Y, Fang S, He J, Cui S. Curcumol Inhibits the Progression of Hepatocellular Carcinoma by Regulating the Expression of hsa_circ_0028861. Cancer Biother Radiopharm 2024; 39:203-210. [PMID: 38181186 DOI: 10.1089/cbr.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Background: Hsa_circ_0028861, a newly discovered serum exosome circular RNA (circRNA), is greatly reduced in the serum of patients with hepatocellular carcinoma (HCC). However, the exact role of hsa_circ_0028861 in the progression of liver cancer is still unknown. Materials and Methods: Thirty patients with HCC were enrolled in this study. Hsa_circ_0028861 expression was explored via real-time polymerase chain reaction (PCR) assay. The influence of curcumol on HCC cells were tested using CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, cell wound healing assay, and migration assay, respectively. The related mechanism was determined by Western blot. A xenograft tumor model was constructed, and mice were administrated with curcumol. Results: The expression of hsa_circ_0028861 in tumor tissues was elevated of patients with HCC and in HCC cells. Curcumol treatment decreased the expression of hsa_circ_0028861 in HCC cells. Curcumol treatment could largely suppress the viability, proliferation, and migration of HCC cells by reducing hsa_circ_0028861 expression and mediating the epithelial-mesenchymal transition (EMT) process. Curcumol also effectively restrained tumor growth in the HCC mice model. Conclusions: Curcumol exerted an inhibitory role in HCC progression by downregulating hsa_circ_0028861 expression and mediating the EMT process, which provides evidence for screening new therapeutic targets and drug therapies for HCC treatment.
Collapse
Affiliation(s)
- Yinbing Wu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huafei Tang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Quanxing Liao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yinuo Tu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuxian Fang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jinfu He
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuzhong Cui
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
40
|
Zhou Z, Li X, Yin S, Zhang Z, Li X, Miao X, Cheng H, Lou Y, Tu P, Lu Y, Zhang G. LC-MS/MS method for the quantification of cortisol of hepatocellular carcinoma. Biomed Chromatogr 2024; 38:e5829. [PMID: 38351664 DOI: 10.1002/bmc.5829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 03/16/2024]
Abstract
The imbalance of steroid hormones is closely related to the occurrence and development of hepatocellular carcinoma (HCC). However, most research has focused on steroid hormone receptors, and reports about the relationship between the serum concentration of cortisol and the development of HCC are rare. The aim of this research was to establish a simple, specific, sensitive and reliable liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method for the quantitation of cortisol in human serum and to compare the level of cortisol in serum between 221 HCC patients and 183 healthy volunteers. The results showed that the correlation coefficients of the linear regression with a weighing factor of 1/x2 ranged from 0.9933 to 0.9984 over the range of 2-1,000 ng/ml. The inter- and intra-day precision and accuracy were <10%. The matrix effect and recovery of cortisol were 94.9-102.5% and 96.3-99.8%, respectively. The concentration of cortisol in HCC patients was significantly higher than that in healthy volunteers (p < 0.05) and was not affected by sex, age, menopause or α-fetoprotein (AFP) level. The present study reveals that elevated cortisol might promote the progression of HCC.
