1
|
Sweet C, Shmuel N, Shoaf JN, Stoecklein M, Muthukrishnan A, Stern E, Nguyen NC. A Pictorial Review of I-123 MIBG Imaging of Neuroblastoma Utilizing a State-of-the-Art CZT SPECT/CT System. Nucl Med Mol Imaging 2024; 58:1-8. [PMID: 38250182 PMCID: PMC10796310 DOI: 10.1007/s13139-023-00825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 01/23/2024] Open
Abstract
The field of nuclear medicine is entering a new era of gamma-camera technology. Solid-state SPECT/CT systems will gradually replace the thallium-activated sodium-iodide NaI(Tl) systems. This digital technology allows drastic improvements in image quality, radiotracer dose reduction, and procedure efficiency. This pictorial review presents our initial experience on an NM/CT 870 CZT system (GE Healthcare), equipped with dual-head cadmium zinc telluride (CZT) detectors, for I-123 metaiodobenzylguanidine (MIBG) imaging in pediatric neuroblastoma. On planar imaging, CZT shows greater image quality than at conventional gamma-camera using the Infinia Hawkeye (GE Healthcare). Physiologic structures such as salivary glands and myocardium show sharper borders with a more notable signal-to-noise ratio at CZT than conventional gamma camera. On SPECT imaging, the CZT scanner, combined with resolution recovery, demonstrates either comparable or greater image quality at 80% of the conventional gamma camera’s acquisition time. Due to the 2.46-mm detector pixel with fully registered collimator holes matching each pixel and direct conversion of photons into electrical signals, the CZT gamma camera system provides significant advantages in photon localization and energy resolution.
Collapse
Affiliation(s)
- Cassidy Sweet
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | | | - Jennifer N. Shoaf
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Marcy Stoecklein
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | | | | | - Nghi C. Nguyen
- Department of Radiology, University of Texas, Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
2
|
Tang X, Dai N, Zhang B, Cai H, Huo Y, Yang M, Jiang Y, Duan S, Shen J, Zhu M, Xu Y, Ge J. Comparison of 2D-QCA, 3D-QCA and coronary angiography derived FFR in predicting myocardial ischemia assessed by CZT-SPECT MPI. J Nucl Cardiol 2023; 30:1973-1982. [PMID: 36929293 DOI: 10.1007/s12350-023-03240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Angiography derived fractional flow reserve (angio-FFR) has been proposed. This study aimed to assess its diagnostic performance with cadmium-zinc-telluride single emission computed tomography (CZT-SPECT) as reference. METHODS AND RESULTS Patients underwent CZT-SPECT within 3 months of coronary angiography were included. Angio-FFR computation was performed using computational fluid dynamics. Percent diameter (%DS) and area stenosis (%AS) were measured by quantitative coronary angiography. Myocardial ischemia was defined as a summed difference score ≥ 2 in a vascular territory. Angio-FFR ≤ 0.80 was considered abnormal. 282 coronary arteries in 131 patients were analyzed. Overall accuracy of angio-FFR to detect ischemia on CZT-SPECT was 90.43%, with a sensitivity of 62.50% and a specificity of 98.62%. The diagnostic performance (= area under ROC = AUC) of angio-FFR [AUC = 0.91, 95% confidence intervals (CI) 0.86-0.95] was similar as those of %DS (AUC = 0.88, 95% CI 0.84-0.93, p = 0.326) and %AS (AUC = 0.88, 95% CI 0.84-0.93 p = 0.241) by 3D-QCA, but significantly higher than those of %DS (AUC = 0.59, 95% CI 0.51-0.67, p < 0.001) and %AS (AUC = 0.59, 95% CI 0.51-0.67, p < 0.001) by 2D-QCA. However, in vessels with 50-70% stenoses, AUC of angio-FFR was significantly higher than those of %DS (0.80 vs. 0.47, p < 0.001) and %AS (0.80 vs. 0.46, p < 0.001) by 3D-QCA and %DS (0.80 vs. 0.66, p = 0.036) and %AS (0.80 vs. 0.66, p = 0.034) by 2D-QCA. CONCLUSION Angio-FFR had a high accuracy in predicting myocardial ischemia assessed by CZT-SPECT, which is similar as 3D-QCA but significantly higher than 2D-QCA. While in intermediate lesions, angio-FFR is better than 3D-QCA and 2D-QCA in assessing myocardial ischemia.
