1
|
Lorca MC, Huang J, Schafernak K, Biyyam D, Stanescu AL, Hull NC, Katzman PJ, Ellika S, Chaturvedi A. Malignant Rhabdoid Tumor and Related Pediatric Tumors: Multimodality Imaging Review with Pathologic Correlation. Radiographics 2024; 44:e240015. [PMID: 39088359 DOI: 10.1148/rg.240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Malignant rhabdoid tumors (MRTs) are rare but lethal solid neoplasms that overwhelmingly affect infants and young children. While the central nervous system is the most common site of occurrence, tumors can develop at other sites, including the kidneys and soft tissues throughout the body. The anatomic site of involvement dictates tumor nomenclature and nosology. While the clinical and imaging manifestations of MRTs and other more common entities may overlap, there are some site-specific distinctive imaging characteristics. Irrespective of the site of occurrence, somatic and germline mutations in SMARCB1, and rarely in SMARCA4, underlie the entire spectrum of rhabdoid tumors. MRTs have a simple and remarkably stable genome but can demonstrate considerable molecular and biologic heterogeneity. Related neoplasms encompass an expanding category of phenotypically dissimilar (nonrhabdoid tumors driven by SMARC-related alterations) entities. US, CT, MRI, and fluorodeoxyglucose PET/CT or PET/MRI facilitate diagnosis, initial staging, and follow-up, thus informing therapeutic decision making. Multifocal synchronous or metachronous rhabdoid tumors occur predominantly in the context of underlying rhabdoid tumor predisposition syndromes (RTPSs). These autosomal dominant disorders are driven in most cases by pathogenic variants in SMARCB1 (RTPS type 1) and rarely by pathogenic variants in SMARCA4 (RTPS type 2). Genetic testing and counseling are imperative in RTPS. Guidelines for imaging surveillance in cases of RTPS are based on age at diagnosis. ©RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Maria Clara Lorca
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Jessie Huang
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Kristian Schafernak
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Deepa Biyyam
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - A Luana Stanescu
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Nathan C Hull
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Philip J Katzman
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Shehanaz Ellika
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Apeksha Chaturvedi
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| |
Collapse
|
2
|
Chmykhalo VK, Deev RV, Tokarev AT, Polunina YA, Xue L, Shidlovskii YV. SWI/SNF Complex Connects Signaling and Epigenetic State in Cells of Nervous System. Mol Neurobiol 2024:10.1007/s12035-024-04355-6. [PMID: 39002058 DOI: 10.1007/s12035-024-04355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
SWI/SNF protein complexes are evolutionarily conserved epigenetic regulators described in all eukaryotes. In metameric animals, the complexes are involved in all processes occurring in the nervous system, from neurogenesis to higher brain functions. On the one hand, the range of roles is wide because the SWI/SNF complexes act universally by mobilizing the nucleosomes in a chromatin template at multiple loci throughout the genome. On the other hand, the complexes mediate the action of multiple signaling pathways that control most aspects of neural tissue development and function. The issues are discussed to provide insight into the molecular basis of the multifaceted role of SWI/SNFs in cell cycle regulation, DNA repair, activation of immediate-early genes, neurogenesis, and brain and connectome formation. An overview is additionally provided for the molecular basis of nervous system pathologies associated with the SWI/SNF complexes and their contribution to neuroinflammation and neurodegeneration. Finally, we discuss the idea that SWI/SNFs act as an integration platform to connect multiple signaling and genetic programs.
