1
|
Iliadis S, Papanikolaou NA. Reactive Oxygen Species Mechanisms that Regulate Protein-Protein Interactions in Cancer. Int J Mol Sci 2024; 25:9255. [PMID: 39273204 PMCID: PMC11395503 DOI: 10.3390/ijms25179255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Reactive oxygen species (ROS) are produced during cellular metabolism and in response to environmental stress. While low levels of ROS play essential physiological roles, excess ROS can damage cellular components, leading to cell death or transformation. ROS can also regulate protein interactions in cancer cells, thereby affecting processes such as cell growth, migration, and angiogenesis. Dysregulated interactions occur via various mechanisms, including amino acid modifications, conformational changes, and alterations in complex stability. Understanding ROS-mediated changes in protein interactions is crucial for targeted cancer therapies. In this review, we examine the role that ROS mechanisms in regulating pathways through protein-protein interactions.
Collapse
Affiliation(s)
- Stavros Iliadis
- Laboratory of Biological Chemistry, Department of Medicine, Section of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki School of Medicine, 54124 Thessaloniki, Macedonia, Greece
| | - Nikolaos A Papanikolaou
- Laboratory of Biological Chemistry, Department of Medicine, Section of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki School of Medicine, 54124 Thessaloniki, Macedonia, Greece
| |
Collapse
|
2
|
Tsartsalis S, Sleven H, Fancy N, Wessely F, Smith AM, Willumsen N, Cheung TKD, Rokicki MJ, Chau V, Ifie E, Khozoie C, Ansorge O, Yang X, Jenkyns MH, Davey K, McGarry A, Muirhead RCJ, Debette S, Jackson JS, Montagne A, Owen DR, Miners JS, Love S, Webber C, Cader MZ, Matthews PM. A single nuclear transcriptomic characterisation of mechanisms responsible for impaired angiogenesis and blood-brain barrier function in Alzheimer's disease. Nat Commun 2024; 15:2243. [PMID: 38472200 PMCID: PMC10933340 DOI: 10.1038/s41467-024-46630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased β-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.
Collapse
Affiliation(s)
- Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Hannah Sleven
- Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Sherrington Road, University of Oxford, Oxford, UK
| | - Nurun Fancy
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Frank Wessely
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - Amy M Smith
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Nanet Willumsen
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - To Ka Dorcas Cheung
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Michal J Rokicki
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - Vicky Chau
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Eseoghene Ifie
- Neuropathology Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Combiz Khozoie
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Olaf Ansorge
- Neuropathology Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Xin Yang
- Department of Brain Sciences, Imperial College London, London, UK
- St Edmund Hall, University of Oxford, Oxford, UK
| | - Marion H Jenkyns
- Department of Brain Sciences, Imperial College London, London, UK
| | - Karen Davey
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Aisling McGarry
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Robert C J Muirhead
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team ELEANOR, UMR 1219, 33000, Bordeaux, France
| | - Johanna S Jackson
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Axel Montagne
- Centre for Clinical Brain Sciences, and UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol, Bristol, UK
| | - Caleb Webber
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Sherrington Road, University of Oxford, Oxford, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute Centre, Imperial College London, London, UK.
- St Edmund Hall, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Saltzman AB, Chan DW, Holt MV, Wang J, Jaehnig EJ, Anurag M, Singh P, Malovannaya A, Kim BJ, Ellis MJ. Kinase inhibitor pulldown assay (KiP) for clinical proteomics. Clin Proteomics 2024; 21:3. [PMID: 38225548 PMCID: PMC10790396 DOI: 10.1186/s12014-023-09448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024] Open
Abstract
Protein kinases are frequently dysregulated and/or mutated in cancer and represent essential targets for therapy. Accurate quantification is essential. For breast cancer treatment, the identification and quantification of the protein kinase ERBB2 is critical for therapeutic decisions. While immunohistochemistry (IHC) is the current clinical diagnostic approach, it is only semiquantitative. Mass spectrometry-based proteomics offers quantitative assays that, unlike IHC, can be used to accurately evaluate hundreds of kinases simultaneously. The enrichment of less abundant kinase targets for quantification, along with depletion of interfering proteins, improves sensitivity and thus promotes more effective downstream analyses. Multiple kinase inhibitors were therefore deployed as a capture matrix for kinase inhibitor pulldown (KiP) assays designed to profile the human protein kinome as broadly as possible. Optimized assays were initially evaluated in 16 patient derived xenograft models (PDX) where KiP identified multiple differentially expressed and biologically relevant kinases. From these analyses, an optimized single-shot parallel reaction monitoring (PRM) method was developed to improve quantitative fidelity. The PRM KiP approach was then reapplied to low quantities of proteins typical of yields from core needle biopsies of human cancers. The initial prototype targeting 100 kinases recapitulated intrinsic subtyping of PDX models obtained from comprehensive proteomic and transcriptomic profiling. Luminal and HER2 enriched OCT-frozen patient biopsies subsequently analyzed through KiP-PRM also clustered by subtype. Finally, stable isotope labeled peptide standards were developed to define a prototype clinical method. Data are available via ProteomeXchange with identifiers PXD044655 and PXD046169.
