1
|
Li J, Bledsoe JR. Inherited bone marrow failure syndromes and germline predisposition to myeloid neoplasia: A practical approach for the pathologist. Semin Diagn Pathol 2023; 40:429-442. [PMID: 37507252 DOI: 10.1053/j.semdp.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The diagnostic work up and surveillance of germline disorders of bone marrow failure and predisposition to myeloid malignancy is complex and involves correlation between clinical findings, laboratory and genetic studies, and bone marrow histopathology. The rarity of these disorders and the overlap of clinical and pathologic features between primary and secondary causes of bone marrow failure, acquired aplastic anemia, and myelodysplastic syndrome may result in diagnostic uncertainty. With an emphasis on the pathologist's perspective, we review diagnostically useful features of germline disorders including Fanconi anemia, Shwachman-Diamond syndrome, telomere biology disorders, severe congenital neutropenia, GATA2 deficiency, SAMD9/SAMD9L diseases, Diamond-Blackfan anemia, and acquired aplastic anemia. We discuss the distinction between baseline morphologic and genetic findings of these disorders and features that raise concern for the development of myelodysplastic syndrome.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, United States.
| |
Collapse
|
2
|
Giri VN, Morgan TM, Morris DS, Berchuck JE, Hyatt C, Taplin ME. Genetic testing in prostate cancer management: Considerations informing primary care. CA Cancer J Clin 2022; 72:360-371. [PMID: 35201622 DOI: 10.3322/caac.21720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inherited genetic mutations can significantly increase the risk for prostate cancer (PC), may be associated with aggressive disease and poorer outcomes, and can have hereditary cancer implications for men and their families. Germline genetic testing (hereditary cancer genetic testing) is now strongly recommended for patients with advanced/metastatic PC, particularly given the impact on targeted therapy selection or clinical trial options, with expanded National Comprehensive Cancer Network guidelines and endorsement from multiple professional societies. Furthermore, National Comprehensive Cancer Network guidelines recommend genetic testing for men with PC across the stage and risk spectrum and for unaffected men at high risk for PC based on family history to identify hereditary cancer risk. Primary care is a critical field in which providers evaluate men at an elevated risk for PC, men living with PC, and PC survivors for whom germline testing may be indicated. Therefore, there is a critical need to engage and educate primary care providers regarding the role of genetic testing and the impact of results on PC screening, treatment, and cascade testing for family members of affected men. This review highlights key aspects of genetic testing in PC, the role of clinicians, with a focus on primary care, the importance of obtaining a comprehensive family history, current germline testing guidelines, and the impact on precision PC care. With emerging evidence and guidelines, clinical pathways are needed to facilitate integrated genetic education, testing, and counseling services in appropriately selected patients. There is also a need for providers to understand the field of genetic counseling and how best to collaborate to enhance multidisciplinary patient care.
Collapse
Affiliation(s)
- Veda N Giri
- Department of Medical Oncology, Cancer Biology, and Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Todd M Morgan
- Department of Urology, University of Michigan Urology Cancer Center, Ann Arbor, Michigan
| | | | - Jacob E Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Colette Hyatt
- Familial Cancer Program, University of Vermont Medical Center, Burlington, Vermont
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
3
|
Kim HY, Kim HJ, Kim SH. Genetics and genomics of bone marrow failure syndrome. Blood Res 2022; 57:86-92. [PMID: 35483932 PMCID: PMC9057661 DOI: 10.5045/br.2022.2022056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Inherited bone marrow failure syndrome (IBMFS) is a group of clinically heterogeneous disorders characterized by significant hematological cytopenias of one or more hematopoietic cell lineages and is associated with an increased risk of cancer. The genetic etiology of IBMFS includes germline mutations impacting several key biological processes, such as DNA repair, telomere biology, and ribosome biogenesis, which may cause four major syndromes: Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome. Although the clinical features of some patients may be typical of a particular IBMFS, overlapping and atypical clinical manifestations and variable penetrance pose diagnostic challenges. Here, we review the clinical and genetic features of the major forms of IBMFS and discuss their molecular genetic diagnosis. Next-generation sequencing-based gene panel testing or whole exome sequencing will help elucidate the genetic causes and underlying mechanisms of this genetically heterogeneous group of diseases.