Collapse
Affiliation(s)
- Xianglin Tang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Neng Dai
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - BuChun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yanlei Huo
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yongji Jiang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | | | - Jianying Shen
- Cardiology Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Mengyun Zhu
- Cardiology Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yawei Xu
- Cardiology Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
3
|
Hiraki H, Ito T, Onoguchi M, Tsuchikame H, Shishido M, Maeno T, Shibutani T, Sanada H. Evaluation of Collimators in a High-Resolution, Whole-Body SPECT/CT Device with a Dual-Head Cadmium-Zinc-Telluride Detector for 123I-FP-CIT SPECT. J Nucl Med Technol 2023; 51:227-234. [PMID: 37433675 DOI: 10.2967/jnmt.122.265328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Indexed: 07/13/2023] Open
Abstract
The study aim was to evaluate the adaptation of collimators to 123I-N-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl)nortropane (123I-FP-CIT) dopamine transporter SPECT (DAT-SPECT) by a high-resolution whole-body SPECT/CT system with a cadmium-zinc-telluride detector (C-SPECT) in terms of image quality, quantitation, diagnostic performance, and acquisition time. Methods: Using a C-SPECT device equipped with a wide-energy, high-resolution collimator and a medium-energy, high-resolution sensitivity (MEHRS) collimator, we evaluated the image quality and quantification of DAT-SPECT for an anthropomorphic striatal phantom. Ordered-subset expectation maximization iterative reconstruction with resolution recovery, scatter, and attenuation correction was used, and the optimal collimator was determined on the basis of the contrast-to-noise ratio (CNR), percentage contrast, and specific binding ratio. The acquisition time that could be reduced using the optimal collimator was determined. The optimal collimator was used to retrospectively evaluate diagnostic accuracy via receiver-operating-characteristic analysis and specific binding ratios for 41 consecutive patients who underwent DAT-SPECT. Results: When the collimators were compared in the phantom verification, the CNR and percentage contrast were significantly higher for the MEHRS collimator than for the wide-energy high-resolution collimator (P < 0.05). There was no significant difference in the CNR between 30 and 15 min of imaging time using the MEHRS collimator. In the clinical study, the areas under the curve for acquisition times of 30 and 15 min were 0.927 and 0.906, respectively, and the diagnostic accuracies of the DAT-SPECT images did not significantly differ between the 2 times. Conclusion: The MEHRS collimator provided the best results for DAT-SPECT with C-SPECT; shorter acquisition times (<15 min) may be possible with injected activity of 167-186 MBq.
Collapse
Affiliation(s)
- Hitoshi Hiraki
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshimune Ito
- Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Masahisa Onoguchi
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan;
| | - Hirotatsu Tsuchikame
- Department of Radiology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan; and
| | - Masaaki Shishido
- Department of Radiology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan; and
| | - Takafumi Maeno
- Department of Radiology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan; and
| | - Takayuki Shibutani
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroki Sanada
- Department of Central Radiology, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| |
Collapse
|
4
|
Mikail N, Hyafil F. Nuclear Imaging in Infective Endocarditis. Pharmaceuticals (Basel) 2021; 15:ph15010014. [PMID: 35056069 PMCID: PMC8777992 DOI: 10.3390/ph15010014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Infective endocarditis (IE) is a life-threatening disease with stable prevalence despite prophylactic, diagnostic, and therapeutic advances. In parallel to the growing number of cardiac devices implanted, the number of patients developing IE on prosthetic valves and cardiac implanted electronic device (CIED) is increasing at a rapid pace. The diagnosis of IE is particularly challenging, and currently relies on the Duke-Li modified classification, which include clinical, microbiological, and imaging criteria. While echocardiography remains the first line imaging technique, especially in native valve endocarditis, the incremental value of two nuclear imaging techniques, 18F-fluorodeoxyglucose positron emission tomography with computed tomography (18F-FDG-PET/CT) and white blood cells single photon emission tomography with computed tomography (WBC-SPECT), has emerged for the management of prosthetic valve and CIED IE. In this review, we will summarize the procedures for image acquisition, discuss the role of 18F-FDG-PET/CT and WBC-SPECT imaging in different clinical situations of IE, and review the respective diagnostic performance of these nuclear imaging techniques and their integration into the diagnostic algorithm for patients with a suspicion of IE.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, Beaujon University Hospital, Assistance Publique-Hôpitaux de Paris, 100 Boulevard du Général Leclerc, 92110 Clichy, France;
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8006 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Fabien Hyafil
- Department of Nuclear Medicine, Georges-Pompidou European Hospital, DMU IMAGINA, Assistance Publique-Hôpitaux de Paris, University of Paris, 20 Rue Leblanc, 75015 Paris, France
- Correspondence: ; Tel.: +33-01-56-09-56-24
| |
Collapse
|
5
|