Collapse
Affiliation(s)
- Alexander B Saltzman
- Mass Spectrometry Proteomics Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Doug W Chan
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew V Holt
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Junkai Wang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Purba Singh
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Johnson & Johnson, Springhouse, PA, USA
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- AstraZeneca, Gaithersburg, MD, 20878, USA.
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Chen J, Zhu Y, Zhao D, Zhang L, Zhang J, Xiao Y, Wu Q, Wang Y, Zhan Q. Co-targeting FAK and Gli1 inhibits the tumor-associated macrophages-released CCL22-mediated esophageal squamous cell carcinoma malignancy. MedComm (Beijing) 2023; 4:e381. [PMID: 37846367 PMCID: PMC10576977 DOI: 10.1002/mco2.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 10/18/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a frequently seen esophageal tumor type in China. Activation of signaling proteins and relevant molecular mechanisms in ESCC are partially explored, impairing the antitumor efficiency of targeted therapy in ESCC treatment. Tumor-associated macrophages (TAMs)-released C-C motif chemokine 22 (CCL22) can activate intratumoral focal adhesion kinase (FAK), thus promoting the progression of ESCC. Here, we demonstrated that highly secreted CCL22 by TAMs (CCL22-positive TAMs) induced ESCC cell stemness and invasion through facilitating transcriptional activity of intratumoral glioma-associated oncogene 1 (Gli1), a downstream effector for Hedgehog (HH) pathway. Mechanistically, FAK-activated protein kinase B (AKT) mediated Gli1 phosphorylation at its Ser112/Thr115/Ser116 sites and released Gli1 from suppressor of fused homolog, the endogenous inhibitor of Gli1 to activate downstream stemness-associated factors, such as SRY-box transcription factor 2 (SOX2), Nanog homeobox (Nanog), or POU class 5 homeobox (OCT4). Furthermore, inhibition of FAK activity by VS-4718, the FAK inhibitor, enhanced antitumor effect of GDC-0449, the HH inhibitor, both in xenografted models and in vitro assays. Clinically, CCL22/Gli1 axis is used to evaluate ESCC prognosis. Overall, our study establishes the communication of FAK with HH pathway and offers the novel mechanism related to Gli1 activation independent of Smoothened as well as the rationale for the anti-ESCC combination treatment.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Peking University International Cancer InstitutePeking UniversityBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
- Soochow University Cancer InstituteSuzhouChina
| | - Yanmeng Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Di Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Peking University International Cancer InstitutePeking UniversityBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Lingyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Jing Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yuanfan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Peking University International Cancer InstitutePeking UniversityBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Peking University International Cancer InstitutePeking UniversityBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Peking University International Cancer InstitutePeking UniversityBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
- Soochow University Cancer InstituteSuzhouChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
5
|
Ventura E, Belfiore A, Iozzo RV, Giordano A, Morrione A. Progranulin and EGFR modulate receptor-like tyrosine kinase sorting and stability in mesothelioma cells. Am J Physiol Cell Physiol 2023; 325:C391-C405. [PMID: 37399497 PMCID: PMC10393324 DOI: 10.1152/ajpcell.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Progranulin is a growth factor with pro-tumorigenic activity. We recently demonstrated that in mesothelioma, progranulin regulates cell migration, invasion, adhesion, and in vivo tumor formation by modulating a complex signaling network involving multiple receptor tyrosine kinase (RTK)s. Progranulin biological activity relies on epidermal growth factor receptor (EGFR) and receptor-like tyrosine kinase (RYK), a co-receptor of the Wnt signaling pathway, which are both required for progranulin-induced downstream signaling. However, the molecular mechanism regulating the functional interaction among progranulin, EGFR, and RYK are not known. In this study, we demonstrated that progranulin directly interacted with RYK by specific enzyme-linked immunosorbent assay (ELISA) (KD = 0.67). Using immunofluorescence and proximity ligation assay, we further discovered that progranulin and RYK colocalized in mesothelioma cells in distinct vesicular compartments. Notably, progranulin-dependent downstream signaling was sensitive to endocytosis inhibitors, suggesting that it could depend on RYK or EGFR internalization. We discovered that progranulin promoted RYK ubiquitination and endocytosis preferentially through caveolin-1-enriched pathways, and modulated RYK stability. Interestingly, we also showed that in mesothelioma cells, RYK complexes with the EGFR, contributing to the regulation of RYK stability. Collectively, our results suggest a complex regulation of RYK trafficking/activity in mesothelioma cells, a process that is concurrently regulated by exogenous soluble progranulin and EGFR. NEW & NOTEWORTHY The growth factor progranulin has pro-tumorigenic activity. In mesothelioma, progranulin signaling is mediated by EGFR and RYK, a co-receptor of the Wnt signaling. However, the molecular mechanisms regulating progranulin action are not well defined. Here, we demonstrated that progranulin binds RYK and regulates its ubiquitination, internalization, and trafficking. We also uncovered a role for EGFR in modulating RYK stability. Overall, these results highlight a complex modulation of RYK activity by progranulin and EGFR in mesothelioma.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
| | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
- Department of Biomedical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
6
|
Ventura E, Xie C, Buraschi S, Belfiore A, Iozzo RV, Giordano A, Morrione A. Complexity of progranulin mechanisms of action in mesothelioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:333. [PMID: 36471440 PMCID: PMC9720952 DOI: 10.1186/s13046-022-02546-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mesothelioma is an aggressive disease with limited therapeutic options. The growth factor progranulin plays a critical role in several cancer models, where it regulates tumor initiation and progression. Recent data from our laboratories have demonstrated that progranulin and its receptor, EphA2, constitute an oncogenic pathway in bladder cancer by promoting motility, invasion and in vivo tumor formation. Progranulin and EphA2 are expressed in mesothelioma cells but their mechanisms of action are not well defined. In addition, there are no data establishing whether the progranulin/EphA2 axis is tumorigenic for mesothelioma cells. METHODS The expression of progranulin in various mesothelioma cell lines derived from all major mesothelioma subtypes was examined by western blots on cell lysates, conditioned media and ELISA assays. The biological roles of progranulin, EphA2, EGFR, RYK and FAK were assessed in vitro by immunoblots, human phospho-RTK antibody arrays, pharmacological (specific inhibitors) and genetic (siRNAs, shRNAs, CRISPR/Cas9) approaches, motility, invasion and adhesion assays. In vivo tumorigenesis was determined by xenograft models. Focal adhesion turnover was evaluated biochemically using focal adhesion assembly/disassembly assays and immunofluorescence analysis with focal adhesion-specific markers. RESULTS In the present study we show that progranulin is upregulated in various mesothelioma cell lines covering all mesothelioma subtypes and is an important regulator of motility, invasion, adhesion and in vivo tumor formation. However, our results indicate that EphA2 is not the major functional receptor for progranulin in mesothelioma cells, where progranulin activates a complex signaling network including EGFR and RYK. We further characterized progranulin mechanisms of action and demonstrated that progranulin, by modulating FAK activity, regulates the kinetic of focal adhesion disassembly, a critical step for cell motility. CONCLUSION Collectively, our results highlight the complexity of progranulin oncogenic signaling in mesothelioma, where progranulin modulate functional cross-talks between multiple RTKs, thereby suggesting the need for combinatorial therapeutic approaches to improve treatments of this aggressive disease.
Collapse
Affiliation(s)
- Elisa Ventura
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| | - Christopher Xie
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Simone Buraschi
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Antonino Belfiore
- grid.8158.40000 0004 1757 1969Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Renato V. Iozzo
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Antonio Giordano
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA ,grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
7
|
Ohara S, Suda K, Fujino T, Hamada A, Koga T, Nishino M, Chiba M, Shimoji M, Takemoto T, Soh J, Mitsudomi T. Dose-dependence in acquisition of drug tolerant phenotype and high RYK expression as a mechanism of osimertinib tolerance in lung cancer. Lung Cancer 2021; 154:84-91. [PMID: 33631449 DOI: 10.1016/j.lungcan.2021.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Emergence of acquired resistance is almost inevitable during EGFR-tyrosine kinase inhibitor therapy for non-small-cell lung cancer (NSCLC) harboring EGFR mutations. Drug tolerance, a reversible state of drug insensitivity in the early phases of tyrosine kinase inhibitor therapy, is considered to serve as the basis of recurrent disease. Therefore, it is important to elucidate the molecular mechanisms of drug tolerance. MATERIALS AND METHODS Five EGFR-mutated NSCLC cell lines were used in this study. We established drug-tolerant cells (DTCs) via 72 h treatment with osimertinib (600 nM) or afatinib (60 nM). Acquisition of drug tolerance was evaluated by growth inhibitory assay, and the molecular mechanisms of drug tolerance were analyzed by phospho-RTK array. RESULTS DTCs were successfully induced in PC9, HCC4006, and H1975 cells against osimertinib and in PC9 cells against afatinib. We observed that a high drug concentration was required to induce DTCs, and HCC4006 cells become tolerant when a higher dose of afatinib (>180 nM) was used. In the analysis of HCC4006 DTCs against osimertinib, we observed increased receptor-like tyrosine kinase (RYK) expression, and siRNA-mediated RYK knockdown inhibited the proliferation of DTCs. CONCLUSIONS These results suggest that induction of DTCs is dose-dependent, and increased RYK expression was the mechanism of drug tolerance in HCC4006 cells against osimertinib.