Collapse
Affiliation(s)
- Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia.
| | - Roman V Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Artemiy T Tokarev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Yulia A Polunina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Lei Xue
- School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
- Department of Biology and General Genetics, Sechenov University, Moscow, Russia
| |
Collapse
|
3
|
Shaker N, Ben Musa R, Tynski Z, Shaker N, Sangueza OP, Boyd B. Delayed Diagnosis of SMARCA4-Deficient Undifferentiated Tumor in a Heavy Smoker Male Patient: Discovered Through Bone Sampling, with Extensive Distant Metastases and Concurrent Granulomatous Disease, Leading to Patient Fatality. Int J Surg Pathol 2024:10668969241260215. [PMID: 38899907 DOI: 10.1177/10668969241260215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background. SMARCA4-deficient undifferentiated tumors are rare and pose a diagnostic challenge. This study delves into the intricate diagnostic terrain of SMARCA4-deficient undifferentiated tumors, providing insights into their diverse clinical presentations and diagnostic approaches. Case Presentation. A 69-year-old heavy-smoker man with adalimumab-treated rheumatoid arthritis presented with multiple lesions. A CT scan revealed a spiculated lung mass, enlarged mediastinal lymph nodes, and hepatic lesions. A whole-body FDG-PET/CT scan revealed heterogeneous hypermetabolic lesions in the lung, liver, and bone. Initial two core needle liver biopsies and a left upper lobe lung wedge resection initially indicated steatohepatitis and granulomatous formation with no evidence of malignancy. Several months later, the patient returned with left-sided flank pain and significant weight loss. CT scan identified a thigh mass, adrenal lesion, and extensive multiple skeletal lesions. A biopsy of the thigh mass revealed an extensively necrotic, epithelioid-to-spindled cell neoplasm with positive staining for pan keratin, focal staining for CD56, and a loss of nuclear expression of SMARCA4. A final diagnosis of SMARCA4-deficient undifferentiated tumor was rendered. Unfortunately, the patient's condition deteriorated, and he died a few weeks after receiving the final diagnosis. Conclusion. SMARCA4-deficient undifferentiated tumors have emerged as recent subjects of medical study, distinguished by their unique morphology and SMARCA4-deficient immunohistochemistry. These tumors present diverse clinical manifestations, affecting multiple organ systems. This report underscores the diagnostic complexities associated with complex clinical presentation and highlights the importance of multidisciplinary collaboration in addressing challenging clinical scenarios, particularly among heavy smoker male patients and intricate radiological presentations.
Collapse
Affiliation(s)
- Nada Shaker
- Department of Pathology and Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Ruwaida Ben Musa
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, USA
| | - Zofia Tynski
- Department of Pathology, Hackensack Meridian Health, Montclair, USA
| | - Nuha Shaker
- Department of Pathology, University of Pittsburgh Medical Center Health System, Pittsburgh, USA
| | - Omar P Sangueza
- Departments of Dermatology and Dermatopathology, Wake Forest University School of Medicine, Winston-Salem, USA
| | - Brandon Boyd
- Department of Pathology, Fairfield Medical Center, Lancaster, USA
| |
Collapse
|
4
|
Shen W, Pan Y, Zou S. Response to PD-1 inhibitor in SMARCB1‑deficient undifferentiated rectal carcinoma with low TMB, proficient MMR and BRAF V600E mutation: a case report and literature review. Diagn Pathol 2024; 19:11. [PMID: 38217014 PMCID: PMC10785529 DOI: 10.1186/s13000-023-01415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Despite major advancements, effective treatment for patients with SMARCB1-deficient cancers has remained elusive. Here, we report the first case of a SMARCB1-deficient undifferentiated carcinoma in the rectum expressing high PD-L1 and responding to a PD-1 inhibitor, as well as with low tumor mutation burden (TMB), proficient mismatch repair (MMR) and BRAF V600E mutation. CASE PRESENTATION A 35-year-old man visited our hospital complaining of increased defecation frequency, bloody stools and weight loss of 3 kg for one month. Colonoscopy revealed an ulcerated and irregular mass approximately 8-12 cm from the anus. Surgical resection was performed. Histopathological findings revealed that the tumor cells had poor connectivity with each other; each cell had eosinophilic cytoplasm and a polymorphic nucleus. Brisk mitotic activity and necrosis were frequently observed in the tumor cells. Immunohistochemical examination showed that the tumor cells were negative for SMARCB1. The tumor proportion score (TPS) of PD-L1 (22C3) expression was 95%, and the combined positive score (CPS) was 100; the tumor was mismatch repair (MMR) proficient. Next-generation sequencing showed a low tumor mutation burden (TMB), as well as the BRAF V600E mutation. The final diagnosis was SMARCB1-deficient undifferentiated carcinoma. Chemotherapy was useless in this case. His tumor recurred during chemotherapy, and he then received targeted therapy with tirelizumab, an inhibitor of PD-1. At present, his general condition is good. A recent computed tomography (CT) scan showed that the tumor had disappeared, indicating that the immunotherapy was effective. Astonishingly, his most recent follow-up was in August, and his condition continued to improve with the tumor has disappeared. CONCLUSION SMARCB1‑deficient undifferentiated carcinoma in the rectum is extremely rare, and it has aggressive histological malignancy and poor progression. The observed response to PD-1 inhibitors suggests a role for prospective use of SMARCB1 alterations as a predictive marker for immune checkpoint blockade.
