1
|
Ronchini C, Gigli F, Fontanini M, Furgi R, Amato V, Giglio F, Gregato G, Bertolini F, Rondoni M, Lanza F, Billio A, Derenzini E, Tarella C, Pelicci P, Alcalay M, Todisco E. Identification of Novel Potential Predisposing Variants in Familial Acute Myeloid Leukemia. Cancer Rep (Hoboken) 2024; 7:e2141. [PMID: 39118233 PMCID: PMC11310090 DOI: 10.1002/cnr2.2141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Myeloid neoplasms, including acute myeloid leukemia, have been traditionally among the less investigated cancer types concerning germline predisposition. Indeed, myeloid neoplasms with germline predisposition are challenging to identify because often display similar clinical and morphological characteristics of sporadic cases and have similar age at diagnosis. However, a misidentifications of familiarity in myeloid neoplasms have a critical impact on clinical management both for the carriers and their relatives. AIMS We conducted a family segregation study, in order to identify novel cancer predisposing genes in myeloid neoplasms and classify novel identified variants. METHODS AND RESULTS We performed a thorough genomic analysis using a large custom gene panel (256 genes), the Myelo-Panel, targeted on cancer predisposing genes. In particular, we assessed both germline and somatic variants in four families, each with two siblings, who developed hematological neoplasms: seven acute myeloid leukemia and one Philadelphia-positive chronic myeloid leukemia. In each family, we identified at least one novel potentially predisposing variant, affecting also genes not included in the current European LeukemiaNet guidelines for AML management. Moreover, we suggest reclassification of two germline variants as pathogenic: likely pathogenic p.S21Tfs*139 in CEPBA and VUS p.K392Afs*66 in DDX41. CONCLUSION We believe that predisposition to hematological neoplasms is still underestimated and particularly difficult to diagnosed. Considering that misidentification of familiarity in myeloid neoplasms have a critical impact on the clinical management both for the carriers and their relatives, our study highlights the importance of revision, in this clinical context, of clinical practices that should include thorough reconstruction of family history and in-depth genetic testing.
Collapse
Affiliation(s)
- Chiara Ronchini
- DIMA Laboratory, Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| | - Federica Gigli
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly
| | - Martina Fontanini
- DIMA Laboratory, Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| | - Raffaella Furgi
- DIMA Laboratory, Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| | - Viviana Amato
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly
| | - Fabio Giglio
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly
| | - Giuliana Gregato
- Laboratory of Hematology‐OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| | - Francesco Bertolini
- Laboratory of Hematology‐OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| | - Michela Rondoni
- Hematology Unit and Metropolitan Romagna Transplant NetworkUniversity of BolognaRavennaItaly
| | - Francesco Lanza
- Hematology Unit and Metropolitan Romagna Transplant NetworkUniversity of BolognaRavennaItaly
| | - Atto Billio
- Division of Hematology and Transplant UnitOspedale di BolzanoBolzanoItaly
| | - Enrico Derenzini
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly
- Department of Health SciencesUniversity of MilanMilanItaly
| | - Corrado Tarella
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly
- Department of Health SciencesUniversity of MilanMilanItaly
| | - Pier Giuseppe Pelicci
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐OncologyUniversity of MilanMilanItaly
| | - Myriam Alcalay
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐OncologyUniversity of MilanMilanItaly
| | - Elisabetta Todisco
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly
- Ospedale di Busto ArsizioASST Valle OlonaBusto ArsizioItaly
| |
Collapse
|
2
|
Yu K, Deuitch N, Merguerian M, Cunningham L, Davis J, Bresciani E, Diemer J, Andrews E, Young A, Donovan F, Sood R, Craft K, Chong S, Chandrasekharappa S, Mullikin J, Liu PP. Genomic landscape of patients with germline RUNX1 variants and familial platelet disorder with myeloid malignancy. Blood Adv 2024; 8:497-511. [PMID: 38019014 PMCID: PMC10837196 DOI: 10.1182/bloodadvances.2023011165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023] Open
Abstract
ABSTRACT Familial platelet disorder with associated myeloid malignancies (FPDMM) is caused by germline RUNX1 mutations and characterized by thrombocytopenia and increased risk of hematologic malignancies. We recently launched a longitudinal natural history study for patients with FPDMM. Among 27 families with research genomic data by the end of 2021, 26 different germline RUNX1 variants were detected. Besides missense mutations enriched in Runt homology domain and loss-of-function mutations distributed throughout the gene, splice-region mutations and large deletions were detected in 6 and 7 families, respectively. In 25 of 51 (49%) patients without hematologic malignancy, somatic mutations were detected in at least 1 of the clonal hematopoiesis of indeterminate potential (CHIP) genes or acute myeloid leukemia (AML) driver genes. BCOR was the most frequently mutated gene (in 9 patients), and multiple BCOR mutations were identified in 4 patients. Mutations in 6 other CHIP- or AML-driver genes (TET2, DNMT3A, KRAS, LRP1B, IDH1, and KMT2C) were also found in ≥2 patients without hematologic malignancy. Moreover, 3 unrelated patients (1 with myeloid malignancy) carried somatic mutations in NFE2, which regulates erythroid and megakaryocytic differentiation. Sequential sequencing data from 19 patients demonstrated dynamic changes of somatic mutations over time, and stable clones were more frequently found in older adult patients. In summary, there are diverse types of germline RUNX1 mutations and high frequency of somatic mutations related to clonal hematopoiesis in patients with FPDMM. Monitoring changes in somatic mutations and clinical manifestations prospectively may reveal mechanisms for malignant progression and inform clinical management. This trial was registered at www.clinicaltrials.gov as #NCT03854318.