Collapse
Affiliation(s)
- Shuta Ohara
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Toshio Fujino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Akira Hamada
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Takamasa Koga
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Masaya Nishino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Masato Chiba
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Masaki Shimoji
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Toshiki Takemoto
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Junichi Soh
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| |
Collapse
|
8
|
Ryk modulates the niche activity of mesenchymal stromal cells by fine-tuning canonical Wnt signaling. Exp Mol Med 2020; 52:1140-1151. [PMID: 32724069 PMCID: PMC8080773 DOI: 10.1038/s12276-020-0477-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
The importance of modulating the intensity of Wnt signaling has been highlighted in various biological models, but their mechanisms remain unclear. In this study, we found that Ryk—an atypical Wnt receptor with a pseudokinase domain—has a Wnt-modulating effect in bone marrow stromal cells to control hematopoiesis-supporting activities. We first found that Ryk is predominantly expressed in the mesenchymal stromal cells (MSCs) of the bone marrow (BM) compared with hematopoietic cells. Downregulation of Ryk in MSCs decreased their clonogenic activity and ability to support self-renewing expansion of primitive hematopoietic progenitors (HPCs) in response to canonical Wnt ligands. In contrast, under high concentrations of Wnt, Ryk exerted suppressive effects on the transactivation of target genes and HPC-supporting effects in MSCs, thus fine-tuning the signaling intensity of Wnt in BM stromal cells. This ability of Ryk to modulate the HPC-supporting niche activity of MSCs was abrogated by induction of deletion mutants of Ryk lacking the intracellular domain or extracellular domain, indicating that the pseudokinase-containing intracellular domain mediates the Wnt-modulating effects in response to extracellular Wnt ligands. These findings indicate that the ability of the BM microenvironment to respond to extracellular signals and support hematopoiesis may be fine-tuned by Ryk via modulation of Wnt signaling intensity to coordinate hematopoietic activity. Steady production of immune and blood cells depends on a signaling protein that helps maintain stable stem cell populations within the bone marrow. Hematopoietic stem cells (HSCs), which give rise to blood cells, reside within a supportive “niche” surrounded by mesenchymal stromal cells (MSCs), with extensive communication between the two populations. Researchers led by Il-Hoan Oh at The Catholic University of Korea, Seoul, have now identified a mechanism that MSCs employ to stabilize the niche environment through fine-tuning the signaling intensity of Wnt. Oh and colleagues focused on a signaling pathway that controls the undifferentiated state of HSCs, and showed that these signals are specifically modulated by an MSC protein known as Ryk. Without Ryk, MSCs can no longer promote HSC proliferation. However, when these signals are excessively strong, Ryk helps suppress proliferation to keep HSC numbers under control.
Collapse
|
9
|
Abstract
Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/β-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.
Collapse
|
10
|
Wang H, Lv Q, Xu Y, Cai Z, Zheng J, Cheng X, Dai Y, Jänne PA, Ambrogio C, Köhler J. An integrative pharmacogenomics analysis identifies therapeutic targets in KRAS-mutant lung cancer. EBioMedicine 2019; 49:106-117. [PMID: 31668570 PMCID: PMC6945285 DOI: 10.1016/j.ebiom.2019.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
Background KRAS mutations are the most frequent oncogenic aberration in lung adenocarcinoma. KRAS mutant isoforms differentially shape tumour biology and influence drug responses. This heterogeneity challenges the development of effective therapies for patients with KRAS-driven non-small cell lung cancer (NSCLC). Methods We developed an integrative pharmacogenomics analysis to identify potential drug targets to overcome MEK/ERK inhibitor resistance in lung cancer cell lines with KRAS(G12C) mutation (n = 12). We validated our predictive in silico results with in vitro models using gene knockdown, pharmacological target inhibition and reporter assays. Findings Our computational analysis identifies casein kinase 2A1 (CSNK2A1) as a mediator of MEK/ERK inhibitor resistance in KRAS(G12C) mutant lung cancer cells. CSNK2A1 knockdown reduces cell proliferation, inhibits Wnt/β-catenin signalling and increases the anti-proliferative effect of MEK inhibition selectively in KRAS(G12C) mutant lung cancer cells. The specific CK2-inhibitor silmitasertib phenocopies the CSNK2A1 knockdown effect and sensitizes KRAS(G12C) mutant cells to MEK inhibition. Interpretation Our study supports the importance of accurate patient stratification and rational drug combinations to gain benefit from MEK inhibition in patients with KRAS mutant NSCLC. We develop a genotype-based strategy that identifies CK2 as a promising co-target in KRAS(G12C) mutant NSCLC by using available pharmacogenomics gene expression datasets. This approach is applicable to other oncogene driven cancers. Fund This work was supported by grants from the National Natural Science Foundation of China, the National Key Research and Development Program of China, the Lung Cancer Research Foundation and a Mildred-Scheel postdoctoral fellowship from the German Cancer Aid Foundation.