Collapse
Affiliation(s)
- Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Tawana K, Brown AL, Churpek JE. Integrating germline variant assessment into routine clinical practice for myelodysplastic syndrome and acute myeloid leukaemia: current strategies and challenges. Br J Haematol 2021; 196:1293-1310. [PMID: 34658019 DOI: 10.1111/bjh.17855] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 12/28/2022]
Abstract
Over the last decade, the field of hereditary haematological malignancy syndromes (HHMSs) has gained increasing recognition among clinicians and scientists worldwide. Germline mutations now account for almost 10% of adult and paediatric myelodysplasia/acute myeloid leukaemia (MDS/AML). As our ability to diagnose HHMSs has improved, we are now faced with the challenges of integrating these advances into routine clinical practice for patients with MDS/AML and how to optimise management and surveillance of patients and asymptomatic carriers. Discoveries of novel syndromes combined with clinical, genetic and epigenetic profiling of tumour samples, have highlighted unique patterns of disease evolution across HHMSs. Despite these advances, causative lesions are detected in less than half of familial cases and evidence-based guidelines are often lacking, suggesting there is much still to learn. Future research efforts are needed to sustain current momentum within the field, led not only by advancing genetic technology but essential collaboration between clinical and academic communities.
Collapse
Affiliation(s)
- Kiran Tawana
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jane E Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, The University of Wisconsin, Madison, WI, USA
| |
Collapse
|
5
|
Yanir AD, Krauss A, Stein J, Steinberg-Shemer O, Gilad O, Lotan SN, Dgany O, Krasnov T, Kodman Y, Feuerstein T, Mardoukh J, Fishman H, Geron I, Yacobovich J, Tamary H, Birger Y, Avrahami G, Izraeli S, Birenboim SB. Pediatric myelodysplastic syndrome with inflammatory manifestations: Diagnosis, genetics, treatment, and outcome. Pediatr Blood Cancer 2021; 68:e29138. [PMID: 34019335 DOI: 10.1002/pbc.29138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inflammatory manifestations (IM) are well described in adult patients with myelodysplastic syndrome (MDS), but the presentation is highly variable and no standardized treatment exists. This phenomenon is rarely reported in children. As more pediatric patients are hematopoietic stem cell transplantation (HSCT) candidates, the role of anti-inflammatory treatment in relation to HSCT should be defined. PROCEDURE Here, we report a series of five children from a tertiary center. We describe the clinical presentation, molecular findings, and treatment options. RESULTS All patients presented with advanced MDS with blast percentages ranging 10-30%, all had severe IM. One patient had MDS secondary to severe congenital neutropenia, the other four patients had presumably primary MDS. All four were found to harbor a PTPN11 gene driver mutation, which is found in 35% of cases of juvenile myelomonocytic leukemia (JMML). The mutation was present in the myeloid lineage but not in T lymphocytes. Three had symptoms of Behcet's-like disease with trisomy 8 in their bone marrow. All patients were treated with anti-inflammatory medications (mainly systemic steroids) in an attempt to bring them to allogeneic HSCT in a better clinical condition. All demonstrated clinical improvement as well as regression in their MDS status post anti-inflammatory treatment. All have recovered from both MDS and their inflammatory symptoms post HSCT. CONCLUSION Primary pediatric MDS with IM is driven in some cases by PTPN11 mutations, and might be on the clinical spectrum of JMML. Anti-inflammatory treatment may reverse MDS progression and improve the outcome of subsequent HSCT.
Collapse
Affiliation(s)
- Asaf D Yanir
- BMT Unit, Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviva Krauss
- BMT Unit, Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jerry Stein
- BMT Unit, Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Steinberg-Shemer
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oded Gilad
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Noy Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Tatyana Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Yona Kodman
- Immune Phenotype Laboratory, Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Tamar Feuerstein
- Immune Phenotype Laboratory, Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Jacques Mardoukh
- Cytogenetic Laboratory, Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hila Fishman
- Pediatric Leukemia Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Geron
- Pediatric Leukemia Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hannah Tamary
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehudit Birger
- Pediatric Leukemia Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Avrahami
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai Izraeli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Pediatric Leukemia Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Barzilai Birenboim
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Friend P, Mahon SM. Myeloid Malignancies: Recognizing the Risk of Germline Predisposition and Supporting Patients and Families. Clin J Oncol Nurs 2021; 25:519-522. [PMID: 34533515 DOI: 10.1188/21.cjon.519-522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is increasing recognition of the role of inheritance in myeloid malignancies. Differentiating germline from somatic variants in a hematologic malignancy is challenging but important. Oncology nurses need to be knowledgeable about the germline risk associated with myeloid malignancies; the inherited risk is well established and has implications for affected individuals as well as family members who may be at risk for malignancy themselves or who are being evaluated to serve as a related donor for allogeneic hematopoietic stem cell transplantation.