Collapse
Affiliation(s)
- Kai Yu
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Natalie Deuitch
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Matthew Merguerian
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Balltimore, MD
| | - Lea Cunningham
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Joie Davis
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Erica Bresciani
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jamie Diemer
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Elizabeth Andrews
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alice Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Frank Donovan
- Genomics Core, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Raman Sood
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Kathleen Craft
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Shawn Chong
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Settara Chandrasekharappa
- Genomics Core, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jim Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Paul P. Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Ahmad MH, Hegde M, Wong WJ, Mohammadhosseini M, Garrett L, Carrascoso A, Issac N, Ebert B, Silva JC, Pihan G, Zhu LJ, Wolfe SA, Agarwal A, Liu PP, Castilla LH. Runx1-R188Q germ line mutation induces inflammation and predisposition to hematologic malignancies in mice. Blood Adv 2023; 7:7304-7318. [PMID: 37756546 PMCID: PMC10711191 DOI: 10.1182/bloodadvances.2023010398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Germ line mutations in the RUNX1 gene cause familial platelet disorder (FPD), an inherited disease associated with lifetime risk to hematopoietic malignancies (HM). Patients with FPD frequently show clonal expansion of premalignant cells preceding HM onset. Despite the extensive studies on the role of RUNX1 in hematopoiesis, its function in the premalignant bone marrow (BM) is not well-understood. Here, we characterized the hematopoietic progenitor compartments using a mouse strain carrying an FPD-associated mutation, Runx1R188Q. Immunophenotypic analysis showed an increase in the number of hematopoietic stem and progenitor cells (HSPCs) in the Runx1R188Q/+ mice. However, the comparison of Sca-1 and CD86 markers suggested that Sca-1 expression may result from systemic inflammation. Cytokine profiling confirmed the dysregulation of interferon-response cytokines in the BM. Furthermore, the expression of CD48, another inflammation-response protein, was also increased in Runx1R188Q/+ HSPCs. The DNA-damage response activity of Runx1R188Q/+ hematopoietic progenitor cells was defective in vitro, suggesting that Runx1R188Q may promote genomic instability. The differentiation of long-term repopulating HSCs was reduced in Runx1R188Q/+ recipient mice. Furthermore, we found that Runx1R188Q/+ HSPCs outcompete their wild-type counterparts in bidirectional repopulation assays, and that the genetic makeup of recipient mice did not significantly affect the clonal dynamics under this setting. Finally, we demonstrate that Runx1R188Q predisposes to HM in cooperation with somatic mutations found in FPDHM, using 3 mouse models. These studies establish a novel murine FPDHM model and demonstrate that germ line Runx1 mutations induce a premalignant phenotype marked by BM inflammation, selective expansion capacity, defective DNA-damage response, and predisposition to HM.
Collapse
Affiliation(s)
- Mohd Hafiz Ahmad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Mahesh Hegde
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Waihay J. Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Mona Mohammadhosseini
- School of Medicine Cell and Developmental Biology Graduate Program, Oregon Health Science University, Portland, OR
| | - Lisa Garrett
- Transgenic Mouse Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Anneliese Carrascoso
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Neethu Issac
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Benjamin Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - German Pihan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Lihua J. Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Scot A. Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Anupriya Agarwal
- School of Medicine Cell and Developmental Biology Graduate Program, Oregon Health Science University, Portland, OR
| | - P. Paul Liu
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lucio H. Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
4
|
Molteni E, Bono E, Gallì A, Elena C, Ferrari J, Fiorelli N, Pozzi S, Ferretti VV, Sarchi M, Rizzo E, Camilotto V, Boveri E, Cazzola M, Malcovati L. Prevalence and clinical expression of germ line predisposition to myeloid neoplasms in adults with marrow hypocellularity. Blood 2023; 142:643-657. [PMID: 37216690 PMCID: PMC10644067 DOI: 10.1182/blood.2022019304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Systematic studies of germ line genetic predisposition to myeloid neoplasms in adult patients are still limited. In this work, we performed germ line and somatic targeted sequencing in a cohort of adult patients with hypoplastic bone marrow (BM) to study germ line predisposition variants and their clinical correlates. The study population included 402 consecutive adult patients investigated for unexplained cytopenia and reduced age-adjusted BM cellularity. Germ line mutation analysis was performed using a panel of 60 genes, and variants were interpreted per the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines; somatic mutation analysis was performed using a panel of 54 genes. Of the 402 patients, 27 (6.7%) carried germ line variants that caused a predisposition syndrome/disorder. The most frequent disorders were DDX41-associated predisposition, Fanconi anemia, GATA2-deficiency syndrome, severe congenital neutropenia, RASopathy, and Diamond-Blackfan anemia. Eighteen of 27 patients (67%) with causative germ line genotype were diagnosed with myeloid neoplasm, and the remaining with cytopenia of undetermined significance. Patients with a predisposition syndrome/disorder were younger than the remaining patients and had a higher risk of severe or multiple cytopenias and advanced myeloid malignancy. In patients with myeloid neoplasm, causative germ line mutations were associated with increased risk of progression into acute myeloid leukemia. Family or personal history of cancer did not show significant association with a predisposition syndrome/disorder. The findings of this study unveil the spectrum, clinical expressivity, and prevalence of germ line predisposition mutations in an unselected cohort of adult patients with cytopenia and hypoplastic BM.
Collapse
Affiliation(s)
- Elisabetta Molteni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Elisa Bono
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Anna Gallì
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Chiara Elena
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Jacqueline Ferrari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Nicolas Fiorelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Sara Pozzi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Martina Sarchi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Virginia Camilotto
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Emanuela Boveri
- Department of Pathology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
5
|
Homan CC, Scott HS, Brown AL. Hereditary platelet disorders associated with germ line variants in RUNX1, ETV6, and ANKRD26. Blood 2023; 141:1533-1543. [PMID: 36626254 PMCID: PMC10651873 DOI: 10.1182/blood.2022017735] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Hereditary platelet disorders (HPDs) are a group of blood disorders with variable severity and clinical impact. Although phenotypically there is much overlap, known genetic causes are many, prompting the curation of multigene panels for clinical use, which are being deployed in increasingly large-scale populations to uncover missing heritability more efficiently. For some of these disorders, in particular RUNX1, ETV6, and ANKRD26, pathogenic germ line variants in these genes also come with a risk of developing hematological malignancy (HM). Although they may initially present as similarly mild-moderate thrombocytopenia, each of these 3 disorders have distinct penetrance of HM and a different range of somatic alterations associated with malignancy development. As our ability to diagnose HPDs has improved, we are now faced with the challenges of integrating these advances into routine clinical practice for patients and how to optimize management and surveillance of patients and carriers who have not developed malignancy. The volume of genetic information now being generated has created new challenges in how to accurately assess and report identified variants. The answers to all these questions involve international initiatives on rare diseases to better understand the biology of these disorders and design appropriate models and therapies for preclinical testing and clinical trials. Partnered with this are continued technological developments, including the rapid sharing of genetic variant information and automated integration with variant classification relevant data, such as high-throughput functional data. Collective progress in this area will drive timely diagnosis and, in time, leukemia preventive therapeutic interventions.