Collapse
Affiliation(s)
- Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Qi Lv
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yue Xu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Zhaoqing Cai
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jie Zheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xiaojie Cheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yao Dai
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| | - Chiara Ambrogio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| | - Jens Köhler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| |
Collapse
|
11
|
Huang L, Ji H, Yin L, Niu X, Wang Y, Liu Y, Xuan Q, Li L, Zhang H, Zhou X, Li J, Cui C, Yang Y, An W, Zhang Q. High Expression of Plakoglobin Promotes Metastasis in Invasive Micropapillary Carcinoma of the Breast via Tumor Cluster Formation. J Cancer 2019; 10:2800-2810. [PMID: 31258788 PMCID: PMC6584935 DOI: 10.7150/jca.31411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/06/2019] [Indexed: 01/22/2023] Open
Abstract
Invasive micropapillary carcinoma of the breast (IMPC) is a rare subtype of breast cancer that has a high frequency of lymph node (LN) involvement and metastasis to distant organs. IMPC is characterized by distinct histomorphology and unfavorable prognosis when compared with invasive ductal carcinoma no special type (IDC-NST). However, the underlying molecular mechanisms remain unclear. We reported here that plakoglobin, as a key component in cell adhesion, can promote collective metastasis through facilitating IMPC clusters formation. In comparing the clinicopathological features of 451 IMPC patients and 282 IDC-NST patients, our results showed that tumor emboli were significantly higher in IMPC patients and were associated with a high frequency of metastasis. Both in vitro and in vivo data showed overexpression of plakoglobin in both the cell membrane and the cytoplasm of IMPC clusters. When plakoglobin was knocked down in IMPC cell models, the tumor cell clusters were depolymerized. Using mouse models, we validated the metastatic potential of tumor clusters was higher than single cells in vivo. Further analysis showed that higher expression of plakoglobin was able to promote activation of the PI3K/Akt/Bcl-2 pathway, which might protect the clusters from anoikis. Our data indicate that plakoglobin promotes tumor cluster formation in IMPC and downregulates apoptosis in the cell clusters through activation of PI3K/Akt/Bcl-2 signaling. These results provide a convincing rationale for the high metastatic propensity seen in IMPC.
Collapse
Affiliation(s)
- Lan Huang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Hongfei Ji
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Lei Yin
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Xingjian Niu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yiran Wang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Yang Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| | - Qijia Xuan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Liru Li
- Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaoping Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jingtong Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Chengwei Cui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| |
Collapse
|
12
|
Differential effects, on oncogenic pathway signalling, by derivatives of the HNF4 α inhibitor BI6015. Br J Cancer 2019; 120:488-498. [PMID: 30792535 PMCID: PMC6461897 DOI: 10.1038/s41416-018-0374-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 01/05/2023] Open
Abstract
Background Gastric cancer (GC) is a highly heterogeneous disease with few “targeted” therapeutic options. Previously, we demonstrated involvement of the transcription factor HNF4α in human GC tumours, and the developmental signal mediator, WNT5A, as a prognostic GC biomarker. One previously developed HNF4α antagonist, BI6015, while not advancing beyond preclinical stages, remains useful for studying GC. Methods Here, we characterised the antineoplastic signalling activity of derivatives of BI6015, including transfer of the nitro group from the para position, relative to a methyl group on its benzene ring, to the ortho- and meta positions. We assessed binding efficacy, through surface plasmon resonance and docking studies, while biologic activity was assessed by antimitogenic efficacy against a panel of GC cell lines, and dysregulated transcriptomes, followed by pathway and subpathway analysis. Results The para derivative of BI6105 was found substantially more growth inhibitory, and effective, in downregulating numerous oncogenic signal pathways, including the embryonic cascade WNT. The ortho and meta derivatives, however, failed to downregulate WNT or other embryonic signalling pathways, unable to suppress GC growth. Conclusion Straightforward strategies, employing bioinformatics analyses, to facilitate the effective design and development of “druggable” transcription factor inhibitors, are useful for targeting specific oncogenic signalling pathways, in GC and other cancers.