Collapse
Affiliation(s)
- Wenjuan Shen
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yi Pan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Shuangmei Zou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
| |
Collapse
|
5
|
Gastberger K, Fincke VE, Mucha M, Siebert R, Hasselblatt M, Frühwald MC. Current Molecular and Clinical Landscape of ATRT - The Link to Future Therapies. Cancer Manag Res 2023; 15:1369-1393. [PMID: 38089834 PMCID: PMC10712249 DOI: 10.2147/cmar.s379451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
ATRT is a highly aggressive and rare pediatric CNS tumor of very young children. Its genetic hallmark is bi-allelic inactivation of SMARCB1 encoding INI1. Rarely SMARCA4 encoding BRG1 is affected. Up to 30% are associated with constitutional heterozygous pathogenic variants in one of the two genes, giving rise to the Rhabdoid-Tumor-Predisposition-Syndromes (RTPS) 1 and 2. Characteristic DNA methylation profiles distinguish ATRT from other SMARCB1-deficient entities. Three distinct subtypes ATRT-MYC, -TYR, and -SHH are on record. ATRT-SHH may be further divided into the subgroups ATRT-SHH1A, -SHH1B, and -SHH2. The cure of ATRT remains challenging, notwithstanding an increasing understanding of molecular pathomechanisms and genetic background. The implementation of multimodal institutional treatment protocols has improved prognosis. Regardless of treatment approaches, clinical risk factors such as age, metastases, and DNA methylation subtype affect survival probability. We provide a critical appraisal of current conventional multimodal regimens and emerging targeted treatment approaches investigated in clinical trials and entity-specific registries. Intense treatment approaches featuring radiotherapy (RT) and high-dose chemotherapy (HDCT) face the difficulty of balancing tumor control and treatment-related toxicity. Current approaches focus on minimizing radiation fields by proton beam therapy or to withhold RT in HDCT-only approaches. Still, a 40-75% relapse rate upon first-line treatment reveals the need for novel treatment strategies in primary and even more in recurrent/refractory (r/r) disease. Among targeted treatments, immune checkpoint inhibitors and epigenetically active agents appear most promising. Success remains limited in single agent approaches. We hypothesize that mechanism-informed combination therapy will enhance response, as the low mutational burden of ATRT may contribute to acquiring resistance to single targeted agents. As DNA methylation group-specific gene expression profiles appear to influence response to distinct agents, the future treatment of ATRT should respect clinical and biological heterogeneity in risk group adjusted treatment protocols.
