1
|
Du Y, Cortez A, Josefsson A, Zarisfi M, Krimins R, Liapi E, Nedrow JR. Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma. PLoS One 2022; 17:e0261982. [PMID: 35061763 PMCID: PMC8782514 DOI: 10.1371/journal.pone.0261982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Hepatocellular carcinoma is the most common primary liver cancer and the fifth most frequently diagnosed cancer worldwide. Most patients with advanced disease are offered non-surgical palliative treatment options. This work explores the first alpha-particle emitting radioembolization for the treatment and monitoring of hepatic tumors. Furthermore, this works demonstrates the first in vivo simultaneous multiple-radionuclide SPECT-images of the complex decay chain of an [225Ac]Ac-labeled agent using a clinical SPECT system to monitor the temporal distribution. A DOTA chelator was modified with a lipophilic moiety and radiolabeled with the α-particle emitter Actinium-225. The resulting agent, [225Ac]Ac-DOTA-TDA, was emulsified in ethiodized oil and evaluated in vivo in mouse model and the VX2 rabbit technical model of liver cancer. SPECT imaging was performed to monitor distribution of the TAT agent and the free daughters. The [225Ac]Ac-DOTA-TDA emulsion was shown to retain within the HEP2G tumors and VX2 tumor, with minimal uptake within normal tissue. In the mouse model, significant improvements in overall survival were observed. SPECT-imaging was able to distinguish between the Actinium-225 agent (Francium-221) and the loss of the longer lived daughter, Bismuth-213. An α-particle emitting TARE agent is capable of targeting liver tumors with minimal accumulation in normal tissue, providing a potential therapeutic agent for the treatment of hepatocellular carcinoma as well as a variety of hepatic tumors. In addition, SPECT-imaging presented here supports the further development of imaging methodology and protocols that can be incorporated into the clinic to monitor Actinium-225-labeled agents.
Collapse
Affiliation(s)
- Yong Du
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Angel Cortez
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Anders Josefsson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Mohammadreza Zarisfi
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Rebecca Krimins
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Eleni Liapi
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jessie R. Nedrow
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
2
|
Preliminary results of the Phase 1 Lip-Re I clinical trial: biodistribution and dosimetry assessments in hepatocellular carcinoma patients treated with 188Re-SSS Lipiodol radioembolization. Eur J Nucl Med Mol Imaging 2019; 46:1506-1517. [PMID: 30715571 DOI: 10.1007/s00259-019-04277-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/20/2019] [Indexed: 10/27/2022]
|
3
|
Esquinas PL, Shinto A, Kamaleshwaran KK, Joseph J, Celler A. Biodistribution, pharmacokinetics, and organ-level dosimetry for 188Re-AHDD-Lipiodol radioembolization based on quantitative post-treatment SPECT/CT scans. EJNMMI Phys 2018; 5:30. [PMID: 30523435 PMCID: PMC6283804 DOI: 10.1186/s40658-018-0227-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
Background Rhenium-188-labelled-Lipiodol radioembolization is a safe and cost-effective treatment for primary liver cancer. In order to determine correlations between treatment doses and patient response to therapy, accurate patient-specific dosimetry is required. Up to date, the reported dosimetry of 188Re-Lipiodol has been based on whole-body (WB) planar imaging only, which has limited quantitative accuracy. The aim of the present study is to determine the in vivo pharmacokinetics, bio-distribution, and organ-level dosimetry of 188Re-AHDD-Lipiodol radioembolization using a combination of post-treatment planar and quantitative SPECT/CT images. Furthermore, based on the analysis of the pharmacokinetic data, a practical and relatively simple imaging and dosimetry method that could be implemented in clinics for 188Re-AHDD-Lipiodol radioembolization is proposed. Thirteen patients with histologically proven hepatocellular carcinoma underwent 188Re-AHDD-Lipiodol radioembolization. A series of 2–3 WB planar images and one SPECT/CT scan were acquired over 48 h after the treatment. The time-integrated activity coefficients (TIACs, also known as residence-times) and absorbed doses of tumors and organs at risk (OARs) were determined using a hybrid WB/SPECT imaging method. Results Whole-body imaging showed that 188Re-AHDD-Lipiodol accumulated mostly in the tumor and liver tissue but a non-negligible amount of the pharmaceutical was also observed in the stomach, lungs, salivary glands, spleen, kidneys, and urinary bladder. On average, the measured effective half-life of 188Re-AHDD-Lipiodol was 12.5 ± 1.9 h in tumor. The effective half-life in the liver and lungs (the two organs at risk) was 12.6 ± 1.7 h and 12.0 ± 1.9 h, respectively. The presence of 188Re in other organs was probably due to the chemical separation and subsequent release of the free radionuclide from Lipiodol. The average doses per injected activity in the tumor, liver, and lungs were 23.5 ± 40.8 mGy/MBq, 2.12 ± 1.78 mGy/MBq, and 0.11 ± 0.05 mGy/MBq, respectively. The proposed imaging and dosimetry method, consisting of a single SPECT/CT for activity determination followed by 188Re-AHDD-Lipiodol clearance with the liver effective half-life of 12.6 h, resulted in TIACs estimates (and hence, doses) mostly within ± 20% from the reference TIACs (estimated using three WB images and one SPECT/CT). Conclusions The large inter-patient variability of the absorbed doses in tumors and normal tissue in 188Re-HDD-Lipiodol radioembolization patients emphasizes the importance of patient-specific dosimetry calculations based on quantitative post-treatment SPECT/CT imaging. Electronic supplementary material The online version of this article (10.1186/s40658-018-0227-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro L Esquinas
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada. .,Medical Imaging Research Group, Vancouver, British Columbia, Canada.