Collapse
Affiliation(s)
- Claire C. Homan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Australian Cancer Research Foundation (ACRF) Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Anna L. Brown
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Rundberg Nilsson A, Xian H, Shalapour S, Cammenga J, Karin M. IRF1 regulates self-renewal and stress-responsiveness to support hematopoietic stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525321. [PMID: 36747722 PMCID: PMC9900858 DOI: 10.1101/2023.01.24.525321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inflammatory mediators induce emergency myelopoiesis and cycling of adult hematopoietic stem cells (HSCs) through incompletely understood mechanisms. To suppress the unwanted effects of inflammation and preserve its beneficial outcomes, the mechanisms by which inflammation affects hematopoiesis need to be fully elucidated. Rather than focusing on specific inflammatory stimuli, we here investigated the role of transcription factor Interferon (IFN) regulatory factor 1 (IRF1), which receives input from several inflammatory signaling pathways. We identify IRF1 as a master HSC regulator. IRF1 loss impairs HSC self-renewal, increases stress-induced cell cycle activation, and confers apoptosis resistance. Transcriptomic analysis revealed an aged, inflammatory signature devoid of IFN signaling with reduced megakaryocytic/erythroid priming and antigen presentation in IRF1-deficient HSCs. Finally, we conducted IRF1-based AML patient stratification to identify groups with distinct proliferative, survival and differentiation features, overlapping with our murine HSC results. Our findings position IRF1 as a pivotal regulator of HSC preservation and stress-induced responses.
Collapse
Affiliation(s)
- Alexandra Rundberg Nilsson
- Department of Pharmacology, Laboratory of Gene Regulation and
Signal Transduction, University of California San Diego (UCSD), United States
- Medical Faculty, Division of Molecular Medicine and Gene Therapy,
Institution for Laboratory Medicine, Lund University, Sweden
- Medical Faculty, Lund Stem Cell Center, Lund University,
Sweden
- Lead contact
| | - Hongxu Xian
- Department of Pharmacology, Laboratory of Gene Regulation and
Signal Transduction, University of California San Diego (UCSD), United States
| | - Shabnam Shalapour
- Department of Pharmacology, Laboratory of Gene Regulation and
Signal Transduction, University of California San Diego (UCSD), United States
- Department of Cancer Biology, The University of Texas MD Anderson
Cancer Center, United States
| | - Jörg Cammenga
- Medical Faculty, Division of Molecular Medicine and Gene Therapy,
Institution for Laboratory Medicine, Lund University, Sweden
- Medical Faculty, Lund Stem Cell Center, Lund University,
Sweden
| | - Michael Karin
- Department of Pharmacology, Laboratory of Gene Regulation and
Signal Transduction, University of California San Diego (UCSD), United States
| |
Collapse
|
7
|
Calvete O, Mestre J, Jerez A, Solé F. The Secondary Myelodysplastic Neoplasms (MDS) Jigsaw. Cancers (Basel) 2023; 15:1483. [PMID: 36900275 PMCID: PMC10000488 DOI: 10.3390/cancers15051483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
There is a great deal of controversy in the hematologic community regarding the classification of secondary myelodysplastic neoplasms (MDSs). Current classifications are based on the presence of genetic predisposition and MDS post-cytotoxic therapy (MDS-pCT) etiologies. However, since these risk factors are not exclusive for secondary MDSs and there are multiple overlapping scenarios, a comprehensive and definitive classification is yet to come. In addition, a sporadic MDS might arise after a primary tumor fulfills the diagnostic criteria of MDS-pCT without a causative cytotoxicity. In this review, we describe the triggering pieces of a secondary MDS jigsaw: previous cytotoxic therapy, germline predisposition and clonal hematopoiesis. Epidemiological and translational efforts are needed to put these pieces together and ascertain the real weight of each of these pieces in each MDS patient. Future classifications must contribute to understanding the role of secondary MDS jigsaw pieces in different concomitant or independent clinical scenarios associated with the primary tumor.
Collapse
Affiliation(s)
- Oriol Calvete
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Barcelona, Spain
| | - Julia Mestre
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Barcelona, Spain
| | - Andrés Jerez
- Experimental Hematology Unit, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Barcelona, Spain
| |
Collapse
|
8
|
Lee BC, Zhou Y, Bresciani E, Ozkaya N, Dulau-Florea A, Carrington B, Shin TH, Baena V, Syed ZA, Hong SG, Zhen T, Calvo KR, Liu P, Dunbar CE. A RUNX1-FPDMM rhesus macaque model reproduces the human phenotype and predicts challenges to curative gene therapies. Blood 2023; 141:231-237. [PMID: 36322931 PMCID: PMC9936307 DOI: 10.1182/blood.2022018193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Germ line loss-of-function heterozygous mutations in the RUNX1 gene cause familial platelet disorder with associated myeloid malignancies (FPDMM) characterized by thrombocytopenia and a life-long risk of hematological malignancies. Although gene therapies are being considered as promising therapeutic options, current preclinical models do not recapitulate the human phenotype and are unable to elucidate the relative fitness of mutation-corrected and RUNX1-heterozygous mutant hematopoietic stem and progenitor cells (HSPCs) in vivo long term. We generated a rhesus macaque with an FPDMM competitive repopulation model using CRISPR/Cas9 nonhomologous end joining editing in the RUNX1 gene and the AAVS1 safe-harbor control locus. We transplanted mixed populations of edited autologous HSPCs and tracked mutated allele frequencies in blood cells. In both animals, RUNX1-edited cells expanded over time compared with AAVS1-edited cells. Platelet counts remained below the normal range in the long term. Bone marrows developed megakaryocytic dysplasia similar to human FPDMM, and CD34+ HSPCs showed impaired in vitro megakaryocytic differentiation, with a striking defect in polyploidization. In conclusion, the lack of a competitive advantage for wildtype or control-edited HSPCs over RUNX1 heterozygous-mutated HSPCs long term in our preclinical model suggests that gene correction approaches for FPDMM will be challenging, particularly to reverse myelodysplastic syndrome/ acute myeloid leukemia predisposition and thrombopoietic defects.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Erica Bresciani
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Neval Ozkaya
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alina Dulau-Florea
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Blake Carrington
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Valentina Baena
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Zulfeqhar A. Syed
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Tao Zhen
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Katherine R. Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Paul Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Yu K, Deuitch N, Merguerian M, Cunningham L, Davis J, Bresciani E, Diemer J, Andrews E, Young A, Donovan F, Sood R, Craft K, Chong S, Chandrasekharappa S, Mullikin J, Liu PP. Genomic Landscape of Patients with Germline RUNX1 Variants and Familial Platelet Disorder with Myeloid Malignancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524290. [PMID: 36789433 PMCID: PMC9928034 DOI: 10.1101/2023.01.17.524290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Germline RUNX1 mutations lead to familial platelet disorder with associated myeloid malignancies (FPDMM), which is characterized by thrombocytopenia and a life-long risk (35-45%) of hematological malignancies. We recently launched a longitudinal natural history study for patients with FPDMM at the NIH Clinical Center. Among 29 families with research genomic data, 28 different germline RUNX1 variants were detected. Besides missense mutations enriched in Runt homology domain and loss-of-function mutations distributed throughout the gene, splice-region mutations and large deletions were detected in 6 and 7 families, respectively. In 24 of 54 (44.4%) non-malignant patients, somatic mutations were detected in at least one of the clonal hematopoiesis of indeterminate potential (CHIP) genes or acute myeloid leukemia (AML) driver genes. BCOR was the most frequently mutated gene (in 9 patients), and multiple BCOR mutations were identified in 4 patients. Mutations in 7 other CHIP or AML driver genes ( DNMT3A, TET2, NRAS, SETBP1, SF3B1, KMT2C , and LRP1B ) were also found in more than one non-malignant patient. Moreover, three unrelated patients (one with myeloid malignancy) carried somatic mutations in NFE2 , which regulates erythroid and megakaryocytic differentiation. Sequential sequencing data from 19 patients demonstrated dynamic changes of somatic mutations over time, and stable clones were more frequently found in elderly patients. In summary, there are diverse types of germline RUNX1 mutations and high frequency of somatic mutations related to clonal hematopoiesis in patients with FPDMM. Monitoring dynamic changes of somatic mutations prospectively will benefit patients’ clinical management and reveal mechanisms for progression to myeloid malignancies. Key Points Comprehensive genomic profile of patients with FPDMM with germline RUNX1 mutations. Rising clonal hematopoiesis related secondary mutations that may lead to myeloid malignancies.
