1
|
Standards for Quantitative Measurement of DNA Damage in Mammalian Cells. Int J Mol Sci 2023; 24:ijms24065427. [PMID: 36982502 PMCID: PMC10051712 DOI: 10.3390/ijms24065427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
As the potential applications of DNA diagnostics continue to expand, there is a need for improved methods and standards for DNA analysis. This report describes several methods that could be considered for the production of reference materials for the quantitative measurement of DNA damage in mammalian cells. With the focus on DNA strand breaks, potentially useful methods for assessing DNA damage in mammalian cells are reviewed. The advantages and limitations of each method, as well as additional concerns with respect to reference material development, are also discussed. In conclusion, we outline strategies for developing candidate DNA damage reference materials that could be adopted by research laboratories in a wide variety of applications.
Collapse
|
2
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
3
|
Kantamneni H, Barkund S, Donzanti M, Martin D, Zhao X, He S, Riman RE, Tan MC, Pierce MC, Roth CM, Ganapathy V, Moghe PV. Shortwave infrared emitting multicolored nanoprobes for biomarker-specific cancer imaging in vivo. BMC Cancer 2020; 20:1082. [PMID: 33172421 PMCID: PMC7654009 DOI: 10.1186/s12885-020-07604-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ability to detect tumor-specific biomarkers in real-time using optical imaging plays a critical role in preclinical studies aimed at evaluating drug safety and treatment response. In this study, we engineered an imaging platform capable of targeting different tumor biomarkers using a multi-colored library of nanoprobes. These probes contain rare-earth elements that emit light in the short-wave infrared (SWIR) wavelength region (900-1700 nm), which exhibits reduced absorption and scattering compared to visible and NIR, and are rendered biocompatible by encapsulation in human serum albumin. The spectrally distinct emissions of the holmium (Ho), erbium (Er), and thulium (Tm) cations that constitute the cores of these nanoprobes make them attractive candidates for optical molecular imaging of multiple disease biomarkers. METHODS SWIR-emitting rare-earth-doped albumin nanocomposites (ReANCs) were synthesized using controlled coacervation, with visible light-emitting fluorophores additionally incorporated during the crosslinking phase for validation purposes. Specifically, HoANCs, ErANCs, and TmANCs were co-labeled with rhodamine-B, FITC, and Alexa Fluor 647 dyes respectively. These Rh-HoANCs, FITC-ErANCs, and 647-TmANCs were further conjugated with the targeting ligands daidzein, AMD3100, and folic acid respectively. Binding specificities of each nanoprobe to distinct cellular subsets were established by in vitro uptake studies. Quantitative whole-body SWIR imaging of subcutaneous tumor bearing mice was used to validate the in vivo targeting ability of these nanoprobes. RESULTS Each of the three ligand-functionalized nanoprobes showed significantly higher uptake in the targeted cell line compared to untargeted probes. Increased accumulation of tumor-specific nanoprobes was also measured relative to untargeted probes in subcutaneous tumor models of breast (4175 and MCF-7) and ovarian cancer (SKOV3). Preferential accumulation of tumor-specific nanoprobes was also observed in tumors overexpressing targeted biomarkers in mice bearing molecularly-distinct bilateral subcutaneous tumors, as evidenced by significantly higher signal intensities on SWIR imaging. CONCLUSIONS The results from this study show that tumors can be detected in vivo using a set of targeted multispectral SWIR-emitting nanoprobes. Significantly, these nanoprobes enabled imaging of biomarkers in mice bearing bilateral tumors with distinct molecular phenotypes. The findings from this study provide a foundation for optical molecular imaging of heterogeneous tumors and for studying the response of these complex lesions to targeted therapy.