| | - Ajit Shinto
- Department of Nuclear Medicine, Kovai Medical Center and Hospital, Coimbatore, Tamil Nadu, India
| | | | - Jephy Joseph
- Department of Nuclear Medicine, Kovai Medical Center and Hospital, Coimbatore, Tamil Nadu, India
| | - Anna Celler
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Medical Imaging Research Group, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Wevrett J, Fenwick A, Scuffham J, Johansson L, Gear J, Schlögl S, Segbers M, Sjögreen-Gleisner K, Solný P, Lassmann M, Tipping J, Nisbet A. Inter-comparison of quantitative imaging of lutetium-177 ( 177Lu) in European hospitals. EJNMMI Phys 2018; 5:17. [PMID: 30069805 PMCID: PMC6070453 DOI: 10.1186/s40658-018-0213-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/13/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND This inter-comparison exercise was performed to demonstrate the variability of quantitative SPECT/CT imaging for lutetium-177 (177Lu) in current clinical practice. Our aim was to assess the feasibility of using international inter-comparison exercises as a means to ensure consistency between clinical sites whilst enabling the sites to use their own choice of quantitative imaging protocols, specific to their systems. Dual-compartment concentric spherical sources of accurately known activity concentrations were prepared and sent to seven European clinical sites. The site staff were not aware of the true volumes or activity within the sources-they performed SPECT/CT imaging of the source, positioned within a water-filled phantom, using their own choice of parameters and reported their estimate of the activities within the source. RESULTS The volumes reported by the participants for the inner section of the source were all within 29% of the true value and within 60% of the true value for the outer section. The activities reported by the participants for the inner section of the source were all within 20% of the true value, whilst those reported for the outer section were up to 83% different to the true value. CONCLUSIONS A variety of calibration and segmentation methods were used by the participants for this exercise which demonstrated the variability of quantitative imaging across clinical sites. This paper presents a method to assess consistency between sites using different calibration and segmentation methods.
Collapse
Affiliation(s)
- Jill Wevrett
- University of Surrey, Guildford, UK.
- National Physical Laboratory, Teddington, UK.
- Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK.
| | | | - James Scuffham
- University of Surrey, Guildford, UK
- Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | | | | | | | - Marcel Segbers
- Erasmus University Medical Centre, Rotterdam, Netherlands
| | | | - Pavel Solný
- Motol University Hospital, Prague, Czech Republic
| | | | - Jill Tipping
- The Christie NHS Foundation Trust, Manchester, UK
| | - Andrew Nisbet
- University of Surrey, Guildford, UK
- Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| |
Collapse
|
5
|
Esquinas PL, Uribe CF, Gonzalez M, Rodríguez-Rodríguez C, Häfeli UO, Celler A. Accuracy of Rhenium-188 SPECT/CT activity quantification for applications in radionuclide therapy using clinical reconstruction methods. Phys Med Biol 2017; 62:6379-6396. [PMID: 28726679 DOI: 10.1088/1361-6560/aa7926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The main applications of 188Re in radionuclide therapies include trans-arterial liver radioembolization and palliation of painful bone-metastases. In order to optimize 188Re therapies, the accurate determination of radiation dose delivered to tumors and organs at risk is required. Single photon emission computed tomography (SPECT) can be used to perform such dosimetry calculations. However, the accuracy of dosimetry estimates strongly depends on the accuracy of activity quantification in 188Re images. In this study, we performed a series of phantom experiments aiming to investigate the accuracy of activity quantification for 188Re SPECT using high-energy and medium-energy collimators. Objects of different shapes and sizes were scanned in Air, non-radioactive water (Cold-water) and water with activity (Hot-water). The ordered subset expectation maximization algorithm with clinically available corrections (CT-based attenuation, triple-energy window (TEW) scatter and resolution recovery was used). For high activities, the dead-time corrections were applied. The accuracy of activity quantification was evaluated using the ratio of the reconstructed activity in each object to this object's true activity. Each object's activity was determined with three segmentation methods: a 1% fixed threshold (for cold background), a 40% fixed threshold and a CT-based segmentation. Additionally, the activity recovered in the entire phantom, as well as the average activity concentration of the phantom background were compared to their true values. Finally, Monte-Carlo simulations of a commercial [Formula: see text]-camera were performed to investigate the accuracy of the TEW method. Good quantification accuracy (errors <10%) was achieved for the entire phantom, the hot-background activity concentration and for objects in cold background segmented with a 1% threshold. However, the accuracy of activity quantification for objects segmented with 40% threshold or CT-based methods decreased (errors >15%), mostly due to partial-volume effects. The Monte-Carlo simulations confirmed that TEW-scatter correction applied to 188Re, although practical, yields only approximate estimates of the true scatter.