Collapse
Affiliation(s)
- Zijing Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoshuang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shengjun Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
- Shanghai Key Laboratory of Children's Environment Health, School of Public Health/Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shandong Jiaotong Hospital, Jinan, China
| | - Zhiyuan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyue Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaojie Miao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Haixu Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yaqing Lou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yingyuan Lu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guoliang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
41
|
Wang Y, Sun X, Chen C, Ge H, Sun J, Li E, Cai Z, Fu Q, Sun X, Wu J, Ye M, Cao W, Chen Q, Wei X, Han X, Sun K, Yan Q, Huang W, Wu L, Zeng Y, Zhang Q, Liang T. Optimizing hepatocellular carcinoma disease staging systems by incorporating tumor micronecrosis: A multi-institutional retrospective study. Cancer Lett 2024; 585:216654. [PMID: 38272344 DOI: 10.1016/j.canlet.2024.216654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Tumor micronecrosis is a pathological feature that reflects malignant biological behavior in hepatocellular carcinoma (HCC). However, whether micronecrosis can optimize HCC staging systems remains unilluminated. A total of 1632 HCC patients who underwent curative hepatectomy in four institutions from January 2014 to December 2021 were enrolled in this study. Independent prognostic factors were identified, and optimized staging models were established using a training cohort (n = 934). The performance of optimized staging models was validated using an external cohort consisting of cases from three other institutions (n = 232). In addition, patients from our prospectively collected database (n = 379) tested the application effectiveness of the models. Harrel's c-statistics and the corrected Akaike information criterion (AICc) were used to assess the performance of staging models. In most of Barcelona Clinic Liver Cancer (BCLC) and tumor (T) stages, HCC patients with tumor micronecrosis showed poorer prognosis than those without. Tumor micronecrosis, microvascular invasion, multiple tumors and tumor size >2 cm were independent prognostic-related factors. The BCLC and T staging models incorporating tumor micronecrosis showed better performance than the original systems (c-statistic, 0.712 and 0.711 vs. 0.664 and 0.679; AICc, 2314.8 and 2322.3 vs. 2338.2 and 2338.1; respectively). Furthermore, the external validation cohort confirmed that the optimized staging models had improved efficiency compared with the original ones. Moreover, the prospective cohort demonstrated the applicability of the optimized staging systems. Tumor micronecrosis plays a stage-ascending role in HCC patients. The BCLC and T staging systems incorporating tumor micronecrosis can improve the prognosis stratification efficiency of patients.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Sun
- Department of Hepatobiliary and Pancreatic Surgery, Huzhou Central Hospital, Huzhou, China
| | - Cao Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongbin Ge
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juhui Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of General Surgery, Ningbo Fourth Hospital, Ningbo, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Qihan Fu
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuqi Sun
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangchao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mao Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanyue Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qitai Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Han
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Sun
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Yan
- Department of Hepatobiliary and Pancreatic Surgery, Huzhou Central Hospital, Huzhou, China
| | - Wenyong Huang
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China.
| |
Collapse
|
42
|
Zheng Q, Lu C, Yu L, Zhan Y, Chen Z. Exploring the metastasis-related biomarker and carcinogenic mechanism in liver cancer based on single cell technology. Heliyon 2024; 10:e27473. [PMID: 38509894 PMCID: PMC10950590 DOI: 10.1016/j.heliyon.2024.e27473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a fatal primary malignancy characterized by high invasion and migration. We aimed to explore the underlying metastasis-related mechanism supporting the development of HCC. Methods The dataset of single cell RNA-seq (GSE149614) were collected for cell clustering by using the Seurat R package, the FindAllMarkers function was used to find the highly expression and defined the cell cluster. The WebGestaltR package was used for the GO and KEGG function analysis of shared genes, the Gene Set Enrichment Analysis (GSVA) was performed by clusterProfiler R package, the hTFtarget database was used to identify the crucial transcription factors (TFs), the Genomics of Drug Sensitivity in Cancer (GDSC) database was used for the drug sensitivity analysis. Finally, the overexpression and trans-well assay was used for gene function analysis. Results We obtained 9 cell clusters from the scRNA-seq data, including the nature killer (NK)/T cells, Myeloid cells, Hepatocytes, Epithelial cells, Endothelial cells, Plasma B cells, Smooth muscle cells, B cells, Liver bud hepatic cells. Further cell ecological analysis indicated that the Hepatocytes and Endothelial cell cluster were closely related to the cancer metastasis. Subsequently, the NDUFA4L2-Hepatocyte, GTSE1-Hepatocyte, ENTPD1-Endothelial and NDUFA4L2-Endothelial were defined as metastasis-supporting cell clusters, in which the NDUFA4L2-Hepatocyte cells was closely related to angiogenesis, while the NDUFA4L2-Endothelial was related with the inflammatory response and complement response. The overexpression and trans-well assay displayed that NDUFA4L2 exhibited clearly metastasis-promoting role in HCC progression. Conclusion We identified and defined 4 metastasis-supporting cell clusters by using the single cell technology, the specify shared gene was observed and played crucial role in promoting cancer progression, our findings were expected to provide new insight in control cancer metastasis.