Collapse
Affiliation(s)
- Harini Kantamneni
- Department of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Shravani Barkund
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Michael Donzanti
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Daniel Martin
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Xinyu Zhao
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Shuqing He
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Richard E Riman
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854, USA
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Mark C Pierce
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Charles M Roth
- Department of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ, 08854, USA.,Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA.
| | - Prabhas V Moghe
- Department of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ, 08854, USA. .,Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Doroshow DB, Doroshow JH. From the Broad Phase II Trial to Precision Oncology: A Perspective on the Origins of Basket and Umbrella Clinical Trial Designs in Cancer Drug Development. Cancer J 2020; 25:245-253. [PMID: 31335388 PMCID: PMC6658138 DOI: 10.1097/ppo.0000000000000386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncologic phase II trials that evaluate the activity of new therapeutic agents have evolved dramatically over the past 50 years. The standard approach beginning in the late 1960s focused on individual studies that evaluated new anticancer agents against a wide range of both solid and hematopoietic malignancies often in a single "broad phase II trial" that included hundreds of patients; such studies efficiently established the landscape for subsequent development of a specific drug with respect to likely disease focus, toxicity, dose, and schedule. In the 1980s and 1990s, emphasis on histological context drove an explosion in the number of individual phase II trials conducted; despite this increase in trial activity, investigations based on histology per se failed to improve the success rate of new agents brought to the clinic. Over the past 20 years, evolution toward a molecular drug development paradigm has demonstrably improved our ability to select patients more likely to benefit from systemic treatment; simultaneously, technological advances have permitted initial attempts at the rapid assignment of therapy based on predefined molecular characteristics of tumor or germline in broad-based master protocols that are inclusive of many diseases and molecularly characterized disease subsets, akin to but much more sophisticated scientifically than the broad phase II platforms of the past.
Collapse
Affiliation(s)
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Cheung CC, Barnes P, Bigras G, Boerner S, Butany J, Calabrese F, Couture C, Deschenes J, El-Zimaity H, Fischer G, Fiset PO, Garratt J, Geldenhuys L, Gilks CB, Ilie M, Ionescu D, Lim HJ, Manning L, Mansoor A, Riddell R, Ross C, Roy-Chowdhuri S, Spatz A, Swanson PE, Tron VA, Tsao MS, Wang H, Xu Z, Torlakovic EE. Fit-For-Purpose PD-L1 Biomarker Testing For Patient Selection in Immuno-Oncology: Guidelines For Clinical Laboratories From the Canadian Association of Pathologists-Association Canadienne Des Pathologistes (CAP-ACP). Appl Immunohistochem Mol Morphol 2020; 27:699-714. [PMID: 31584451 PMCID: PMC6887625 DOI: 10.1097/pai.0000000000000800] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022]
Abstract
Since 2014, programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) checkpoint inhibitors have been approved by various regulatory agencies for the treatment of multiple cancers including melanoma, lung cancer, urothelial carcinoma, renal cell carcinoma, head and neck cancer, classical Hodgkin lymphoma, colorectal cancer, gastroesophageal cancer, hepatocellular cancer, and other solid tumors. Of these approved drug/disease combinations, a subset also has regulatory agency-approved, commercially available companion/complementary diagnostic assays that were clinically validated using data from their corresponding clinical trials. The objective of this document is to provide evidence-based guidance to assist clinical laboratories in establishing fit-for-purpose PD-L1 biomarker assays that can accurately identify patients with specific tumor types who may respond to specific approved immuno-oncology therapies targeting the PD-1/PD-L1 checkpoint. These recommendations are issued as 38 Guideline Statements that address (i) assay development for surgical pathology and cytopathology specimens, (ii) reporting elements, and (iii) quality assurance (including validation/verification, internal quality assurance, and external quality assurance). The intent of this work is to provide recommendations that are relevant to any tumor type, are universally applicable and can be implemented by any clinical immunohistochemistry laboratory performing predictive PD-L1 immunohistochemistry testing.