Collapse
|
13
|
Li L, Cao Y, Zhou H, Li Y, He B, Zhou X, Nie Z, Liang L, Liu Y, Ye L. Knockdown of CCNO decreases the tumorigenicity of gastric cancer by inducing apoptosis. Onco Targets Ther 2018; 11:7471-7481. [PMID: 30464498 PMCID: PMC6208796 DOI: 10.2147/ott.s176252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Recently, Cyclin O (CCNO) has been reported to be a novel protein of the cyclin family. However, the clinical significance and functional roles of CCNO in human cancer, including gastric cancer (GC), remain largely unexplored. In this study, we investigated the clinical and functional roles of CCNO in GC. Methods We analyzed CCNO expression patterns in GC patients. To investigate the role of CCNO in malignancy of GC, we used lentivirus-delivered short hairpin RNA to knockdown CCNO expression in GC cell lines. Then multiparametric high-content screening and MTT incorporation assay were used to assess the cell proliferation capability. Cell apoptosis was detected by flow cytometry and Caspase 3/7 assays. Furthermore, the effect of CCNO on tumorigenicity of GC was also determined in vivo. Finally, microarray analysis was performed to elucidate the molecular mechanisms by which shCCNO inhibited the malignancy of GC cells. Results The analysis from The Cancer Genome Atlas database revealed elevated CCNO mRNA expression in GC tissue than in the adjacent normal tissue. Immunohistochemical studies also showed that stronger cytoplasmic staining of CCNO was detected in GC tissues. Downregulation of CCNO in GC cells efficiently, through infection with the lentivirus-mediated specific short hairpin RNA, could significantly induce cell apoptosis and inhibit the proliferative properties both in vitro and in vivo. Microarray analysis further revealed 652 upregulated genes and 527 downregulated genes in the shCCNO group compared with control, and indicated that CCNO knockdown could inhibit the malignancy of GC cells through inducing genome-wide gene expression changes. Conclusion Our work is the first to reveal that elevated CCNO expression is closely associated with human GC development and that CCNO knockdown could efficiently inhibit the malignant properties of GC cells by inducing cell apoptosis. Therefore, CCNO could be used as a potential biomarker for prognosis or even as a therapeutic target in human GC.
Collapse
Affiliation(s)
- Lan Li
- Department of Emergency, West China Hospital, Sichuan University, Chengdu 610041, China, .,Department of General Practice, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Yu Cao
- Department of Emergency, West China Hospital, Sichuan University, Chengdu 610041, China,
| | - Hourong Zhou
- Department of General Practice, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Yu Li
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Bing He
- Department of Emergency, West China Hospital, Sichuan University, Chengdu 610041, China,
| | - Xia Zhou
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Zhao Nie
- Department of Medical Records and Statistics, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Li Liang
- Medical Department, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Ying Liu
- Department of Emergency, the Hospital affiliated to Southwest Medical University, Sichuan 646000, China
| | - Limin Ye
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang 610041, China
| |
Collapse
|
14
|
Coopes A, Henry CE, Llamosas E, Ford CE. An update of Wnt signalling in endometrial cancer and its potential as a therapeutic target. Endocr Relat Cancer 2018; 25:ERC-18-0112. [PMID: 30093601 DOI: 10.1530/erc-18-0112] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Endometrial cancer is the most common gynaecological malignancy in developed nations, and its prevalence is rising as women defer or decide not to have children and as obesity rises, both key risk factors. Despite this, treatment options remain limited, particularly for advanced or refractory disease. New genomic analyses have revealed distinct mutational profiles with therapeutic and prognostic potential. Wnt signalling, which is pivotal in embryogenesis, healing and homeostasis, is of importance in the endometrium and has been linked to carcinogenesis. This review aims to update and discuss the current evidence for the role of β-catenin dependent and independent Wnt signalling, including the ROR receptors in the endometrium and its potential as a therapeutic target, in light of recent trials of Wnt-targeted therapy in multiple tumour types.