Collapse
Affiliation(s)
- Qiuxiang Zheng
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Cuiping Lu
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Lian Yu
- Department of Hematology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Ying Zhan
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Zhiyong Chen
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| |
Collapse
|
43
|
Wu D, Liang J. Activating transcription factor 4: a regulator of stress response in human cancers. Front Cell Dev Biol 2024; 12:1370012. [PMID: 38601083 PMCID: PMC11004295 DOI: 10.3389/fcell.2024.1370012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Activating transcription factor 4 (ATF4) is an adaptive response regulator of metabolic and oxidative homeostasis. In response to cellular stress, ATF4 is activated and functions as a regulator to promote cell adaptation for survival. As a transcriptional regulator, ATF4 also widely participates in the regulation of amino acid metabolism, autophagy, redox homeostasis and endoplasmic reticulum stress. Moreover, ATF4 is associated with the initiation and progression of glioblastoma, hepatocellular carcinoma, colorectal cancer, gastric cancer, breast cancer, prostate cancer and lung cancer. This review primarily aims to elucidate the functions of ATF4 and its role in multiple cancer contexts. This review proposes potential therapeutic targets for clinical intervention.
Collapse
Affiliation(s)
| | - Jie Liang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
44
|
Duan BT, Zhao XK, Cui YY, Liu DZ, Wang L, Zhou L, Zhang XY. Construction and validation of somatic mutation-derived long non-coding RNAs signatures of genomic instability to predict prognosis of hepatocellular carcinoma. World J Gastrointest Surg 2024; 16:842-859. [PMID: 38577085 PMCID: PMC10989333 DOI: 10.4240/wjgs.v16.i3.842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have been found to be a potential prognostic factor for cancers, including hepatocellular carcinoma (HCC). Some LncRNAs have been confirmed as potential indicators to quantify genomic instability (GI). Nevertheless, GI-LncRNAs remain largely unexplored. This study established a GI-derived LncRNA signature (GILncSig) that can predict the prognosis of HCC patients. AIM To establish a GILncSig that can predict the prognosis of HCC patients. METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles. The GI-LncRNAs were then analyzed for functional enrichment. The GILncSig was established in the training set by Cox regression analysis, and its predictive ability was verified in the testing set and TCGA set. In addition, we explored the effects of the GILncSig and TP53 on prognosis. RESULTS A total of 88 GI-LncRNAs were found, and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI. The GILncSig was constructed by 5 LncRNAs (miR210HG, AC016735.1, AC116351.1, AC010643.1, LUCAT1). In the training set, the prognosis of high-risk patients was significantly worse than that of low-risk patients, and similar results were verified in the testing set and TCGA set. Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor. Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve (0.773) was higher than the two LncRNA signatures published recently. Furthermore, the GILncSig may have a better predictive performance than TP53 mutation status alone. CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients, which will help to guide prognostic evaluation and treatment decisions.
Collapse
Affiliation(s)
- Bo-Tao Duan
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Xue-Kai Zhao
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Yang-Yang Cui
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - De-Zheng Liu
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Lin Wang
- Department of Ophthalmology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Xing-Yuan Zhang
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| |
Collapse
|
45
|
Pu J, Wang J, Li W, Lu Y, Wu X, Long X, Luo C, Wei H. hsa_circ_0000092 promotes hepatocellular carcinoma progression through up-regulating HN1 expression by binding to microRNA-338-3p. J Cell Mol Med 2024; 28:e15010. [PMID: 32077624 PMCID: PMC10941524 DOI: 10.1111/jcmm.15010] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) have been identified in diverse cancers for their role in regulating multiple cellular processes by antagonizing microRNAs (miRNAs or miRs). However, the role of circRNA hsa_circ_0000092 in hepatocellular carcinoma (HCC) still remains enigmatic. Therefore, we aimed to investigate the specific mechanism of hsa_circ_0000092 in HCC. Differentially expressed circRNAs associated to HCC were initially analysed. The expression of hsa_circ_0000092, miR-338-3p and HN1 in HCC tissues and cell lines was examined. Next, the interaction among hsa_circ_0000092, miR-338-3p and HN1 was determined by dual-luciferase reporter, RNA pull-down and northern blot assays. Subsequently, a series of mimic, inhibitor or siRNA plasmids were delivered into HCC cells to validate the effects of hsa_circ_0000092, miR-338-3p and HN1 in controlling cell proliferation, migration, invasion and angiogenesis in vitro. Furthermore, the role of hsa_circ_0000092 in tumour growth of HCC in vivo was assessed with hsa_circ_0000092 depleted with siRNA. The hsa_circ_0000092/miR-338-3p/HN1 axis was predicted to participate in the development of HCC. hsa_circ_0000092 and HN1 were highly expressed while miR-338-3p was poorly expressed in HCC tissues and cell lines. hsa_circ_0000092 could competitively bind to miR-338-3p to up-regulate HN1 expression. Moreover, depleted hsa_circ_0000092 or elevated miR-338-3p was shown to suppress HCC cell proliferation, migration, invasion and angiogenesis in vitro via down-regulation of HN1. Furthermore, silencing hsa_circ_0000092 was demonstrated to suppress tumour growth in HCC in vivo. The results of this study suggested that hsa_circ_0000092 impaired miR-338-3p-mediated HN1 inhibition to aggravate the development of HCC, indicating that hsa_circ_0000092 is a potential candidate marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jian Pu