Collapse
|
10
|
Avagyan S, Shimamura A. Lessons From Pediatric MDS: Approaches to Germline Predisposition to Hematologic Malignancies. Front Oncol 2022; 12:813149. [PMID: 35356204 PMCID: PMC8959480 DOI: 10.3389/fonc.2022.813149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric myelodysplastic syndromes (MDS) often raise concern for an underlying germline predisposition to hematologic malignancies, referred to as germline predisposition herein. With the availability of genetic testing, it is now clear that syndromic features may be lacking in patients with germline predisposition. Many genetic lesions underlying germline predisposition may also be mutated somatically in de novo MDS and leukemias, making it critical to distinguish their germline origin. The verification of a suspected germline predisposition informs therapeutic considerations, guides monitoring pre- and post-treatment, and allows for family counseling. Presentation of MDS due to germline predisposition is not limited to children and spans a wide age range. In fact, the risk of MDS may increase with age in many germline predisposition conditions and can present in adults who lack classical stigmata in their childhood. Furthermore, germline predisposition associated with DDX41 mutations presents with older adult-onset MDS. Although a higher proportion of pediatric patients with MDS will have a germline predisposition, the greater number of MDS diagnoses in adult patients may result in a larger overall number of those with an underlying germline predisposition. In this review, we present a framework for the evaluation of germline predisposition to MDS across all ages. We discuss characteristics of personal and family history, clinical exam and laboratory findings, and integration of genetic sequencing results to assist in the diagnostic evaluation. We address the implications of a diagnosis of germline predisposition for the individual, for their care after MDS therapy, and for family members. Studies on MDS with germline predisposition have provided unique insights into the pathogenesis of hematologic malignancies and mechanisms of somatic genetic rescue vs. disease progression. Increasing recognition in adult patients will inform medical management and may provide potential opportunities for the prevention or interception of malignancy.
Collapse
Affiliation(s)
- Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Molecular Pathogenesis in Myeloid Neoplasms with Germline Predisposition. Life (Basel) 2021; 12:life12010046. [PMID: 35054439 PMCID: PMC8779845 DOI: 10.3390/life12010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Myeloid neoplasms with germline predisposition have recently been added as distinct provisional entities in the 2017 revision of the World Health Organization’s classification of tumors of hematopoietic and lymphatic tissue. Individuals with germline predisposition have increased risk of developing myeloid neoplasms—mainly acute myeloid leukemia and myelodysplastic syndrome. Although the incidence of myeloid neoplasms with germline predisposition remains poorly defined, these cases provide unique and important insights into the biology and molecular mechanisms of myeloid neoplasms. Knowledge of the regulation of the germline genes and their interactions with other genes, proteins, and the environment, the penetrance and clinical presentation of inherited mutations, and the longitudinal dynamics during the process of disease progression offer models and tools that can further our understanding of myeloid neoplasms. This knowledge will eventually translate to improved disease sub-classification, risk assessment, and development of more effective therapy. In this review, we will use examples of these disorders to illustrate the key molecular pathways of myeloid neoplasms.
Collapse
|
12
|
Friend P, Mahon SM. Myeloid Malignancies: Recognizing the Risk of Germline Predisposition and Supporting Patients and Families. Clin J Oncol Nurs 2021; 25:519-522. [PMID: 34533515 DOI: 10.1188/21.cjon.519-522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is increasing recognition of the role of inheritance in myeloid malignancies. Differentiating germline from somatic variants in a hematologic malignancy is challenging but important. Oncology nurses need to be knowledgeable about the germline risk associated with myeloid malignancies; the inherited risk is well established and has implications for affected individuals as well as family members who may be at risk for malignancy themselves or who are being evaluated to serve as a related donor for allogeneic hematopoietic stem cell transplantation.
Collapse
|
13
|
Andrés‐Zayas C, Suárez‐González J, Rodríguez‐Macías G, Dorado N, Osorio S, Font P, Carbonell D, Chicano M, Muñiz P, Bastos M, Kwon M, Díez‐Martín JL, Buño I, Martínez‐Laperche C. Clinical utility of targeted next-generation sequencing for the diagnosis of myeloid neoplasms with germline predisposition. Mol Oncol 2021; 15:2273-2284. [PMID: 33533142 PMCID: PMC8410541 DOI: 10.1002/1878-0261.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
Myeloid neoplasms (MN) with germline predisposition (MNGP) are likely to be more common than currently appreciated. Many of the genes involved in MNGP are also recurrently mutated in sporadic MN. Therefore, routine analysis of gene panels by next-generation sequencing provides an effective approach to detect germline variants with clinical significance in patients with hematological malignancies. Gene panel sequencing was performed in 88 consecutive and five nonconsecutive patients with MN diagnosis. Disease-causing germline mutations in CEBPα, ASXL1, TP53, MPL, GATA2, DDX41, and ETV6 genes were identified in nine patients. Six out of the nine patients with germline variants had a strong family history. These patients presented great heterogeneity in the age of diagnosis and phenotypic characteristics. In our study, there were families in which all the affected members presented the same subtype of disease, whereas members of other families presented various disease phenotypes. This intrafamiliar heterogeneity suggests that the acquisition of particular somatic variants may drive the evolution of the disease. This approach enabled high-throughput detection of MNGP in patients with MN diagnosis, which is of great relevance for both the patients themselves and the asymptomatic mutation carriers within the family. It is crucial to make a proper diagnosis of these patients to provide them with the most suitable treatment, follow-up, and genetic counseling.