Collapse
Affiliation(s)
- Katharina Gastberger
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Victoria E Fincke
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Marlena Mucha
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Michael C Frühwald
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| |
Collapse
|
6
|
Dang DD, Rosenblum JS, Shah AH, Zhuang Z, Doucet-O’Hare TT. Epigenetic Regulation in Primary CNS Tumors: An Opportunity to Bridge Old and New WHO Classifications. Cancers (Basel) 2023; 15:2511. [PMID: 37173979 PMCID: PMC10177493 DOI: 10.3390/cancers15092511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Originally approved in 1979, a specific grading classification for central nervous system (CNS) tumors was devised by the World Health Organization (WHO) in an effort to guide cancer treatment and better understand prognosis. These "blue books" have since undergone several iterations based on tumor location, advancements in histopathology, and most recently, diagnostic molecular pathology in its fifth edition. As new research methods have evolved to elucidate complex molecular mechanisms of tumorigenesis, a need to update and integrate these findings into the WHO grading scheme has become apparent. Epigenetic tools represent an area of burgeoning interest that encompasses all non-Mendelian inherited genetic features affecting gene expression, including but not limited to chromatin remodeling complexes, DNA methylation, and histone regulating enzymes. The SWItch/Sucrose non-fermenting (SWI/SNF) chromatin remodeling complex is the largest mammalian family of chromatin remodeling proteins and is estimated to be altered in 20-25% of all human malignancies; however, the ways in which it contributes to tumorigenesis are not fully understood. We recently discovered that CNS tumors with SWI/SNF mutations have revealed an oncogenic role for endogenous retroviruses (ERVs), remnants of exogenous retroviruses that integrated into the germline and are inherited like Mendelian genes, several of which retain open reading frames for proteins whose expression putatively contributes to tumor formation. Herein, we analyzed the latest WHO classification scheme for all CNS tumors with documented SWI/SNF mutations and/or aberrant ERV expression, and we summarize this information to highlight potential research opportunities that could be integrated into the grading scheme to better delineate diagnostic criteria and therapeutic targets.
Collapse
Affiliation(s)
- Danielle D. Dang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jared S. Rosenblum
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashish H. Shah
- Section of Virology and Immunotherapy, Department of Neurosurgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tara T. Doucet-O’Hare
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Transcallosal and endoscopic hybrid approach to a rare entity of pediatric intraventricular tumors-cribriform neuroepithelial tumor: a case report and literature review. Childs Nerv Syst 2023; 39:1123-1129. [PMID: 36884098 DOI: 10.1007/s00381-023-05897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE Cribriform neuroepithelial tumor (CRINET) is a provisional category of intraventricular tumors, sharing similarities with AT/RTs, and there is a lack of data about its pathology, prognosis, and surgical approaches in the literature. We have been challenged to describe the surgical approach to a rare case of CRINET and describe the intraoperative features since none has been described before. Surgical resection and chemotherapy hold a great importance of favorable prognosis. METHODS Twenty-month-old male with intraventricular tumor underwent transcallosal intraventricular tumor resection and endoscopic intraventricular second look stages. The tumor was initially considered choroid plexus carcinoma and histopathological results pointed CRINET. The patient also received Ommaya reservoir for intrathecal chemotherapy employment. The patient's preoperative and postoperative MRI scans and tumor's pathological features are described with a brief history of the disease in the literature. RESULTS Lack of SMARCB1 gene immunoreactivity and presence of cribriform non-rhabdoid trabecular neuroepithelial cells led to the CRINET diagnosis. The surgical technique helped us to approach directly into the third ventricle and perform total resection and intraventricular lavage. The patient recovered without any perioperative complications and is consulted pediatric oncology for further treatment planning. CONCLUSION With our limited knowledge on the matter, our presentation may provide an inside to the course and progress of the CRINET as a very rare tumor and may help to set a basis for future investigations focused on its clinical and pathological features. Long courses of follow-up periods are required for establishing treatment modules and assessing the responses to surgical resection techniques and chemotherapy protocols.