- Department of Hepatobiliary SurgeryAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Jianchu Wang
- Department of Hepatobiliary SurgeryAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Wenchuan Li
- Department of Hepatobiliary SurgeryAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Yuan Lu
- Graduate College of Youjiang Medical University for NationalitiesBaiseChina
| | - Xianjian Wu
- Graduate College of Youjiang Medical University for NationalitiesBaiseChina
| | - Xidai Long
- Department of PathologyAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Chunying Luo
- Department of PathologyAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Huamei Wei
- Department of PathologyAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| |
Collapse
|
46
|
Chen P, Liu X, Liu Y, Bao X, Wu Q. ARHGAP18 is Upregulated by Transcription Factor GATA1 Promotes the Proliferation and Invasion in Hepatocellular Carcinoma. Appl Biochem Biotechnol 2024; 196:679-689. [PMID: 37171759 DOI: 10.1007/s12010-023-04459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 05/13/2023]
Abstract
Rho GTPase activating protein 18 (ARHGAP18), a member of the RhoGAP gene family that increases GTP hydrolysis and inhibits RhoGTPase, was recently discovered to play a role in the development of breast cancer. However, its exact biological role in hepatocellular carcinoma (HCC) remains unclear. In our present study, we comprehensively assessed ARHGAP18 expression and its correlation with the prognostic value of cancer patients in databases. Cell proliferation and colony formation assays were employed to monitor cell growth. Luciferase reporter assay, Chromatin immunoprecipitation qPCR (ChIP-qPCR), immunofluorescence were performed for mechanism research. The expression of genes and proteins was detected by real-time PCR and western blotting. According to the findings of this research, ARHGAP18 protein levels are increased in HCC tissues compared to adjacent nontumor tissues, and ARHGAP18 overexpression is associated with poor survival. The results of a gain- and loss-of-function experiment with HCC cells in vitro demonstrated that ARHGAP18 stimulated cell proliferation, migration, and invasion. Mechanistically, we found that the transcription factor GATA binding protein 1 (GATA1) could bind to the ARHGAP18 promoter and facilitate ARHGAP18 expression. Further studies revealed that the effects of ARHGAP18 silencing on HCCLM3 and Bel-7402 cells were blocked by GATA1 overexpression. In conclusion, GATA1-mediated ARHGAP18 up-regulation plays an important role in HCC tumorigenesis and might be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Ping Chen
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tiyuanbei, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Xiaomeng Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tiyuanbei, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Yayue Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tiyuanbei, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Xu Bao
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tiyuanbei, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Qiang Wu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tiyuanbei, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
47
|
Chandel SS, Mishra A, Dubey G, Singh RP, Singh M, Agarwal M, Chawra HS, Kukreti N. Unravelling the role of long non-coding RNAs in modulating the Hedgehog pathway in cancer. Pathol Res Pract 2024; 254:155156. [PMID: 38309021 DOI: 10.1016/j.prp.2024.155156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Cancer is a multifactorial pathological condition characterized by uncontrolled cellular proliferation, genomic instability, and evasion of regulatory mechanisms. It arises from the accumulation of genetic mutations confer selective growth advantages, leading to malignant transformation and tumor formation. The intricate interplay between LncRNAs and the Hedgehog pathway has emerged as a captivating frontier in cancer research. The Hedgehog pathway, known for its fundamental roles in embryonic development and tissue homeostasis, is frequently dysregulated in various cancers, contributing to aberrant cellular proliferation, survival, and differentiation. The Hh pathway is crucial in organizing growth and maturation processes in multicellular organisms. It plays a pivotal role in the initiation of tumors as well as in conferring resistance to conventional therapeutic approaches. The crosstalk among the Hh pathway and lncRNAs affects the expression of Hh signaling components through various transcriptional and post-transcriptional processes. Numerous pathogenic processes, including both non-malignant and malignant illnesses, have been identified to be induced by this interaction. The dysregulation of lncRNAs has been associated with the activation or inhibition of the Hh pathway, making it a potential therapeutic target against tumorigenesis. Insights into the functional significance of LncRNAs in Hedgehog pathway modulation provide promising avenues for diagnostic and therapeutic interventions. The dysregulation of LncRNAs in various cancer types underscores their potential as biomarkers for early detection and prognostication. Additionally, targeting LncRNAs associated with the Hedgehog pathway presents an innovative strategy for developing precision therapeutics to restore pathway homeostasis and impede cancer progression. This review aims to elucidate the complex regulatory network orchestrated by LncRNAs, unravelling their pivotal roles in modulating the Hedgehog pathway and influencing cancer progression.