Collapse
Affiliation(s)
- Cristina Andrés‐Zayas
- Genomics UnitGregorio Marañón General University HospitalGregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
| | - Julia Suárez‐González
- Genomics UnitGregorio Marañón General University HospitalGregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
| | | | - Nieves Dorado
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Santiago Osorio
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Patricia Font
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Diego Carbonell
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - María Chicano
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Paula Muñiz
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Mariana Bastos
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Mi Kwon
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - José Luis Díez‐Martín
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
- Department of MedicineSchool of MedicineComplutense University of MadridSpain
| | - Ismael Buño
- Genomics UnitGregorio Marañón General University HospitalGregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
- Department of Cell BiologySchool of MedicineComplutense University of MadridSpain
| | - Carolina Martínez‐Laperche
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| |
Collapse
|
14
|
Review of guidelines for the identification and clinical care of patients with genetic predisposition for hematological malignancies. Fam Cancer 2021; 20:295-303. [PMID: 34057692 PMCID: PMC8484082 DOI: 10.1007/s10689-021-00263-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/13/2021] [Indexed: 11/23/2022]
Abstract
Since WHO has recognized myeloid neoplasms with germline predisposition as a new entity in 2016, it has become increasingly clear that diagnosing familial leukemia has critical implications for both the patient and his/her family, and that interdisciplinary teams of hematologists and clinical geneticists should provide care for this specific patient group. Here, we summarize consensus criteria for the identification and screening of patients with genetic predisposition for hematologic malignancies, as provided by different working groups, e.g. by the Nordic MDS group and the AACR. In addition to typical clinical features, results from targeted deep sequencing may point to a genetic predisposition. We review strategies to distinguish somatic and germline variants and discuss recommendations for genetic analyses aiming to identify the underlying genetic variant that should follow established quality criteria to detect both SNVs and CNVs and to determine the pathogenicity of genetic variants. To enhance the knowledge about hematologic neoplasms with germline predisposition we recommend archiving clinical and genetic data and archiving them in international registries.
Collapse
|
15
|
RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv 2021; 4:1131-1144. [PMID: 32208489 DOI: 10.1182/bloodadvances.2019000901] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/03/2020] [Indexed: 01/07/2023] Open
Abstract
First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.
Collapse
|
16
|
High frequency of germline RUNX1 mutations in patients with RUNX1-mutated AML. Blood 2021; 135:1882-1886. [PMID: 32315381 DOI: 10.1182/blood.2019003357] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
RUNX1 is mutated in ∼10% of adult acute myeloid leukemia (AML). Although most RUNX1 mutations in this disease are believed to be acquired, they can also be germline. Indeed, germline RUNX1 mutations result in the well-described autosomal-dominant familial platelet disorder with predisposition to hematologic malignancies (RUNX1-FPD, FPD/AML, FPDMM); ∼44% of affected individuals progress to AML or myelodysplastic syndromes. Using the Leucegene RUNX1 AML patient group, we sought to investigate the proportion of germline vs acquired RUNX1 mutations in this cohort. Our results showed that 30% of RUNX1 mutations in our AML cohort are germline. Molecular profiling revealed higher frequencies of NRAS mutations and other mutations known to activate various signaling pathways in these patients with RUNX1 germline-mutated AML. Moreover, 2 patients (mother and son) had co-occurrence of RUNX1 and CEBPA germline mutations, with variable AML disease onset at 59 and 27 years, respectively. Together, these data suggest a higher than anticipated frequency of germline RUNX1 mutations in the Leucegene cohort and further highlight the importance of testing for RUNX1 mutations in instances in which allogeneic stem cell transplantation using a related donor is envisioned.
Collapse
|
17
|
Hypoplastic Myelodysplastic Syndromes: Just an Overlap Syndrome? Cancers (Basel) 2021; 13:cancers13010132. [PMID: 33401595 PMCID: PMC7795441 DOI: 10.3390/cancers13010132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Hypoplastic myelodysplastic syndromes (hMDS) represent a diagnostic conundrum. They share morphologic and clinical features of both MDS (dysplasia, genetic lesions and cytopenias) and aplastic anemia (AA; i.e., hypocellularity and autoimmunity) and are not comprised in the last WHO classification. In this review we recapitulate the main clinical, pathogenic and therapeutic aspects of hypo-MDS and discuss why they deserve to be distinguished from normo/hypercellular MDS and AA. We conclude that hMDS may present in two phenotypes: one more proinflammatory and autoimmune, more similar to AA, responding to immunosuppression; and one MDS-like dominated by genetic lesions, suppression of immune surveillance, and tumor escape, more prone to leukemic evolution. Abstract Myelodysplasias with hypocellular bone marrow (hMDS) represent about 10–15% of MDS and are defined by reduced bone marrow cellularity (i.e., <25% or an inappropriately reduced cellularity for their age in young patients). Their diagnosis is still an object of debate and has not been clearly established in the recent WHO classification. Clinical and morphological overlaps with both normo/hypercellular MDS and aplastic anemia include cytopenias, the presence of marrow hypocellularity and dysplasia, and cytogenetic and molecular alterations. Activation of the immune system against the hematopoietic precursors, typical of aplastic anemia, is reckoned even in hMDS and may account for the response to immunosuppressive treatment. Finally, the hMDS outcome seems more favorable than that of normo/hypercellular MDS patients. In this review, we analyze the available literature on hMDS, focusing on clinical, immunological, and molecular features. We show that hMDS pathogenesis and clinical presentation are peculiar, albeit in-between aplastic anemia (AA) and normo/hypercellular MDS. Two different hMDS phenotypes may be encountered: one featured by inflammation and immune activation, with increased cytotoxic T cells, increased T and B regulatory cells, and better response to immunosuppression; and the other, resembling MDS, where T and B regulatory/suppressor cells prevail, leading to genetic clonal selection and an increased risk of leukemic evolution. The identification of the prevailing hMDS phenotype might assist treatment choice, inform prognosis, and suggest personalized monitoring.