Collapse
|
7
|
Quessada J, Cuccuini W, Saultier P, Loosveld M, Harrison CJ, Lafage-Pochitaloff M. Cytogenetics of Pediatric Acute Myeloid Leukemia: A Review of the Current Knowledge. Genes (Basel) 2021; 12:924. [PMID: 34204358 PMCID: PMC8233729 DOI: 10.3390/genes12060924] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
Pediatric acute myeloid leukemia is a rare and heterogeneous disease in relation to morphology, immunophenotyping, germline and somatic cytogenetic and genetic abnormalities. Over recent decades, outcomes have greatly improved, although survival rates remain around 70% and the relapse rate is high, at around 30%. Cytogenetics is an important factor for diagnosis and indication of prognosis. The main cytogenetic abnormalities are referenced in the current WHO classification of acute myeloid leukemia, where there is an indication for risk-adapted therapy. The aim of this article is to provide an updated review of cytogenetics in pediatric AML, describing well-known WHO entities, as well as new subgroups and germline mutations with therapeutic implications. We describe the main chromosomal abnormalities, their frequency according to age and AML subtypes, and their prognostic relevance within current therapeutic protocols. We focus on de novo AML and on cytogenetic diagnosis, including the practical difficulties encountered, based on the most recent hematological and cytogenetic recommendations.
Collapse
Affiliation(s)
- Julie Quessada
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
| | - Wendy Cuccuini
- Hematological Cytogenetics Laboratory, Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris (APHP), 75010 Paris, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| | - Paul Saultier
- APHM, La Timone Children’s Hospital Department of Pediatric Hematology and Oncology, 13005 Marseille, France;
- Faculté de Médecine, Aix Marseille University, INSERM, INRAe, C2VN, 13005 Marseille, France
| | - Marie Loosveld
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
- Hematology Laboratory, Timone Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group Translational and Clinical Research Institute, Newcastle University Centre for Cancer Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Marina Lafage-Pochitaloff
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| |
Collapse
|
8
|
Fazio F, Quintini M, Carmosino I, Matteucci C, Miulli E, Pellanera F, Lucani B, Ansuinelli M, Breccia M, Mecucci C, Latagliata R. New dead/H-box helicase gene (ddx41) mutation in an Italian family with recurrent leukemia. Leuk Lymphoma 2021; 62:2280-2283. [PMID: 33836623 DOI: 10.1080/10428194.2021.1910689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Francesca Fazio
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Martina Quintini
- Cytogenetics and Molecular Medicine CIB UNIT, Hematology, University of Perugia, Perugia, Italy
| | - Ida Carmosino
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Caterina Matteucci
- Cytogenetics and Molecular Medicine CIB UNIT, Hematology, University of Perugia, Perugia, Italy
| | - Eleonora Miulli
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Fabrizia Pellanera
- Cytogenetics and Molecular Medicine CIB UNIT, Hematology, University of Perugia, Perugia, Italy
| | - Benedetta Lucani
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Michela Ansuinelli
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Cristina Mecucci
- Cytogenetics and Molecular Medicine CIB UNIT, Hematology, University of Perugia, Perugia, Italy
| | - Roberto Latagliata
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy.,Hematology, Belcolle Hospital, Viterbo, Italy
| |
Collapse
|
9
|
ETV6: A Candidate Gene for Predisposition to "Blend Pedigrees"? A Case Report from the NEXT-Famly Clinical Trial. Case Rep Hematol 2020; 2020:2795656. [PMID: 32148977 PMCID: PMC7057007 DOI: 10.1155/2020/2795656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background The identification of germline mutations in familial leukemia predisposition genes by next generation sequencing is of pivotal importance. Lately, some “blend pedigrees” characterized by both solid and hematologic malignancies have been described. Some genes were recognized as related to this double predisposition, while the involvement of others is still a matter of debate. ETV6 was associated with hematologic malignancies, in particular myeloid malignancies, and recently described as mutated also in oncologic patients. No clear evidences in its involvement in blend pedigrees are known. Case Presentation. We present our recent experience in the identification of an ETV6 was associated with hematologic malignancies, in particular myeloid malignancies, and recently described as mutated also in oncologic patients. No clear evidences in its involvement in blend pedigrees are known. ETV6 was associated with hematologic malignancies, in particular myeloid malignancies, and recently described as mutated also in oncologic patients. No clear evidences in its involvement in blend pedigrees are known. ETV6 was associated with hematologic malignancies, in particular myeloid malignancies, and recently described as mutated also in oncologic patients. No clear evidences in its involvement in blend pedigrees are known. Conclusion This evidence supports the involvement of ETV6 in the predisposition to both solid and hematologic neoplasia and the importance of the investigation of the noncoding regions of the genes as recently suggested by different expert groups.ETV6 was associated with hematologic malignancies, in particular myeloid malignancies, and recently described as mutated also in oncologic patients. No clear evidences in its involvement in blend pedigrees are known.