Collapse
Affiliation(s)
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | | | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | | | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| |
Collapse
|
48
|
Xu H, Shen P, Fang J, Jiang J, Shi Y, Xu P, Jiang R, Wang Z. LINC00624 affects hepatocellular carcinoma proliferation and apoptosis through the miR-342-3p/DNAJC5 axis. J Biochem Mol Toxicol 2024; 38:e23650. [PMID: 38348704 DOI: 10.1002/jbt.23650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
LINC00624 is a long noncoding RNA (lncRNA) which was seldom investigated before. The goal of our study is to clarify the expression and underlying network of LINC00624 in hepatocellular carcinoma (HCC). Here, both HCC and normal living cell lines were employed. Real-time quantitative PCR and western blot were used to determine the pattern of genes and proteins. Colony formation, flow cytometry and western blot tests were used to determine cell proliferation and apoptosis, respectively. Dual luciferase was used to verify molecule-molecule interactions. LINC00624 expression was increased in HCC cell lines and miR-342-3p was decreased. Elimination of LINC00624 increased proliferation while decreasing cell apoptosis. LINC00624 acted as a molecular sponge for miR-342-3p, hence facilitating DNAJC5 expression. Functional tests demonstrated that miR-342-3p suppression could reverse the effect of LINC00624 silence and overexpression of DNAJC5 significantly mitigated the biological consequences of miR-342-3p. These finding demonstrated that LINC00624 aggravated HCC progression by modulating proliferation and apoptosis via targeting miR-342-3p/DNAJC5 axis. These data support that inhibition of LINC00624 may a potential treatment strategies of HCC.
Collapse
Affiliation(s)
- Huawei Xu
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Peng Shen
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jian Fang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jihua Jiang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yinsheng Shi
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Pengcheng Xu
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Renya Jiang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhengfei Wang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
49
|
Vimalnath KV, Rajeswari A, Dixit A, Chakravarty R, Sarma HD, Kulkarni S, Jha A, Puranik A, Rangarajan V, Goswami M, Chakraborty S. [ 90Y]Yttria Alumino Silicate Glass Microspheres: A Biosimilar Formulation to "TheraSphere" for Cost-Effective Treatment of Liver Cancer. Cancer Biother Radiopharm 2024; 39:82-91. [PMID: 38265675 DOI: 10.1089/cbr.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Background: Selective internal radiation therapy (SIRT) using a suitable β--emitting radionuclide is a promising treatment modality for unresectable liver carcinoma. Yttrium-90 (90Y) [T1/2 = 64.2 h, Eβ(max) = 2.28 MeV, no detectable γ-photon] is the most preferred radioisotope for SIRT owing to its favorable decay characteristics. Objective: The present study describes indigenous development and evaluation of intrinsically radiolabeled [90Y]yttria alumino silicate ([90Y]YAS) glass microsphere, a formulation biosimilar to "TheraSphere" (commercially available, U.S. FDA-approved formulation), for SIRT of unresectable liver carcinoma in human patients. Methods: YAS glass microspheres of composition 40Y2O3-20Al2O3-40SiO2 (w/w) and diameter ranging between 20 and 36 μm were synthesized with almost 100% conversion efficiency and >99% sphericity. Intrinsically labeled [90Y]YAS glass microspheres were produced by thermal neutron irradiation of cold YAS glass microspheres in a research reactor. Subsequent to in vitro evaluations and in vivo studies in healthy Wistar rats, customized doses of [90Y]YAS glass microspheres were administered in human patients. Results: [90Y]YAS glass microspheres were produced with 137.7 ± 8.6 MBq/mg YAS glass (∼6800 Bq per microsphere) specific activity and 99.94% ± 0.02% radionuclidic purity at the end of irradiation. The formulation exhibited excellent in vitro stability in human serum and showed >97% retention in the liver up to 7 d post-administration when biodistribution studies were carried out in healthy Wistar rats. Yttrium-90 positron emission tomography scans recorded at different time points post-administration of customized dose of [90Y]YAS glass microspheres in human patients showed near-quantitative retention of the formulation in the injected lobe. Conclusions: The study confirmed the suitability of indigenously prepared [90Y]YAS glass microspheres for clinical use in the treatment of unresectable hepatocellular carcinoma.