Collapse
Affiliation(s)
- Amy Coopes
- A Coopes, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| | - Claire E Henry
- C Henry, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| | - Estelle Llamosas
- E Llamosas, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| | - Caroline Elizabeth Ford
- C Ford, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| |
Collapse
|
15
|
Aktary Z, Alaee M, Pasdar M. Beyond cell-cell adhesion: Plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget 2018; 8:32270-32291. [PMID: 28416759 PMCID: PMC5458283 DOI: 10.18632/oncotarget.15650] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Plakoglobin (also known as? -catenin) is a member of the Armadillo family of proteins and a paralog of β -catenin. Plakoglobin is a component of both the adherens junctions and desmosomes, and therefore plays a vital role in the regulation of cell-cell adhesion. Similar to β -catenin, plakoglobin is capable of participating in cell signaling in addition to its role in cell-cell adhesion. In this context, β -catenin has a well-documented oncogenic potential as a component of the Wnt signaling pathway. In contrast, while some studies have suggested a tumor promoting activity of plakoglobin in a cell/malignancy specific context, it generally acts as a tumor/metastasis suppressor. How plakoglobin acts as a growth/metastasis inhibitory protein has remained, until recently, unclear. Recent evidence suggests that plakoglobin may suppress tumorigenesis and metastasis by multiple mechanisms, including the suppression of oncogenic signaling, interactions with various proteins involved in tumorigenesis and metastasis, and the regulation of the expression of genes involved in these processes. This review is primarily focused on various mechanisms by which plakoglobin may inhibit tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Zackie Aktary
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Institut Curie, Orsay, France
| | - Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Aznar N, Ear J, Dunkel Y, Sun N, Satterfield K, He F, Kalogriopoulos NA, Lopez-Sanchez I, Ghassemian M, Sahoo D, Kufareva I, Ghosh P. Convergence of Wnt, growth factor, and heterotrimeric G protein signals on the guanine nucleotide exchange factor Daple. Sci Signal 2018; 11:11/519/eaao4220. [PMID: 29487190 DOI: 10.1126/scisignal.aao4220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular proliferation, differentiation, and morphogenesis are shaped by multiple signaling cascades, and their dysregulation plays an integral role in cancer progression. Three cascades that contribute to oncogenic potential are those mediated by Wnt proteins and the receptor Frizzled (FZD), growth factor receptor tyrosine kinases (RTKs), and heterotrimeric G proteins and associated GPCRs. Daple is a guanine nucleotide exchange factor (GEF) for the G protein Gαi Daple also binds to FZD and the Wnt/FZD mediator Dishevelled (Dvl), and it enhances β-catenin-independent Wnt signaling in response to Wnt5a-FZD7 signaling. We identified Daple as a substrate of multiple RTKs and non-RTKs and, hence, as a point of convergence for the three cascades. We found that phosphorylation near the Dvl-binding motif in Daple by both RTKs and non-RTKs caused Daple/Dvl complex dissociation and augmented the ability of Daple to bind to and activate Gαi, which potentiated β-catenin-independent Wnt signals and stimulated epithelial-mesenchymal transition (EMT) similarly to Wnt5a/FZD7 signaling. Although Daple acts as a tumor suppressor in the healthy colon, the concurrent increased abundance of Daple and epidermal growth factor receptor (EGFR) in colorectal tumors was associated with poor patient prognosis. Thus, the Daple-dependent activation of Gαi and the Daple-dependent enhancement of β-catenin-independent Wnt signals are not only stimulated by Wnt5a/FZD7 to suppress tumorigenesis but also hijacked by growth factor-activated RTKs to enhance tumor progression. These findings identify a cross-talk paradigm among growth factor RTKs, heterotrimeric G proteins, and the Wnt/FZD pathway in cancer.
Collapse
Affiliation(s)
- Nicolas Aznar
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jason Ear
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nina Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kendall Satterfield
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fang He
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Debashis Sahoo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Li H, Wang Y, Chen Z, Lu J, Pan J, Yu Y, Zhao Y, Zhang H, Hu T, Liu Q, Yang J. Novel multiple tyrosine kinase inhibitor ponatinib inhibits bFGF-activated signaling in neuroblastoma cells and suppresses neuroblastoma growth in vivo. Oncotarget 2018; 8:5874-5884. [PMID: 27564113 PMCID: PMC5351597 DOI: 10.18632/oncotarget.11580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common pediatric malignancies in children. Abnormal activation of receptor tyrosine kinases contributes to the pathological development of NB. Therefore, targeting tyrosine kinase receptors to cure NB is a promising strategy. Here, we report that a multi-targeted tyrosine kinase inhibitor ponatinib inhibited NB cell proliferation and induced NB cell apoptosis in a dose-dependent manner. In addition, ponatinib suppressed the colony formation ability of NB cells. Mechanistically, ponatinib effectively inhibited the FGFR1-activated signaling pathway. Ponatinib also enhanced the cytotoxic effects of doxorubicin on NB cells. Furthermore, ponatinib demonstrated anti-tumor efficacy in vivo by inhibiting tumor growth in an orthotopic xenograft NB mouse model. In summary, our results showed that ponatinib inhibited NB growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.,The Institute of Skull Base Surgery and Neurooncology at Hunan Province, 410008, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yongfeng Wang
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhenghu Chen
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Jiaxiong Lu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jessie Pan
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ting Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.,The Institute of Skull Base Surgery and Neurooncology at Hunan Province, 410008, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.,The Institute of Skull Base Surgery and Neurooncology at Hunan Province, 410008, China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Cuesta S, Batuecas J, Severin MJ, Funes A, Rosso SB, Pacchioni AM. Role of Wnt/β-catenin pathway in the nucleus accumbens in long-term cocaine-induced neuroplasticity: a possible novel target for addiction treatment. J Neurochem 2016; 140:114-125. [PMID: 27718509 DOI: 10.1111/jnc.13863] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/05/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
Abstract
Cocaine addiction is a chronic relapsing disorder characterized by the loss of control over drug-seeking and taking, and continued drug use regardless of adverse consequences. Despite years of research, effective treatments for psycho-stimulant addiction have not been identified. Persistent vulnerability to relapse arises from a number of long-lasting adaptations in the reward circuitry that mediate the enduring response to the drug. Recently, we reported that the activity of the canonical or Wnt/β-catenin pathway in the prefrontal cortex (PFC) is very important in the early stages of cocaine-induced neuroadaptations. In the present work, our main goal was to elucidate the relevance of this pathway in cocaine-induced long-term neuroadaptations that may underlie relapse. We found that a cocaine challenge, after a period of abstinence, induced an increase in the activity of the pathway which is revealed as an increase in the total and nuclear levels of β-catenin (final effector of the pathway) in the nucleus accumbens (NAcc), together with a decrease in the activity of glycogen synthase kinase 3β (GSK3β). Moreover, we found that the pharmacological modulation of the activity of the pathway has long-term effects on the cocaine-induced neuroplasticity at behavioral and molecular levels. All the results imply that changes in the Wnt/β-catenin pathway effectors are long-term neuroadaptations necessary for the behavioral response to cocaine. Even though more research is needed, the present results introduce the Wnt canonical pathway as a possible target to manage cocaine long-term neuroadaptations.