Collapse
|
8
|
Schuermans VNE, van de Goor A, Broen MPG, Boselie TFM. Mother and daughter with a SMARCE1 mutation resulting in a cervical clear cell meningioma at an identical location: illustrative cases. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 5:CASE22466. [PMID: 36593672 PMCID: PMC9811575 DOI: 10.3171/case22466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND A rare meningioma subtype is a clear cell (CC) meningioma, which can be associated with a SMARCE1 gene mutation. Manifestation of a CC meningioma in the cervical spine is unusual. In the current case, both mother and daughter present with a CC meningioma at an identical cervical location. OBSERVATIONS A 67-year-old patient with an intradural extramedullary mass at the level of C5 presented with progressive myelopathy. The mass was resected through a ventral approach by a two-level corpectomy with an expandable cage and instrumentation. The daughter of this patient appeared to have had an intradural extramedullary mass at C5 at the age of 20, which was resected through a posterior approach. Pathological investigation of both tumors revealed CC meningioma. Genetic testing of the daughter revealed a SMARCE1 mutation. LESSONS It is of major importance to consider a SMARCE1 mutation in elderly presenting with a CC meningioma, which is still uncommon in current practice. This could lead to timely diagnostics in the succeeding generation. Complete resection of a CC meningioma is important because of the high recurrence rate. Routine follow-up should therefore be performed in the postoperative period. An anterior approach should be considered for a ventral cervical CC meningioma.
Collapse
Affiliation(s)
- Valérie N. E. Schuermans
- Department of Neurosurgery, Zuyderland Medical Center, Heerlen, The Netherlands; ,Departments of Neurosurgery and ,CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Ank van de Goor
- Departments of Neurosurgery and ,Maastricht University, Maastricht, The Netherlands; and
| | - Martinus P. G. Broen
- Neurology, Maastricht University Medical Center, Maastricht, The Netherlands,GROW, Schoolfor Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Toon F. M. Boselie
- Department of Neurosurgery, Zuyderland Medical Center, Heerlen, The Netherlands; ,Departments of Neurosurgery and ,CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Nguyen VT, Tessema M, Weissman BE. The SWI/SNF Complex: A Frequently Mutated Chromatin Remodeling Complex in Cancer. Cancer Treat Res 2023; 190:211-244. [PMID: 38113003 DOI: 10.1007/978-3-031-45654-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The switch/sucrose non-fermenting (SWI/SNF) chromatin remodeling complex is a global regulator of gene expression known to maintain nucleosome-depleted regions at active enhancers and promoters. The mammalian SWI/SNF protein subunits are encoded by 29 genes and 11-15 subunits including an ATPase domain of either SMARCA4 (BRG1) or SMARCA2 (BRM) are assembled into a complex. Based on the distinct subunits, SWI/SNF are grouped into 3 major types (subfamilies): the canonical BRG1/BRM-associated factor (BAF/cBAF), polybromo-associated BAF (PBAF), and non-canonical BAF (GBAF/ncBAF). Pan-cancer genome sequencing studies have shown that nearly 25% of all cancers bear mutations in subunits of the SWI/SNF complex, many of which are loss of function (LOF) mutations, suggesting a tumor suppressor role. Inactivation of SWI/SNF complex subunits causes widespread epigenetic dysfunction, including increased dependence on antagonistic components such as polycomb repressor complexes (PRC1/2) and altered enhancer regulation, likely promoting an oncogenic state leading to cancer. Despite the prevalence of mutations, most SWI/SNF-mutant cancers lack targeted therapeutic strategies. Defining the dependencies created by LOF mutations in SWI/SNF subunits will identify better targets for these cancers.
Collapse
Affiliation(s)
- Vinh The Nguyen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Mathewos Tessema
- Lung Cancer Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Bernard Ellis Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
10
|
Osborn AG, Louis DN, Poussaint TY, Linscott LL, Salzman KL. The 2021 World Health Organization Classification of Tumors of the Central Nervous System: What Neuroradiologists Need to Know. AJNR Am J Neuroradiol 2022; 43:928-937. [PMID: 35710121 DOI: 10.3174/ajnr.a7462] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Neuroradiologists play a key role in brain tumor diagnosis and management. Staying current with the latest classification systems and diagnostic markers is important to provide optimal patient care. Publication of the 2016 World Health Organization Classification of Tumors of the Central Nervous System introduced a paradigm shift in the diagnosis of CNS neoplasms. For the first time, both histologic features and genetic alterations were incorporated into the diagnostic framework, classifying and grading brain tumors. The newly published 2021 World Health Organization Classification of Tumors of the Central Nervous System, May 2021, 5th edition, has added even more molecular features and updated pathologic diagnoses. We present, summarize, and illustrate the most salient aspects of the new 5th edition. We have selected the key "must know" topics for practicing neuroradiologists.