van der Meulen NP, Strobel K, Lima TVM. New Radionuclides and Technological Advances in SPECT and PET Scanners. Cancers (Basel) 2021; 13:cancers13246183. [PMID: 34944803 PMCID: PMC8699425 DOI: 10.3390/cancers13246183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Advances in nuclear medicine are made by technological and radionuclide improvements. Throughout nuclear medicine’s history, these advances were often intertwined and complementary based on different clinical questions, availability and need. This paper covers some of these developments in radionuclides and instrumentation. Abstract Developments throughout the history of nuclear medicine have involved improvements in both instrumentation and radionuclides, which have been intertwined. Instrumentation developments always occurred during the search to improving devices’ sensitivity and included advances in detector technology (with the introduction of cadmium zinc telluride and digital Positron Emission Tomography—PET-devices with silicon photomultipliers), design (total body PET) and configuration (ring-shaped, Single-Photon Emission Computed Tomography (SPECT), Compton camera). In the field of radionuclide development, we observed the continual changing of clinically used radionuclides, which is sometimes influenced by instrumentation technology but also driven by availability, patient safety and clinical questions. Some areas, such as tumour imaging, have faced challenges when changing radionuclides based on availability, when this produced undesirable clinical findings with the introduction of unclear focal uptakes and unspecific uptakes. On the other end of spectrum, further developments of PET technology have seen a resurgence in its use in nuclear cardiology, with rubidium-82 from strontium-82/rubidium-82 generators being the radionuclide of choice, moving away from SPECT nuclides thallium-201 and technetium-99m. These continuing improvements in both instrumentation and radionuclide development have helped the growth of nuclear medicine and its importance in the ever-evolving range of patient care options.
Collapse
Affiliation(s)
- Nicholas P. van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Correspondence: (N.P.v.d.M.); (T.V.M.L.)
| | - Klaus Strobel
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, 6000 Luzern, Switzerland;
| | - Thiago Viana Miranda Lima
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, 6000 Luzern, Switzerland;
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, 1007 Lausanne, Switzerland
- Correspondence: (N.P.v.d.M.); (T.V.M.L.)
| |
Collapse
|
6
|
Zhang R, Wang M, Zhou Y, Wang S, Shen Y, Li N, Wang P, Tan J, Meng Z, Jia Q. Impacts of acquisition and reconstruction parameters on the absolute technetium quantification of the cadmium-zinc-telluride-based SPECT/CT system: a phantom study. EJNMMI Phys 2021; 8:66. [PMID: 34568990 PMCID: PMC8473509 DOI: 10.1186/s40658-021-00412-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Background The digital cadmium–zinc–telluride (CZT)-based SPECT system has many advantages, including better spatial and energy resolution. However, the impacts of different acquisition and reconstruction parameters on CZT SPECT quantification might still need to be validated. This study aimed to evaluate the impacts of acquisition parameters (the main energy window and acquisition time per frame) and reconstruction parameters (the number of iterations, subsets in iterative reconstruction, post-filter, and image correction methods) on the technetium quantification of CZT SPECT/CT. Methods A phantom (PET NEMA/IEC image quality, USA) was filled with four target-to-background (T/B) ratios (32:1, 16:1, 8:1, and 4:1) of technetium. Mean uptake values (the calculated mean concentrations for spheres) were measured to evaluate the recovery coefficient (RC) changes under different acquisition and reconstruction parameters. The corresponding standard deviations of mean uptake values were also measured to evaluate the quantification error. Image quality was evaluated using the National Electrical Manufacturers Association (NEMA) NU 2–2012 standard. Results For all T/B ratios, significant correlations were found between iterations and RCs (r = 0.62–0.96 for 1–35 iterations, r = 0.94–0.99 for 35–90 iterations) as well as between the full width at half maximum (FWHM) of the Gaussian filter and RCs (r = − 0.86 to − 1.00, all P values < 0.05). The regression coefficients of 1–35 iterations were higher than those of 35–90 iterations (0.51–1.60 vs. 0.02–0.19). RCs calculated with AC (attenuation correction) + SC (scatter correction) + RR (resolution recovery correction) combination were more accurate (53.82–106.70%) than those calculated with other combinations (all P values < 0.05). No significant statistical differences (all P values > 0.05) were found between the 15% and 20% energy windows except for the 32:1 T/B ratio (P value = 0.023) or between the 10 s/frame and 120 s/frame acquisition times except for the 4:1 T/B ratio (P value = 0.015) in terms of RCs. Conclusions CZT-SPECT/CT of technetium resulted in good quantification accuracy. The favourable acquisition parameters might be a 15% energy window and 40 s/frame of acquisition time. The favourable reconstruction parameters might be 35 iterations, 20 subsets, the AC + SC + RR correction combination, and no filter. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00412-4.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, People's Republic of China
| | - Miao Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, People's Republic of China
| | - Yaqian Zhou
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, People's Republic of China
| | - Shen Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, People's Republic of China
| | - Yiming Shen
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, People's Republic of China
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, People's Republic of China
| | - Peng Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, People's Republic of China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, People's Republic of China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, People's Republic of China.