Collapse
|
18
|
Brown AL, Hiwase DK. What's germane in the germline? Finding clinically relevant germline variants in myeloid neoplasms from tumor only screening. Leuk Res 2020; 96:106431. [PMID: 32771235 DOI: 10.1016/j.leukres.2020.106431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Devendra K Hiwase
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
19
|
Beck RC, Kim AS, Goswami RS, Weinberg OK, Yeung CCS, Ewalt MD. Molecular/Cytogenetic Education for Hematopathology Fellows. Am J Clin Pathol 2020; 154:149-177. [PMID: 32444878 DOI: 10.1093/ajcp/aqaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES At a discussion on molecular/cytogenetic education for hematopathology fellows at the 2018 Society for Hematopathology Program Directors Meeting, consensus was that fellows should understand basic principles and indications for and limitations of molecular/cytogenetic testing used in routine practice. Fellows should also be adept at integrating results of such testing for rendering a final diagnosis. To aid these consensus goals, representatives from the Society for Hematopathology and the Association for Molecular Pathology formed a working group to devise a molecular/cytogenetic curriculum for hematopathology fellow education. CURRICULUM SUMMARY The curriculum includes a primer on cytogenetics and molecular techniques. The bulk of the curriculum reviews the molecular pathology of individual malignant hematologic disorders, with applicable molecular/cytogenetic testing for each and following the 2017 World Health Organization classification of hematologic neoplasms. Benign hematologic disorders and bone marrow failure syndromes are also discussed briefly. Extensive tables are used to summarize genetics of individual disorders and appropriate methodologies. CONCLUSIONS This curriculum provides an overview of the current understanding of the molecular biology of hematologic disorders and appropriate ancillary testing for their evaluation. The curriculum may be used by program directors for training hematopathology fellows or by practicing hematopathologists.
Collapse
Affiliation(s)
- Rose C Beck
- Department of Pathology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH (Society for Hematopathology Representative)
| | - Annette S Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (Association for Molecular Pathology Representative)
| | - Rashmi S Goswami
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Olga K Weinberg
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - Cecilia C S Yeung
- Department of Pathology, University of Washington, and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mark D Ewalt
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
20
|
Brown AL, Hahn CN, Scott HS. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood 2020; 136:24-35. [PMID: 32430494 PMCID: PMC7332898 DOI: 10.1182/blood.2019000937] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recognition that germline mutations can predispose individuals to blood cancers, often presenting as secondary leukemias, has largely been driven in the last 20 years by studies of families with inherited mutations in the myeloid transcription factors (TFs) RUNX1, GATA2, and CEBPA. As a result, in 2016, classification of myeloid neoplasms with germline predisposition for each of these and other genes was added to the World Health Organization guidelines. The incidence of germline mutation carriers in the general population or in various clinically presenting patient groups remains poorly defined for reasons including that somatic mutations in these genes are common in blood cancers, and our ability to distinguish germline (inherited or de novo) and somatic mutations is often limited by the laboratory analyses. Knowledge of the regulation of these TFs and their mutant alleles, their interaction with other genes and proteins and the environment, and how these alter the clinical presentation of patients and their leukemias is also incomplete. Outstanding questions that remain for patients with these germline mutations or their treating clinicians include: What is the natural course of the disease? What other symptoms may I develop and when? Can you predict them? Can I prevent them? and What is the best treatment? The resolution of many of the remaining clinical and biological questions and effective evidence-based treatment of patients with these inherited mutations will depend on worldwide partnerships among patients, clinicians, diagnosticians, and researchers to aggregate sufficient longitudinal clinical and laboratory data and integrate these data with model systems.
Collapse
MESH Headings
- Age of Onset
- Blood Cell Count
- CCAAT-Enhancer-Binding Proteins/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Disease Management
- Early Detection of Cancer
- Forecasting
- GATA2 Transcription Factor/genetics
- Genes, Neoplasm
- Genetic Counseling
- Genetic Predisposition to Disease
- Germ-Line Mutation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Myelodysplastic Syndromes/genetics
- Neoplasms, Second Primary/genetics
- Penetrance
- Prognosis
Collapse
Affiliation(s)
- Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
21
|
Schratz KE, Armanios M. Cancer and myeloid clonal evolution in the short telomere syndromes. Curr Opin Genet Dev 2020; 60:112-118. [PMID: 32276199 DOI: 10.1016/j.gde.2020.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/01/2023]
Abstract
The short telomere syndromes are considered the most common premature aging disorders. Although studies in genetically modified cells and animal models have suggested telomere dysfunction may promote genome instability, only a minority of humans with inherited loss-of-function mutations in telomerase and related genes develop cancer. Solid tumors are overall rare, and the vast majority of cancers are bone marrow-derived with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) comprising three-quarter of cases. In contrast to young short telomere syndrome patients who develop aplastic anemia, MDS and AML are usually diagnosed in adults who have milder short telomere defects. Here, we dissect the mechanisms by which these two bone marrow failure states, aplastic anemia and MDS-AML, evolve in the setting of varying degrees of telomere shortening. We discuss the implications of these observations for patient care as well as for understanding the genetics and biology of age-related myeloid clonal evolution.
Collapse
Affiliation(s)
- Kristen E Schratz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Telomere Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Telomere Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
22
|
Nordic Guidelines for Germline Predisposition to Myeloid Neoplasms in Adults: Recommendations for Genetic Diagnosis, Clinical Management and Follow-up. Hemasphere 2019; 3:e321. [PMID: 31976490 PMCID: PMC6924562 DOI: 10.1097/hs9.0000000000000321] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Myeloid neoplasms (MNs) with germline predisposition have recently been recognized as novel entities in the latest World Health Organization (WHO) classification for MNs. Individuals with MNs due to germline predisposition exhibit increased risk for the development of MNs, mainly acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Setting the diagnosis of MN with germline predisposition is of crucial clinical significance since it may tailor therapy, dictate the selection of donor for allogeneic hematopoietic stem cell transplantation (allo-HSCT), determine the conditioning regimen, enable relevant prophylactic measures and early intervention or contribute to avoid unnecessary or even harmful medication. Finally, it allows for genetic counseling and follow-up of at-risk family members. Identification of these patients in the clinical setting is challenging, as there is no consensus due to lack of evidence regarding the criteria defining the patients who should be tested for these conditions. In addition, even in cases with a strong suspicion of a MN with germline predisposition, no standard diagnostic algorithm is available. We present the first version of the Nordic recommendations for diagnostics, surveillance and management including considerations for allo-HSCT for patients and carriers of a germline mutation predisposing to the development of MNs.