Collapse
|
10
|
Bochtler T, Haag GM, Schott S, Kloor M, Krämer A, Müller-Tidow C. Hematological Malignancies in Adults With a Family Predisposition. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:848-854. [PMID: 30722840 DOI: 10.3238/arztebl.2018.0848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/08/2017] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Some hematological malignancies arise in persons with a hereditary predisposition. The hereditary nature of these diseases often goes unrecognized, particularly when symptoms begin in adulthood. METHODS This review is based on pertinent publications retrieved by a selective search in PubMed. RESULTS Many rare germline mutations have been identified that lead to acute leukemia and myelodysplastic syndromes. They differ from one another with respect to their penetrance, the age of onset of disease, and the clinical manifestations. In view of this heterogeneity, no uniform recommendations have yet been formulated for their diagnosis and treatment. The most common types of hematological malig- nancy with a hereditary predisposition are traceable to an underlying disturbance of DNA damage response and repair mechanisms and to mutations of hematological transcription factors. With regard to the selection of patients for testing, the con- sensus is that cytogenetic and molecular-genetic findings that are suspect for a hereditary predisposition, such as CEBPA and RUNX1 mutations, call for further investigation, as do any clinical features that are typical of tumor syndromes, or a positive family history. The knowledge that a hereditary predisposition may be present is highly stressful for patients; testing should only be carried out after the patient has received genetic counseling. The confirmation of a germline mutation always requires a comparison with healthy tissue. A fibroblast culture is recom- mended as the gold standard for this purpose. CONCLUSION The detection of a hereditary predisposition to hematological neoplasia is often relevant to treatment and follow-up care: for example, it may motivate early allogeneic stem-cell transplantation. Counseling, predictive testing, and follow-up care are available to the patients' relatives as well.
Collapse
Affiliation(s)
- Tilmann Bochtler
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital and Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) Heidelberg, Germany; Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany; Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; Section Head of Translational Gynecology, University Women's Hospital Heidelberg, German Cancer Consortium (DKTK), Heidelberg, Germany; Institute of Pathology, Department of Applied Tumor Biology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
MDS overlap disorders and diagnostic boundaries. Blood 2019; 133:1086-1095. [PMID: 30670443 DOI: 10.1182/blood-2018-10-844670] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal diseases defined by clinical, morphologic, and genetic features often shared by related myeloid disorders. The diagnostic boundaries between these diseases can be arbitrary and not necessarily reflective of underlying disease biology or outcomes. In practice, measures that distinguish MDS from related disorders may be difficult to quantify and can vary as disease progression occurs. Patients may harbor findings that are not consistent with a single diagnostic category. Several overlap disorders have been formally described, such as the myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). These disorders are characterized by hematopoietic dysplasia with increased proliferation of monocytes, neutrophils, or platelets. They may have mutational profiles that distinguish them from the disorders they resemble and reflect important differences in pathophysiology. MDS also shares diagnostic borders with other diseases. For example, aplastic anemia and hypoplastic MDS can be difficult to distinguish in patients with pancytopenia and bone marrow hypocellularity. Genetic features may help in this regard, because they can identify differences in prognosis and risk of progression. The boundary between MDS and secondary acute myeloid leukemia (sAML) is arbitrarily defined and has been redefined over the years. Genetic studies have demonstrated that sAML clones can precede clinical progression from MDS by many months, suggesting that MDS with excess blasts could be viewed as an overlap between a dysplastic bone marrow failure syndrome and an oligoblastic leukemia. This review will describe the diagnostic boundaries between MDS, MDS/MPNs, sAML, clonal hematopoiesis of indeterminate potential, clonal cytopenia of undetermined significance, and aplastic anemia and how genetic approaches may help to better define them.
