1
|
Huang Y, Zhang L, Wang M, Li C, Zheng W, Chen H, Liang Y, Wu Z. Optimization of Precursor Synthesis Conditions of (2S,4S)4–[18F]FPArg and Its Application in Glioma Imaging. Pharmaceuticals (Basel) 2022; 15:ph15080946. [PMID: 36015094 PMCID: PMC9416586 DOI: 10.3390/ph15080946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Although the tracer (2S,4S)4–[18F]FPArg is expected to provide a powerful imaging method for the diagnosis and treatment of clinical tumors, it has not been realized due to the low yield of chemical synthesis and radiolabeling. A simple synthetic method for the radiolabeled precursor of (2S,4S)4–[18F]FPArg in stable yield was obtained by adjusting the sequence of the synthetic steps. Furthermore, the biodistribution experiments confirmed that (2S,4S)4–[18F]FPArg could be cleared out quickly in wild type mouse. Cell uptake experiments and U87MG tumor mouse microPET–CT imaging experiments showed that the tumor had high uptake of (2S,4S)4–[18F]FPArg and the clearance was slow, but (2S,4S)4–[18F]FPArg was rapidly cleared in normal brain tissue. MicroPET–CT imaging of nude mice bearing orthotopic HS683–Luc showed that (2S,4S)4–[18F]FPArg can penetrate blood–brain barrier and image gliomas with a high contrast. Therefore, (2S,4S)4–[18F]FPArg is expected to be further applied in the diagnosis and efficacy evaluation of clinical glioma.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Meng Wang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Chengze Li
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
- Correspondence: (Y.L.); (Z.W.)
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
- Correspondence: (Y.L.); (Z.W.)
| |
Collapse
|
2
|
Pereira GC, Traughber M, Muzic RF. The role of imaging in radiation therapy planning: past, present, and future. BIOMED RESEARCH INTERNATIONAL 2014; 2014:231090. [PMID: 24812609 PMCID: PMC4000658 DOI: 10.1155/2014/231090] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/17/2014] [Indexed: 12/23/2022]
Abstract
The use of ionizing radiation for cancer treatment has undergone extraordinary development during the past hundred years. The advancement of medical imaging has been critical in helping to achieve this change. The invention of computed tomography (CT) was pivotal in the development of treatment planning. Despite some disadvantages, CT remains the only three-dimensional imaging modality used for dose calculation. Newer image modalities, such as magnetic resonance (MR) imaging and positron emission tomography (PET), are also used secondarily in the treatment-planning process. MR, with its better tissue contrast and resolution than those of CT, improves tumor definition compared with CT planning alone. PET also provides metabolic information to supplement the CT and MR anatomical information. With emerging molecular imaging techniques, the ability to visualize and characterize tumors with regard to their metabolic profile, active pathways, and genetic markers, both across different tumors and within individual, heterogeneous tumors, will inform clinicians regarding the treatment options most likely to benefit a patient and to detect at the earliest time possible if and where a chosen therapy is working. In the post-human-genome era, multimodality scanners such as PET/CT and PET/MR will provide optimal tumor targeting information.
Collapse
Affiliation(s)
- Gisele C. Pereira
- Department of Radiation Oncology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Raymond F. Muzic
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
|
4
|
Wahl RL, Herman JM, Ford E. The promise and pitfalls of positron emission tomography and single-photon emission computed tomography molecular imaging-guided radiation therapy. Semin Radiat Oncol 2011; 21:88-100. [PMID: 21356477 PMCID: PMC4337868 DOI: 10.1016/j.semradonc.2010.11.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
External beam radiation therapy procedures have, until recently, been planned almost exclusively using anatomic imaging methods. Molecular imaging using hybrid positron emission tomography (PET)/computed tomography scanning or single-photon emission computed tomography (SPECT) imaging has provided new insights into the precise location of tumors (staging) and the extent and character of the biologically active tumor volume (BTV) and has provided differential response information during and after therapy. In addition to the commonly used radiotracer (18)F-fluoro- 2-deoxyD-glucose (FDG), additional radiopharmaceuticals are being explored to image major physiological processes as well as tumor biological properties, such as hypoxia, proliferation, amino acid accumulation, apoptosis, and receptor expression, providing the potential to target or boost the radiation dose to a biologically relevant region within a tumor, such as the most hypoxic or most proliferative area. Imaging using SPECT agents has furthered the possibility of limiting dose to functional normal tissues. PET can also portray the distribution of particle therapy by displaying activated species in situ. With both PET and SPECT imaging, fundamental physical issues of limited spatial resolution relative to the biological process, partial volume effects for quantification of small volumes, image misregistration, motion, and edge delineation must be carefully considered and can differ by agent or the method applied. Molecular imaging-guided radiation therapy (MIGRT) is a rapidly evolving and promising area of investigation and clinical translation. As MIGRT evolves, evidence must continue to be gathered to support improved clinical outcomes using MIGRT versus purely anatomic approaches.