Collapse
Affiliation(s)
- A G Osborn
- From the Department of Radiology and Imaging Sciences (A.G.O., K.L.S.), University of Utah School of Medicine, Salt Lake City, Utah
| | - D N Louis
- Department of Pathology (D.N.L.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - T Y Poussaint
- Department of Radiology (T.Y.P.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - L L Linscott
- Intermountain Pediatric Imaging (L.L.L.), Primary Children's Hospital, University of Utah School of Medicine, Salt Lake City, Utah
| | - K L Salzman
- From the Department of Radiology and Imaging Sciences (A.G.O., K.L.S.), University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
11
|
Antonios JP, Yalcin K, Darbinyan A, Koo A, Hong CS, DiLuna M, Erson-Omay Z. Biallelic inactivation of PBRM1 as a molecular driver in a rare pineoblastoma case: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE2213. [PMID: 36303510 PMCID: PMC9379698 DOI: 10.3171/case2213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pineoblastomas are a rare and aggressive pediatric neuroectodermal tumor subtype. Because of their rarity, pineoblastomas are still poorly understood, and there is little research delineating their molecular development and underlying genetic phenotype. Recent multiomic studies in pineoblastomas and pineal parenchymal tumors identified four clinically and biologically relevant consensus groups driven by signaling/processing pathways; however, molecular level alterations leading to these pathway changes are yet to be discovered, hence the importance of individually profiling every case of this rare tumor type. OBSERVATIONS The authors present the comprehensive somatic genomic profiling of a patient with pineoblastoma presenting with the loss of protein polybromo-1 (PBRM1) as a candidate genomic driver. Loss of PBRM1, a tumor suppressor, has been reported as a driver event in various cancer types, including renal cell carcinoma, bladder carcinoma, and meningiomas with papillary features. LESSONS This is the first report presenting biallelic loss of PBRM1 as a candidate molecular driver in relation to pineoblastoma.
Collapse
|
12
|
Zaccagna F, Brown FS, Allinson KSJ, Devadass A, Kapadia A, Massoud TF, Matys T. In and around the pineal gland: a neuroimaging review. Clin Radiol 2021; 77:e107-e119. [PMID: 34774298 DOI: 10.1016/j.crad.2021.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/30/2021] [Indexed: 01/16/2023]
Abstract
Lesions arising in or around the pineal gland comprise a heterogeneous group of pathologies ranging from benign non-neoplastic cysts to highly malignant neoplasms. Pineal cysts are frequently encountered as an incidental finding in daily radiology practice but there is no universal agreement on the criteria for, frequency of, and duration of follow-up imaging. Solid pineal neoplasms pose a diagnostic challenge owing to considerable overlap in their imaging characteristics, although a combination of radiological appearances, clinical findings, and tumour markers allows for narrowing of the differential diagnosis. In this review, we describe the radiological anatomy of the pineal region, clinical symptoms, imaging appearances, and differential diagnosis of lesions arising in this area, and highlight the clinical management of these conditions.