Collapse
|
23
|
Brown AL, Hahn C, Hiwase D, Godley LA, Scott HS. Correct application of variant classification guidelines in germline RUNX1 mutated disorders to assist clinical diagnosis. Leuk Lymphoma 2019; 61:246-247. [DOI: 10.1080/10428194.2019.1680842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Anna L. Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
- Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Christopher Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
- Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Devendra Hiwase
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network Adelaide, Adelaide, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lucy A. Godley
- Department of Medicine, Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA
- Section of Hematology/Oncology, The University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
- Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
24
|
Clinical, histopathological and molecular characterization of hypoplastic myelodysplastic syndrome. Leukemia 2019; 33:2495-2505. [PMID: 30940907 DOI: 10.1038/s41375-019-0457-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 11/08/2022]
Abstract
Diagnostic criteria for hypoplastic myelodysplasic syndrome (h-MDS) have not been clearly established, making the differential diagnosis from other bone marrow failure syndromes (BMF) challenging. In this study, we aimed to delineate clinical, histopathological, and molecular features of h-MDS, based on a large and well-annotated cohort of patients with bone marrow (BM) hypocellularity. The study included 534 consecutive adult patients with hypocellular BM (278 h-MDS and 136 aplastic anemia), and 727 with normo- or hypercellular MDS (n-MDS). Comparison of clinical features of patients with h-MDS as defined by BM cellularity ≤25% (n = 204) or reduced age-adjusted cellularity (n = 74) did not reveal significant differences. We developed a diagnostic score to discriminate h-MDS from non-malignant BMF based on histological and cytological variables with the highest specificity for MDS (h-score). The information from chromosomal abnormalities and somatic mutation patterns was then integrated into a cyto-histological/genetic score (hg-score). This score was able to segregate two groups of h-MDS with a significantly different risk of blast progression (P < 0.001). The integration of cyto-histological and genetic features in adult patients with hypocellular BM facilitated segregation into two distinct groups, one with clinical and genetic features highly consistent with myeloid neoplasm, and one with features more consistent with non-malignant BMF.
Collapse
|
25
|
Cheah JJC, Brown AL, Schreiber AW, Feng J, Babic M, Moore S, Young CC, Fine M, Phillips K, Guandalini M, Wilson P, Poplawski N, Hahn CN, Scott HS. A novel germline SAMD9L mutation in a family with ataxia-pancytopenia syndrome and pediatric acute lymphoblastic leukemia. Haematologica 2019; 104:e318-e321. [PMID: 30923096 DOI: 10.3324/haematol.2018.207316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jesse J C Cheah
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA.,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA.,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA.,School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA
| | - Andreas W Schreiber
- School of Biological Sciences, University of Adelaide, Adelaide, SA.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA
| | - Jinghua Feng
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA
| | - Milena Babic
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA
| | - Sarah Moore
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA
| | - Chun-Chun Young
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA
| | - Miriam Fine
- Adult Genetics Unit, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA
| | - Michael Guandalini
- Children's Health Queensland Hospital and Health Service, Lady Cilento Children's Hospital Brisbane, Brisbane, QLD
| | - Peter Wilson
- Children's Cancer Services, Lady Cilento Children's Hospital Brisbane, Brisbane, QLD
| | - Nicola Poplawski
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA.,Adult Genetics Unit, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA.,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA .,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA.,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA.,School of Biological Sciences, University of Adelaide, Adelaide, SA.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
26
|
Kim B, Lee H, Jang J, Kim SJ, Lee ST, Cheong JW, Lyu CJ, Min YH, Choi JR. Targeted next generation sequencing can serve as an alternative to conventional tests in myeloid neoplasms. PLoS One 2019; 14:e0212228. [PMID: 30840646 PMCID: PMC6402635 DOI: 10.1371/journal.pone.0212228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/29/2019] [Indexed: 12/30/2022] Open
Abstract
The 2016 World Health Organization classification introduced a number of genes with somatic mutations and a category for germline predisposition syndromes in myeloid neoplasms. We have designed a comprehensive next-generation sequencing assay to detect somatic mutations, translocations, and germline mutations in a single assay and have evaluated its clinical utility in patients with myeloid neoplasms. Extensive and specified bioinformatics analyses were undertaken to detect single nucleotide variations, FLT3 internal tandem duplication, genic copy number variations, and chromosomal copy number variations. This enabled us to maximize the clinical utility of the assay, and we concluded that, as a single assay, it can be a good supplement for many conventional tests, including Sanger sequencing, RT-PCR, and cytogenetics. Of note, we found that 8.4-11.6% of patients with acute myeloid leukemia and 12.9% of patients with myeloproliferative neoplasms had germline mutations, and most were heterozygous carriers for autosomal recessive marrow failure syndromes. These patients often did not respond to standard chemotherapy, suggesting that germline predisposition may have distinct and significant clinical implications.
Collapse
Affiliation(s)
- Borahm Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeonah Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Jieun Jang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo-Jeong Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (STL); (JRC)
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chuhl Joo Lyu
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo Hong Min
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (STL); (JRC)
| |
Collapse
|
27
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
28
|
MDS overlap disorders and diagnostic boundaries. Blood 2019; 133:1086-1095. [PMID: 30670443 DOI: 10.1182/blood-2018-10-844670] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal diseases defined by clinical, morphologic, and genetic features often shared by related myeloid disorders. The diagnostic boundaries between these diseases can be arbitrary and not necessarily reflective of underlying disease biology or outcomes. In practice, measures that distinguish MDS from related disorders may be difficult to quantify and can vary as disease progression occurs. Patients may harbor findings that are not consistent with a single diagnostic category. Several overlap disorders have been formally described, such as the myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). These disorders are characterized by hematopoietic dysplasia with increased proliferation of monocytes, neutrophils, or platelets. They may have mutational profiles that distinguish them from the disorders they resemble and reflect important differences in pathophysiology. MDS also shares diagnostic borders with other diseases. For example, aplastic anemia and hypoplastic MDS can be difficult to distinguish in patients with pancytopenia and bone marrow hypocellularity. Genetic features may help in this regard, because they can identify differences in prognosis and risk of progression. The boundary between MDS and secondary acute myeloid leukemia (sAML) is arbitrarily defined and has been redefined over the years. Genetic studies have demonstrated that sAML clones can precede clinical progression from MDS by many months, suggesting that MDS with excess blasts could be viewed as an overlap between a dysplastic bone marrow failure syndrome and an oligoblastic leukemia. This review will describe the diagnostic boundaries between MDS, MDS/MPNs, sAML, clonal hematopoiesis of indeterminate potential, clonal cytopenia of undetermined significance, and aplastic anemia and how genetic approaches may help to better define them.