Collapse
Affiliation(s)
- Carol C. Cheung
- Laboratory Medicine Program, Division of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
| | - Penny Barnes
- Department of Pathology, Dalhousie University, Halifax, NS
| | | | - Scott Boerner
- Laboratory Medicine Program, Division of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
| | - Jagdish Butany
- Laboratory Medicine Program, Division of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health
- University of Padova Medical School, Padova, Italy
| | | | - Jean Deschenes
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton
| | | | - Gabor Fischer
- Department of Pathology, University of Manitoba, Winnipeg, MB
| | | | | | | | - C. Blake Gilks
- Canadian Immunohistochemistry Quality Control
- Department of Pathology and Laboratory Medicine, University of British Columbia
| | - Marius Ilie
- Laboratory of Clinical and Experimental Pathology
- Hospital-Related Biobank (BB-0033-00025), Université Côte d'Azur, University Hospital Federation OncoAge, Hôpital Pasteur, Nice, France
| | | | - Hyun J. Lim
- Department of Community Health and Epidemiology
| | - Lisa Manning
- Department of Pathology, University of Manitoba, Winnipeg, MB
| | - Adnan Mansoor
- Department of Pathology and Laboratory Medicine, University of Calgary
| | - Robert Riddell
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital
| | | | | | - Alan Spatz
- Department of Pathology, McGill University
- Division of Pathology and Molecular Genetics, McGill University Health Center
- Lady Davis Institute, Jewish General Hospital, Montreal, QC
| | - Paul E. Swanson
- Calgary Laboratory Services, Calgary, AB
- Department of Pathology, University of Washington, School of Medicine, Seattle, WA
| | - Victor A. Tron
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto
| | - Ming-Sound Tsao
- Laboratory Medicine Program, Division of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
| | - Hangjun Wang
- Department of Pathology, McGill University
- Division of Pathology and Molecular Genetics, McGill University Health Center
- Lady Davis Institute, Jewish General Hospital, Montreal, QC
| | - Zhaolin Xu
- Department of Pathology, Dalhousie University, Halifax, NS
| | - Emina E. Torlakovic
- Canadian Immunohistochemistry Quality Control
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan
- Department of Pathology and Laboratory Medicine, Royal University Hospital, Saskatchewan Health Authority, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Ehrenberg AJ, Morales DO, Piergies AMH, Li SH, Tejedor JS, Mladinov M, Mulder J, Grinberg LT. A manual multiplex immunofluorescence method for investigating neurodegenerative diseases. J Neurosci Methods 2020; 339:108708. [PMID: 32243897 PMCID: PMC7269157 DOI: 10.1016/j.jneumeth.2020.108708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Neurodegenerative diseases feature stereotypical deposits of protein aggregates that selectively accumulate in vulnerable cells. The ability to simultaneously localize multiple targets in situ is critical to facilitate discovery and validation of pathogenic molecular pathways. Immunostaining methods enable in situ detection of specific targets. Effective stripping of antibodies, allowing successive rounds of staining while maintaining tissue adhesion and antigen integrity, is the main roadblock for enabling multiplex immunostaining in standard labs. Furthermore, stripping techniques require antibody-specific optimization, validation, and quality control steps. NEW METHOD Aiming to create protocols for multiplex localization of neurodegenerative-related processes, without the need for specialized equipment, we evaluated several antibody stripping techniques. We also recommend quality control steps to validate stripping efficacy and ameliorate concerns of cross-reactivity and false positives based on extensive testing. RESULTS A protocol using β-mercaptoethanol and SDS consistently enables reliable antibody stripping across multiple rounds of staining and minimizes the odds of cross-reactivity while preserving tissue adhesion and antigen integrity in human postmortem tissue. COMPARISON WITH EXISTING METHODS Our proposed method is optimal for standard lab settings and shows consistent efficacy despite the intricacies of suboptimal human postmortem tissue and the need to strip markers bound to highly aggregated proteins. Additionally, it incorporates quality control steps to validate antibody stripping. CONCLUSIONS Multiplex immunofluorescence methods for studying neurodegenerative diseases in human postmortem tissue are feasible even in standard laboratories. Nevertheless, evaluation of stripping parameters during optimization and validation phases of experiments is prudent.
Collapse
Affiliation(s)
- Alexander J Ehrenberg
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA; University of California, Berkeley, Helen Wills Neuroscience Institute; Berkeley, CA, USA; University of California, Berkeley, Dept. of Integrative Biology; Berkeley, CA, USA
| | - Dulce Ovando Morales
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA
| | - Antonia M H Piergies
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA
| | - Song Hua Li
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA
| | - Jorge Santos Tejedor
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA; Karolinska Instituet, Department of Neuroscience, Stockholm, Sweden
| | - Mihovil Mladinov
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA
| | - Jan Mulder
- Karolinska Instituet, Department of Neuroscience, Stockholm, Sweden
| | - Lea T Grinberg
- University of California, San Francisco, Memory and Aging Center, Weill Institute for Neurosciences; San Francisco, CA, USA; University of São Paulo School of Medicine, São Paulo, Brazil; University of California, San Francisco, Global Brain Health Institute; San Francisco, CA, USA.