Collapse
|
12
|
Chisholm KM, Xu M, Davis B, Ogi A, Pacheco MC, Geddis AE, Tsuchiya KD, Rutledge JC. Evaluation of the Utility of Bone Marrow Morphology and Ancillary Studies in Pediatric Patients Under Surveillance for Myelodysplastic Syndrome. Am J Clin Pathol 2018; 149:499-513. [PMID: 29659673 DOI: 10.1093/ajcp/aqy007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To evaluate the utility of flow cytometry, karyotype, and a fluorescence in situ hybridization (FISH) panel in screening children for myelodysplastic syndrome (MDS). METHODS Bone marrow morphology, flow cytometry, karyotype, and FISH reports from 595 bone marrow specimens (246 patients) were analyzed. RESULTS By morphology, 8.7% of cases demonstrated at least unilineage dysplasia and/or increased blasts. Flow cytometry identified definitive abnormalities in 2.8% of cases, all of which had abnormal morphology. Of the 42 cases (7.2%) with acquired karyotypic abnormalities, 26 had no morphologic dysplasia. With a 98.2% concordance between karyotype and MDS FISH, FISH only identified two additional cases, both with low-level (<4%) abnormalities. Peripheral blood count evaluation only identified the absence of thrombocytopenia to correlate with an absence of abnormal ancillary tests. CONCLUSIONS The combination of morphologic evaluation and karyotype with judicious use of flow cytometry and MDS FISH is sufficient to detect abnormalities for these indications.
Collapse
Affiliation(s)
- Karen M Chisholm
- Department of Laboratories, Seattle, WA
- Department of Laboratory Medicine, University of Washington, Seattle
| | - Min Xu
- Department of Laboratories, Seattle, WA
- Department of Laboratory Medicine, University of Washington, Seattle
| | | | - Amy Ogi
- Department of Laboratories, Seattle, WA
| | - M Cristina Pacheco
- Department of Laboratories, Seattle, WA
- Department of Pathology, University of Washington, Seattle
| | - Amy E Geddis
- Laboratories Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington, Seattle
| | - Karen D Tsuchiya
- Department of Laboratories, Seattle, WA
- Department of Laboratory Medicine, University of Washington, Seattle
| | - Joe C Rutledge
- Department of Laboratories, Seattle, WA
- Department of Laboratory Medicine, University of Washington, Seattle
| |
Collapse
|
13
|
McReynolds LJ, Savage SA. Pediatric leukemia susceptibility disorders: manifestations and management. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:242-250. [PMID: 29222262 PMCID: PMC6142612 DOI: 10.1182/asheducation-2017.1.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The clinical manifestations of inherited susceptibility to leukemia encompass a wide phenotypic range, including patients with certain congenital anomalies or early-onset myelodysplastic syndrome (MDS) and some with no obvious medical problems until they develop leukemia. Leukemia susceptibility syndromes occur as a result of autosomal dominant, autosomal recessive, or X-linked recessive inheritance, or de novo occurrence, of germline pathogenic variants in DNA repair, ribosome biogenesis, telomere biology, hematopoietic transcription factors, tumor suppressors, and other critical cellular processes. Children and adults with cytopenias, MDS, dysmorphic features, notable infectious histories, immunodeficiency, certain dermatologic findings, lymphedema, unusual sensitivity to radiation or chemotherapy, or acute leukemia with a family history of early-onset cancer, pulmonary fibrosis, or alveolar proteinosis should be thoroughly evaluated for a leukemia susceptibility syndrome. Genetic testing and other diagnostic modalities have improved our ability to identify these patients and to counsel them and their family members for subsequent disease risk, cancer surveillance, and therapeutic interventions. Herein, the leukemia susceptibility syndromes are divided into 3 groups: (1) those associated with an underlying inherited bone marrow failure syndrome, (2) disorders in which MDS precedes leukemia development, and (3) those with a risk primarily of leukemia. Although children are the focus of this review, it is important for clinicians to recognize that inherited susceptibility to cancer can present at any age, even in older adults; genetic counseling is essential and prompt referral to experts in each syndrome is strongly recommended.
Collapse
Affiliation(s)
- Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| |
Collapse
|