Collapse
Affiliation(s)
- Santiago Cuesta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina.,Área Toxicología, Departamento de Ciencias de los Alimentos y del Medioambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Batuecas
- Área Toxicología, Departamento de Ciencias de los Alimentos y del Medioambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Maria J Severin
- Área Toxicología, Departamento de Ciencias de los Alimentos y del Medioambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alejandrina Funes
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina.,Área Toxicología, Departamento de Ciencias de los Alimentos y del Medioambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Silvana B Rosso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina.,Área Toxicología, Departamento de Ciencias de los Alimentos y del Medioambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alejandra M Pacchioni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina.,Área Toxicología, Departamento de Ciencias de los Alimentos y del Medioambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
19
|
Aasebø E, Mjaavatten O, Vaudel M, Farag Y, Selheim F, Berven F, Bruserud Ø, Hernandez-Valladares M. Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows. J Proteomics 2016; 145:214-225. [DOI: 10.1016/j.jprot.2016.03.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
|
20
|
van Zuylen WJ, Rawlinson WD, Ford CE. The Wnt pathway: a key network in cell signalling dysregulated by viruses. Rev Med Virol 2016; 26:340-55. [PMID: 27273590 DOI: 10.1002/rmv.1892] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wendy J van Zuylen
- Serology and Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - William D Rawlinson
- Serology and Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Caroline E Ford
- Metastasis Research Group, School of Women's and Children's Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
21
|
Bordonaro M, Shirasawa S, Lazarova DL. In Hyperthermia Increased ERK and WNT Signaling Suppress Colorectal Cancer Cell Growth. Cancers (Basel) 2016; 8:cancers8050049. [PMID: 27187477 PMCID: PMC4880866 DOI: 10.3390/cancers8050049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 05/10/2016] [Indexed: 01/06/2023] Open
Abstract
Although neoplastic cells exhibit relatively higher sensitivity to hyperthermia than normal cells, hyperthermia has had variable success as an anti-cancer therapy. This variable outcome might be due to the fact that cancer cells themselves have differential degrees of sensitivity to high temperature. We hypothesized that the varying sensitivity of colorectal cancer (CRC) cells to hyperthermia depends upon the differential induction of survival pathways. Screening of such pathways revealed that Extracellular Signal-Regulated Kinase (ERK) signaling is augmented by hyperthermia, and the extent of this modulation correlates with the mutation status of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS). Through clonal growth assays, apoptotic analyses and transcription reporter assays of CRC cells that differ only in KRAS mutation status we established that mutant KRAS cells are more sensitive to hyperthermia, as they exhibit sustained ERK signaling hyperactivation and increased Wingless/Integrated (WNT)/beta-catenin signaling. We propose that whereas increased levels of WNT and ERK signaling and a positive feedback between the two pathways is a major obstacle in anti-cancer therapy today, under hyperthermia the hyperinduction of the pathways and their positive crosstalk contribute to CRC cell death. Ascertaining the causative association between types of mutations and hyperthermia sensitivity may allow for a mutation profile-guided application of hyperthermia as an anti-cancer therapy. Since KRAS and WNT signaling mutations are prevalent in CRC, our results suggest that hyperthermia-based therapy might benefit a significant number, but not all, CRC patients.
Collapse
Affiliation(s)
- Michael Bordonaro
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA 18509, USA.
| | - Senji Shirasawa
- Department of Cell Biology, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Darina L Lazarova
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA 18509, USA.
| |
Collapse
|