| |
Collapse
|
7
|
Wilsker DF, Barrett AM, Dull AB, Lawrence SM, Hollingshead MG, Chen A, Kummar S, Parchment RE, Doroshow JH, Kinders RJ. Evaluation of Pharmacodynamic Responses to Cancer Therapeutic Agents Using DNA Damage Markers. Clin Cancer Res 2019; 25:3084-3095. [PMID: 30792217 PMCID: PMC6522288 DOI: 10.1158/1078-0432.ccr-18-2523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/12/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE We sought to examine the pharmacodynamic activation of the DNA damage response (DDR) pathway in tumors following anticancer treatment for confirmation of target engagement. EXPERIMENTAL DESIGN We evaluated the time course and spatial activation of 3 protein biomarkers of DNA damage recognition and repair (γH2AX, pS343-Nbs1, and Rad51) simultaneously in a quantitative multiplex immunofluorescence assay (IFA) to assess DDR pathway activation in tumor tissues following exposure to DNA-damaging agents. RESULTS Because of inherent biological variability, baseline DDR biomarker levels were evaluated in a colorectal cancer microarray to establish clinically relevant thresholds for pharmacodynamic activation. Xenograft-bearing mice and clinical colorectal tumor biopsies obtained from subjects exposed to DNA-damaging therapeutic regimens demonstrated marked intratumor heterogeneity in the timing and extent of DDR biomarker activation due, in part, to the cell-cycle dependency of DNA damage biomarker expression. CONCLUSIONS We have demonstrated the clinical utility of this DDR multiplex IFA in preclinical models and clinical specimens following exposure to multiple classes of cytotoxic agents, DNA repair protein inhibitors, and molecularly targeted agents, in both homologous recombination-proficient and -deficient contexts. Levels exceeding 4% nuclear area positive (NAP) γH2AX, 4% NAP pS343-Nbs1, and 5% cells with ≥5 Rad51 nuclear foci indicate a DDR activation response to treatment in human colorectal cancer tissue. Determination of effect-level cutoffs allows for robust interpretation of biomarkers with significant interpatient and intratumor heterogeneity; simultaneous assessment of biomarkers induced at different phases of the DDR guards against the risk of false negatives due to an ill-timed biopsy.
Collapse
Affiliation(s)
- Deborah F Wilsker
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| | - Allison M Barrett
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Angie B Dull
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Scott M Lawrence
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Alice Chen
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Robert J Kinders
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
8
|
Mehnert JM, Monjazeb AM, Beerthuijzen JMT, Collyar D, Rubinstein L, Harris LN. The Challenge for Development of Valuable Immuno-oncology Biomarkers. Clin Cancer Res 2017; 23:4970-4979. [PMID: 28864725 PMCID: PMC5657536 DOI: 10.1158/1078-0432.ccr-16-3063] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022]
Abstract
The development of immunotherapy is an important breakthrough for the treatment of cancer, with antitumor efficacy observed in a wide variety of tumors. To optimize immunotherapy use, approaches must be developed to identify which patients are likely to achieve benefit. To minimize therapeutic toxicities and costs, understanding the ideal choice and sequencing of the numerous immuno-oncology agents available for individual patients is thus critical, but fraught with challenges. The immune tumor microenvironment (TME) is a unique aspect of the response to immuno-oncology agents and measurement of single biomarkers does not adequately capture these complex interactions. Therefore, multiple potential biomarkers are likely needed. Current candidates in this area include PD-L1 expression, CD8+ tumor-infiltrating lymphocytes, tumor mutation load and neoantigen burden, immune-related gene signatures, and multiplex IHC assays that examine the pharmacodynamic and spatial interactions of the TME. The most fruitful investigations are likely to use several techniques to predict response and interrogate mechanisms of resistance. Immuno-oncology biomarker research must employ validated assays to ask focused research questions utilizing clinically annotated tissue collections and biomarker-focused clinical trial designs to investigate specific endpoints. Real-time input from patients and their advocates into biomarker discovery is necessary to ensure that the investigations pursued will improve both clinical outcomes and quality of life. We herein provide a framework of recommendations to guide the search for immuno-oncology biomarkers of value.
Collapse
Affiliation(s)
- Janice M Mehnert
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.
- Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Arta M Monjazeb
- UC Davis Comprehensive Cancer Center, Sacramento, California
| | | | | | | | | |
Collapse
|