Collapse
Affiliation(s)
- Pedro L Esquinas
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Ma J, Wang JH. 131I-Labeled-Metuximab Plus Transarterial Chemoembolization in Combination Therapy for Unresectable Hepatocellular Carcinoma: Results from a Multicenter Phase IV Clinical Study. Asian Pac J Cancer Prev 2016; 16:7441-7. [PMID: 26625741 DOI: 10.7314/apjcp.2015.16.17.7441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE This study evaluated the safety and objective response of combining 131I-labeled-metuximab (Licartin) with transarterial chemoembolization (TACE) in the treatment of unresectable hepatocellular carcinoma (HCC). MATERIALS AND METHODS In a multicenter open-label clinical trial, 341 enrolled patients with stage III/IV HCC according to TNM criteria were nonrandomly assigned to a trial group (n=167) and a control group (n=174), undergoing TACE following hepatic intra-arterial injection of licartin or TACE alone from July 2007 to July 2009. Radiopharmaceutical distribution was evaluated. The primary endpoint was overall survival; secondary endpoints included time-to-progression (TTP), toxicity and adverse events (AEs). RESULTS The radiobiological distribution demonstrated better localization of licartin in liver tumors than other tissues (P<0.01). The organ absorbed doses to liver and red marrow were 3.19 ± 1.01 Gy and 0.55 ± 0.22 Gy, respectively. The 1-year survival rate was significantly higher [79.47% vs. 65.59%, hazard ratio (HR), 0.598, P=0.041] and TTP significantly improved (6.82 ± 1.28 vs. 4.7 ± 1.14 months, P=0.037) compared with the control group. Patients at stage III achieved more benefit of one year survival than stage IV in the trial group (86.9% vs. 53.8%, P<0.001). There were significant different toxicities in leukocytopenia, thrombocytopenia and increased total bilirubin level [P<0.001, P=0.013, P<0.01, relative risk (RR) 1.63, 1.33, 1.43], but no differences in severe AEs of upper GI hemorrhage and severe liver dysfunction between the groups (5.39% vs. 2.3%, P=0.136). CONCLUSIONS Owing to excellent tumor-targeting, promised efficacy and favourable toxicity profile, the novel combination therapy of licartin and TACE could be applied in patients with unresectable HCC.
Collapse
Affiliation(s)
- Jun Ma
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China E-mail :
| | | |
Collapse
|
7
|
|
8
|
Meléndez-Alafort L, Nadali A, Zangoni E, Banzato A, Rondina M, Rosato A, Mazzi U. Biokinetic and dosimetric studies of 188Re-hyaluronic acid: a new radiopharmaceutical for treatment of hepatocellular carcinoma. Nucl Med Biol 2009; 36:693-701. [PMID: 19647176 DOI: 10.1016/j.nucmedbio.2009.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 02/18/2009] [Accepted: 04/10/2009] [Indexed: 01/11/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is the most common primary liver cancer and has very limited therapeutic options. Recently, it has been found that hyaluronic acid (HA) shows selective binding to CD44 receptors expressed in most cancer histotypes. Since the trend in cancer treatment is the use of targeted radionuclide therapy, the aim of this research was to label HA with rhenium-188 and to evaluate its potential use as a hepatocarcinoma therapeutic radiopharmaceutical. METHODS (188)Re-HA was prepared by a direct labelling method to produce a ReO(O-COO)(2)-type coordination complex. (188)Re-HA protein binding and its stability in saline, phosphate buffer, human serum and cysteine solutions were determined. Biokinetic and dosimetric data were estimated in healthy mice (n=60) using the Medical Internal Radiation Dose methodology and mouse model beta-absorbed fractions. To evaluate liver toxicity, alanine aminotranferase (AST) and aspartate aminotranferase (ALT) levels in mice were assessed and the liver maximum tolerated dose (MTD) of (188)Re-HA was determined. RESULTS A stable complex of (188)Re-HA was obtained with high radiochemical purity (>90%) and low serum protein binding (2%). Biokinetic studies showed a rapid blood clearance (T(1/2)alpha=21 min). Four hours after administration, (188)Re-HA was almost totally removed from the blood by the liver due to the selective uptake via HA-specific receptors (73.47+/-5.11% of the injected dose). The liver MTD in mice was approximately 40 Gy after 7.4 MBq of (188)Re-HA injection. CONCLUSIONS (188)Re-HA complex showed good stability, pharmacokinetic and dosimetric characteristics that confirm its potential as a new agent for HCC radiation therapy.
Collapse
Affiliation(s)
- Laura Meléndez-Alafort
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, 35131 Padua, Italy
| | | | | | | | | | | | | |
Collapse
|