Collapse
Affiliation(s)
- K V Vimalnath
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ardhi Rajeswari
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Anupam Dixit
- Glass and Advance Materials Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Haldhar D Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Suyash Kulkarni
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel, Mumbai, India
| | - Ashish Jha
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel, Mumbai, India
| | - Ameya Puranik
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel, Mumbai, India
| | - Venkatesh Rangarajan
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel, Mumbai, India
| | - Madhumita Goswami
- Glass and Advance Materials Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
50
|
Li J, Jia YM, Zhang ZL, Liu CY, Jiang ZW, Hao ZW, Peng L. Development and validation of a machine learning-based early prediction model for massive intraoperative bleeding in patients with primary hepatic malignancies. World J Gastrointest Oncol 2024; 16:90-101. [PMID: 38292843 PMCID: PMC10824121 DOI: 10.4251/wjgo.v16.i1.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies, and intraoperative bleeding is associated with a significantly increased risk of death. Therefore, accurate prediction of intraoperative bleeding risk in patients with hepatic malignancies is essential to preventing bleeding in advance and providing safer and more effective treatment. AIM To develop a predictive model for intraoperative bleeding in primary hepatic malignancy patients for improving surgical planning and outcomes. METHODS The retrospective analysis enrolled patients diagnosed with primary hepatic malignancies who underwent surgery at the Hepatobiliary Surgery Department of the Fourth Hospital of Hebei Medical University between 2010 and 2020. Logistic regression analysis was performed to identify potential risk factors for intraoperative bleeding. A prediction model was developed using Python programming language, and its accuracy was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS Among 406 primary liver cancer patients, 16.0% (65/406) suffered massive intraoperative bleeding. Logistic regression analysis identified four variables as associated with intraoperative bleeding in these patients: ascites [odds ratio (OR): 22.839; P < 0.05], history of alcohol consumption (OR: 2.950; P < 0.015), TNM staging (OR: 2.441; P < 0.001), and albumin-bilirubin score (OR: 2.361; P < 0.001). These variables were used to construct the prediction model. The 406 patients were randomly assigned to a training set (70%) and a prediction set (30%). The area under the ROC curve values for the model's ability to predict intraoperative bleeding were 0.844 in the training set and 0.80 in the prediction set. CONCLUSION The developed and validated model predicts significant intraoperative blood loss in primary hepatic malignancies using four preoperative clinical factors by considering four preoperative clinical factors: ascites, history of alcohol consumption, TNM staging, and albumin-bilirubin score. Consequently, this model holds promise for enhancing individualised surgical planning.
Collapse
Affiliation(s)
- Jin Li
- Department of Hepatological Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Yu-Ming Jia
- Department of Hepatological Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Zhi-Lei Zhang
- Department of Hepatological Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Cheng-Yu Liu
- Department of Hepatological Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Zhan-Wu Jiang
- Department of General Surgery II, Baoding First Central Hospital, Baoding 071000, Hebei Province, China
| | - Zhi-Wei Hao
- Department of General Surgery II, Baoding First Central Hospital, Baoding 071000, Hebei Province, China
| | - Li Peng
- Department of Hepatological Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|