Collapse
|
29
|
Arber DA. The 2016 WHO classification of acute myeloid leukemia: What the practicing clinician needs to know. Semin Hematol 2018; 56:90-95. [PMID: 30926096 DOI: 10.1053/j.seminhematol.2018.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 01/11/2023]
Abstract
In 2016 a revision of the World Health Organization (WHO) classification of acute myeloid leukemia (AML) was introduced that included changes to several disease categories. The WHO approach results in disease categories that are defined by a combination of clinical, morphologic, immunophenotypic, and genetic features in an attempt to define clinically relevant, biologic entities. This review summarizes the WHO approach as well as the priority of specific features for disease classification. Changes to specific categories, including AML with myelodysplasia-related changes, AML with mutated NPM1, AML with biallelic mutations of CEBPA and erythroleukemia are summarized. The importance of additional gene mutations as well as germline predisposition in AML is also reviewed.
Collapse
Affiliation(s)
- Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL.
| |
Collapse
|
30
|
Kallen ME, Dulau-Florea A, Wang W, Calvo KR. Acquired and germline predisposition to bone marrow failure: Diagnostic features and clinical implications. Semin Hematol 2018; 56:69-82. [PMID: 30573048 DOI: 10.1053/j.seminhematol.2018.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022]
Abstract
Bone marrow failure and related syndromes are rare disorders characterized by ineffective bone marrow hematopoiesis and peripheral cytopenias. Although many are associated with characteristic clinical features, recent advances have shown a more complicated picture with a spectrum of broad and overlapping phenotypes and imperfect genotype-phenotype correlations. Distinguishing acquired from inherited forms of marrow failure can be challenging, but is of crucial importance given differences in the risk of disease progression to myelodysplastic syndrome, acute myeloid leukemia, and other malignancies, as well as the potential to genetically screen relatives and select the appropriate donor if hematopoietic stem cell transplantation becomes necessary. Flow cytometry patterns in combination with morphology, cytogenetics, and history can help differentiate several diagnostic marrow failure and/or insufficiency entities and guide genetic testing. Herein we review several overlapping acquired marrow failure entities including aplastic anemia, hypoplastic myelodysplasia, and large granular lymphocyte disorders; and several bone marrow disorders with germline predisposition, including GATA2 deficiency, CTLA4 haploinsufficiency, dyskeratosis congenita and/or telomeropathies, Fanconi anemia, Shwachman-Diamond syndrome, congenital amegakaryocytic thrombocytopenia, severe congenital neutropenia, and Diamond-Blackfan anemia with a focus on advances related to pathophysiology, diagnosis, and management.
Collapse
Affiliation(s)
- Michael E Kallen
- National Cancer Institute, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Alina Dulau-Florea
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Weixin Wang
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA.
| |
Collapse
|
31
|
Germline alterations in a consecutive series of acute myeloid leukemia. Leukemia 2018; 32:2282-2285. [DOI: 10.1038/s41375-018-0049-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 12/31/2022]
|
32
|
Tawana K, Drazer MW, Churpek JE. Universal genetic testing for inherited susceptibility in children and adults with myelodysplastic syndrome and acute myeloid leukemia: are we there yet? Leukemia 2018; 32:1482-1492. [PMID: 29483711 DOI: 10.1038/s41375-018-0051-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/06/2018] [Accepted: 01/11/2018] [Indexed: 12/12/2022]
Abstract
Comprehensive genomic profiling of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) cases have enabled the detection and differentiation of driver and subclonal mutations, informed risk prognostication, and defined targeted therapies. These insights into disease biology, and management have made multigene-acquired mutation testing a critical part of the diagnostic assessment of patients with sporadic MDS and AML. More recently, our understanding of the role of an increasing number of inherited genetic factors on MDS/AML risk and management has rapidly progressed. In recognition of the growing impact of this field, clinical guidelines and disease classification systems for both MDS and AML have recently incorporated familial MDS/AML predisposition syndromes into their diagnostic algorithms. In this perspective piece, we contemplate the advantages, disadvantages, and barriers that would need to be overcome to incorporate inherited MDS/AML genetic testing into the upfront molecular diagnostic work-up of every MDS/AML patient. For centers already performing panel-based tumor-only testing, including genes associated with familial forms of MDS/AML (e.g., RUNX1, CEBPA, GATA2, TP53), we advocate optimizing these tests to detect all types of germline variants in these genes and moving toward upfront paired tumor/germline testing to maximize detection and streamline patient care.
Collapse
Affiliation(s)
- Kiran Tawana
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Michael W Drazer
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Jane E Churpek
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA. .,Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
33
|
Myeloid neoplasms with germline DDX41 mutation. Int J Hematol 2017; 106:163-174. [PMID: 28547672 DOI: 10.1007/s12185-017-2260-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
|
34
|
Desai AV, Perpich M, Godley LA. Clinical Assessment and Diagnosis of Germline Predisposition to Hematopoietic Malignancies: The University of Chicago Experience. Front Pediatr 2017; 5:252. [PMID: 29270394 PMCID: PMC5723667 DOI: 10.3389/fped.2017.00252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Abstract
With the increasing use of clinical genomics to guide cancer treatment and management, there is a rise in the identification of germline cancer predisposition syndromes and a critical need for patients with germline findings to be referred for surveillance and care. The University of Chicago Hematopoietic Malignancies Cancer Risk Team has established a unique approach to patient care for individuals with hereditary hematologic malignancies through close communication and coordination between our pediatric and adult programs. Dedicated program members, including physicians, nurses, genetic counselors, and clinical research assistants, screen individuals for cancer predisposition at initial diagnosis through survivorship, in addition to testing individuals with an established family history of a cancer predisposition syndrome. Sample procurement, such as a skin biopsy at the time of bone marrow aspirate/biopsy in individuals with a positive screen, has facilitated timely identification of clinical germline findings or has served as a pipeline for translational research. Our integrated translational research program has led to the identification of novel syndromes in collaboration with other investigators, which have been incorporated iteratively into our clinical pipeline. Individuals are referred for clinical assessment based on personal and family history, identification of variants in susceptibility genes via molecular tumor testing, and during evaluation for matched related allogeneic stem cell transplantation. Upon referral, genetic counseling incorporates education with mindfulness of the psychosocial issues surrounding germline testing at different ages. The training and role of genetic counselors continues to grow, with the discovery of new predisposition syndromes, in the age of improved molecular diagnostics and new models for service delivery, such as telemedicine. With the identification of new syndromes that may predispose individuals to hematologic malignancies, surveillance guidelines will continue to evolve and may differ between children and adults. Thus, utilizing a collaborative approach between the pediatric and adult oncology programs facilitates care within families and optimizes the diagnosis and care of individuals with cancer predisposition syndromes.
Collapse
Affiliation(s)
- Ami V Desai
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, The University of Chicago, Chicago, IL, United States
| | - Melody Perpich
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, The University of Chicago, Chicago, IL, United States
| | - Lucy A Godley
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States.,Department of Human Genetics, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|