Collapse
Affiliation(s)
- Richard L Wahl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
5
|
Janssen MHM, Ollers MC, van Stiphout RGPM, Buijsen J, van den Bogaard J, de Ruysscher D, Lambin P, Lammering G. Evaluation of early metabolic responses in rectal cancer during combined radiochemotherapy or radiotherapy alone: sequential FDG-PET-CT findings. Radiother Oncol 2010; 94:151-5. [PMID: 20116114 DOI: 10.1016/j.radonc.2009.12.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/28/2009] [Accepted: 12/29/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of this study was to prospectively investigate metabolic changes of rectal tumors after 1 week of treatment of either radiochemotherapy (28 x 1.8 Gy+Capecitabine) (RCT) or hypofractionated radiotherapy (5 x 5 Gy) alone (RT). MATERIALS AND METHODS Fourty-six rectal cancer patients, 25 RCT- and 21 RT-patients, were included in this study. Sequential FDG-PET-CT scans were performed for each of the included patients both prior to treatment and after the first week of treatment. Consecutively, the metabolic treatment response of the tumor was evaluated. RESULTS For the patients referred for pre-operative RCT, significant reductions of SUV(mean) (p<0.001) and SUV(max) (p<0.001) within the tumor were found already after the first week of treatment (8 Gy biological equivalent dose (BED). In contrast, 1 week of treatment with RT alone did not result in significant changes in the metabolic activity of the tumor (p=0.767, p=0.434), despite the higher applied RT dose of 38.7 Gy BED. CONCLUSIONS Radiochemotherapy of rectal cancer leads to significant early changes in the metabolic activity of the tumor, which was not the case early after hypofractionated radiotherapy alone, despite the higher radiotherapy dose given. Thus, the chemotherapeutic agent Capecitabine might be responsible for the early metabolic treatment responses during radiochemotherapy in rectal cancer.
Collapse
Affiliation(s)
- Marco H M Janssen
- Department of Radiation Oncology (MAASTRO), University Medical Centre Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Papathanassiou D, Bruna-Muraille C, Liehn JC, Nguyen TD, Curé H. Positron Emission Tomography in oncology: Present and future of PET and PET/CT. Crit Rev Oncol Hematol 2009; 72:239-54. [DOI: 10.1016/j.critrevonc.2008.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 09/30/2008] [Accepted: 10/14/2008] [Indexed: 01/01/2023] Open
|
7
|
Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging-guided radiation therapy treatment planning. Acad Radiol 2009; 16:1108-33. [PMID: 19427800 DOI: 10.1016/j.acra.2009.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 01/01/2023]
Abstract
The role of positron emission tomography (PET) during the past decade has evolved rapidly from that of a pure research tool to a methodology of enormous clinical potential. (18)F-fluorodeoxyglucose (FDG)-PET is currently the most widely used probe in the diagnosis, staging, assessment of tumor response to treatment, and radiation therapy planning because metabolic changes generally precede the more conventionally measured parameter of change in tumor size. Data accumulated rapidly during the last decade, thus validating the efficacy of FDG imaging and many other tracers in a wide variety of malignant tumors with sensitivities and specificities often in the high 90 percentile range. As a result, PET/computed tomography (CT) had a significant impact on the management of patients because it obviated the need for further evaluation, guided further diagnostic procedures, and assisted in planning therapy for a considerable number of patients. On the other hand, the progress in radiation therapy technology has been enormous during the last two decades, now offering the possibility to plan highly conformal radiation dose distributions through the use of sophisticated beam targeting techniques such as intensity-modulated radiation therapy (IMRT) using tomotherapy, volumetric modulated arc therapy, and many other promising technologies for sculpted three-dimensional (3D) dose distribution. The foundation of molecular imaging-guided radiation therapy lies in the use of advanced imaging technology for improved definition of tumor target volumes, thus relating the absorbed dose information to image-based patient representations. This review documents technological advancements in the field concentrating on the conceptual role of molecular PET/CT imaging in radiation therapy treatment planning and related image processing issues with special emphasis on segmentation of medical images for the purpose of defining target volumes. There is still much more work to be done and many of the techniques reviewed are themselves not yet widely implemented in clinical settings.
Collapse
|
8
|
Abstract
Multimodality small-animal molecular imaging has become increasingly important as transgenic and knockout mice are produced to model human diseases. With the ever-increasing number and importance of human disease models, particularly in rodents (mice and rats), the ability of high-resolution multimodality molecular imaging instrumentation to contribute unique information is becoming more common and necessary. Multimodality imaging with high spatial resolution and good sensitivity, which combines modalities and records sequentially or simultaneously complementary information, offers many advantages in certain research experiments. This article discusses the current trends and new horizons in preclinical multimodality imaging in-vivo and its role in biomedical research.