Collapse
Affiliation(s)
- F Zaccagna
- Department of Radiology, University of Cambridge, Cambridge, UK; Division of Neuroimaging, Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - F S Brown
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - K S J Allinson
- Department of Pathology, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - A Devadass
- Department of Pathology, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - A Kapadia
- Division of Neuroimaging, Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - T F Massoud
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - T Matys
- Department of Radiology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Nambirajan A, Jain D. Recent updates in thoracic SMARCA4-deficient undifferentiated tumor. Semin Diagn Pathol 2021; 38:83-89. [PMID: 34147303 DOI: 10.1053/j.semdp.2021.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022]
Abstract
Germline inactivating mutations in SMARCA4 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4) gene encoding for BRG1 (Brahma related gene-1) are the molecular drivers in small cell carcinoma of ovary, hypercalcemic type (SCCOHT) and in malignant rhabdoid tumors (MRT) that occur in the context of rhabdoid tumor predisposition syndrome-type 2. Somatic SMARCA4 mutations and/or loss of BRG1 have been identified in a variety of adult-onset epithelial and mesenchymal neoplasms. Among thoracic tumors, these include subsets of smoking-related non-small cell lung carcinoma (NSCLC) and a relatively rare, newly recognised tumor entity: thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT). Less than 100 cases of SMARCA4-UT have been reported to date. They present as large compressive and infiltrative mediastinal, lung and/or pleural masses in middle-aged male smokers. They are undifferentiated tumors composed of sheets of small/epithelioid and/or rhabdoid tumor cells variably expressing epithelial markers and consistently showing loss of BRG1 and the closely related protein, Brahma (BRM). Frequent expression of stem cell markers (SOX2, CD34, SALL4) is noted. Despite gene expression profiles similar to MRTs and SCCOHT, they show striking genomic overlap with SMARCA4-mutant NSCLC with frequent TP53, STK11, KEAP1, and KRAS mutations, high tumor mutation burden (TMB), and presence of smoking related molecular signatures in tumor cells. SMARCA4-UT show uniformly poor survival and are irresponsive to conventional therapies. Immunotherapy responses are variable but promising, although PDL1 expression appears to be of poor predictive value. Drugs exploiting genetic and epigenetic mechanisms of SMARCA4 antagonism hold promise for future targeted therapies.
Collapse
Affiliation(s)
- Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
14
|
Simone V, Rizzo D, Cocciolo A, Caroleo AM, Carai A, Mastronuzzi A, Tornesello A. Infantile Brain Tumors: A Review of Literature and Future Perspectives. Diagnostics (Basel) 2021; 11:diagnostics11040670. [PMID: 33917833 PMCID: PMC8068230 DOI: 10.3390/diagnostics11040670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 01/08/2023] Open
Abstract
Brain tumors in infants including those diagnosed in fetal age, newborns and under a year old represent less than 10% of pediatric nervous system tumors and present differently when compared with older children in terms of clinical traits, location and histology. The most frequent clinical finding is a macrocephaly but non-specific symptoms can also be associated. The prognosis is usually poor and depends on several factors. Surgery continues to be the main option in terms of therapeutic strategies whereas the role of chemotherapy is not yet well defined and radiotherapy is exceptionally undertaken. In view of this situation, a molecular characterization could assist in providing therapeutic options for these tumors. This review highlights the recent advances in the diagnosis and treatment of brain tumors in infants with a particular focus on the molecular landscape and future clinical applications.
Collapse
Affiliation(s)
- Valeria Simone
- Pediatric Oncology Unit, Ospedale Vito Fazzi, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (D.R.); (A.C.)
- Correspondence: (V.S.); (A.T.)
| | - Daniela Rizzo
- Pediatric Oncology Unit, Ospedale Vito Fazzi, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (D.R.); (A.C.)
| | - Alessandro Cocciolo
- Pediatric Oncology Unit, Ospedale Vito Fazzi, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (D.R.); (A.C.)
| | - Anna Maria Caroleo
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy; (A.M.C.); (A.M.)
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy;
| | - Angela Mastronuzzi
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy; (A.M.C.); (A.M.)
| | - Assunta Tornesello
- Pediatric Oncology Unit, Ospedale Vito Fazzi, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (D.R.); (A.C.)
- Correspondence: (V.S.); (A.T.)
| |
Collapse
|