Collapse
Affiliation(s)
- David B Stout
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, The David Geffen School of Medicine at UCLA, 570 Westwood Plaza, CNSI Building, Room 2151, Los Angeles, CA 90095, USA
| | - Habib Zaidi
- Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva, Switzerland.
| |
Collapse
|
9
|
Schöder H, Fury M, Lee N, Kraus D. PET monitoring of therapy response in head and neck squamous cell carcinoma. J Nucl Med 2009; 50 Suppl 1:74S-88S. [PMID: 19380408 DOI: 10.2967/jnumed.108.057208] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the Western world, more than 90% of head and neck cancers are head and neck squamous cell carcinomas (HNSCCs). The most appropriate treatment approach for HNSCC varies with the disease stage and disease site in the head and neck. Concurrent chemoradiotherapy has become a widely used means for the definitive treatment of locoregionally advanced HNSCC. Although this multimodality treatment provides higher response rates than radiotherapy alone, the detection of residual viable tumor after the end of therapy remains an important issue and is one of the major applications of (18)F-FDG PET. Studies have shown that negative (18)F-FDG PET or PET/CT results after concurrent chemoradiotherapy have a high negative predictive value (>95%), whereas the positive predictive value is only about 50%. However, when applied properly, FDG PET/CT can exclude residual disease in most patients, particularly patients with residual enlarged lymph nodes who would otherwise undergo neck dissection. In contrast to other malignancies, data are limited on the utility of (18)F-FDG PET for monitoring the response to induction chemotherapy in HNSCC or for assessing treatment response early during the course of definitive chemoradiotherapy. The proliferation marker (18)F-3'-deoxy-3'fluorothymidine is currently under study for this purpose. Beyond standard chemotherapy, newer treatment regimens in HNSCC take advantage of our improved understanding of tumor biology. Two molecules important in the progression of HNSCC are the epidermal growth factor receptor and the vascular endothelial growth factor (VEGF) and its receptor VEGF-R. Drugs attacking these molecules are now under study for HNSCC. PET probes have been developed for imaging the presence of these molecules in HNSCC and their inhibition by specific drug interaction; the relevance of these probes for response assessment in HNSCC will be discussed. Hypoxia is a common phenomenon in HNSCC and renders cancers resistant to chemo- and radiotherapy. Imaging and quantification of hypoxia with PET probes is under study and may become a prerequisite for overcoming chemo- and radioresistance using radiosensitizing drugs or hypoxia-directed irradiation techniques and for monitoring the response to these techniques in selected groups of patients. Although (18)F-FDG PET/CT will remain the major clinical tool for monitoring treatment in HNSCC, other PET probes may have a role in identifying patients who are likely to benefit from treatment strategies that include biologic agents such as epidermal growth factor receptor inhibitors or VEGF inhibitors.
Collapse
Affiliation(s)
- Heiko Schöder
- Department of Radiology, Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | | | |
Collapse
|
10
|
Molecular Imaging in Oncology. Mol Imaging 2009. [DOI: 10.1007/978-3-540-76735-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Guha C, Alfieri A, Blaufox MD, Kalnicki S. Tumor biology-guided radiotherapy treatment planning: gross tumor volume versus functional tumor volume. Semin Nucl Med 2008; 38:105-13. [PMID: 18243845 DOI: 10.1053/j.semnuclmed.2007.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This issue of Seminars in Nuclear Medicine deals with a watershed event in cancer treatment -- the combined use of functional and anatomical information to guide therapeutic interventions. The use of positron emission tomography/computed tomography (PET/CT) in radiation treatment planning and tumor response evaluation brings a paradigm change in the development of image-guided therapies into routine clinical practice. The implications, as seen in the following articles, are not only promising but also groundbreaking. And, as in every new scientific breakthrough, each step forward generates a myriad of additional important clinical and research questions. Functional imaging takes advantage of the subtle differences between normal and malignant tissues at the cellular level to reveal in vivo unique functional characteristics of neoplasms. The ultimate goal of the partnership between nuclear medicine physicians and radiation oncologists is to use this information with absolute clarity in target definition for radiation treatment planning and therapy, as well as response evaluation. Functional imaging can provide metabolic information and behavioral correlation along with the anatomical imaging for correlative target delineation. Additionally, as a purely diagnostic instrument, PET/CT provides a tool for oncologists to make critical decisions regarding radiation treatment planning modifications secondary to changes in tumor staging (up or down), treatment field modifications, localized control, sites of residual and/or metastatic disease and post therapy response evaluation. The articles in this issue of the seminars provide insights into the current state-of-the-art of functional imaging techniques, mostly centered on the use of (18)F-fluorodeoxyglucose PET/CT in image guided oncologic therapies. Because it is a novel science, the future of image-guided functional treatment planning is bright with technologic and biologic innovations, translational research and new clinical applications.
Collapse
Affiliation(s)
- Chandan Guha
- Department Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA.
| | | | | | | |
Collapse
|