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
7
|
Hahn E, Kammeier A, Burchert W, Lindner O. Attenuation correction in CZT myocardial perfusion imaging comparison of supine-prone and low-dose CT-corrected supine acquisitions. Nucl Med Commun 2021; 42:884-891. [PMID: 33741851 DOI: 10.1097/mnm.0000000000001411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS The study aimed to investigate whether additional prone imaging delivers comparable results to supine imaging with low-dose computed tomography (CT) attenuation correction (CTAC) in cadmium, zinc and telluride (CZT) myocardial perfusion imaging. METHODS AND RESULTS Thirty-four patients with an indication for myocardial perfusion imaging were studied with a CZT camera in the supine and then prone position. Furthermore, a low-dose CT was acquired. Three data sets were reconstructed and considered for analysis: (1) supine CZT, (2) supine CZT with CTAC and (3) supine CZT with additional prone CZT. Based on 17-segment polartomograms, we compared radiopharmaceutical uptake percentage, summed stress score (SSS), summed rest score (SRS), summed difference score (SDS), total ischemic and scarred segments, and finally scan classification and clinical decision-making. SSS of supine/supine-CTAC/supine-prone was 341/229/253 (P < 0.05), SRS was 246/156/164 (P < 0.05) and SDS was 104/88/96 (ns), respectively. Total ischemic segments were 65/67/65 (ns) and total scarred segments 96/62/69 (P < 0.05), respectively. The frequency of normal scans was highest for supine-prone, followed by supine-CTAC and supine (41/35/24%, respectively). Supine imaging indicated 23% of patients for invasive coronary angiography, both supine-CTAC and supine-prone 18%. These two showed a significant intercorrelation. CONCLUSION Additional prone imaging and CTAC are mainly correct for the amount and extent of myocardial scars. Both methods increase the frequency of normal scans and show a significant agreement in clinical decision-making. Additional prone imaging appears as a useful alternative when a low-dose CT for attenuation correction is not available.
Collapse
Affiliation(s)
- Eva Hahn
- Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center North Rhine-Westphalia, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | | | | | | |
Collapse
|
8
|
Tsuboi K, Nagaki A, Shibutani T, Onoguchi M. Optimal choice of OSEM and SD reconstruction algorithms in CZT SPECT for hypertrophic cardiomyopathy patients. J Nucl Cardiol 2021; 28:236-244. [PMID: 30847855 DOI: 10.1007/s12350-019-01677-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The spectrum dynamics (SD) algorithm is a cardiac reconstruction algorithm of D-SPECT, which improves spatial resolution compared with the ordered-subsets expectation maximization (OSEM) algorithm. We evaluated the wall thickness and left ventricular (LV) volume in patients with hypertrophic cardiomyopathy (HCM) using the SD algorithm. METHODS In a phantom study, the myocardial wall was scanned with varying wall thicknesses (10-40 mm). In the clinical study, 30 and 27 normal and HCM patients underwent myocardial perfusion imaging. RESULTS In a phantom study, LV volume using the SD algorithm was increased by thickening the wall of the phantom. In the clinical study, the wall thickness and LV volume of OSEM and SD algorithms showed a difference between HCM and normal groups. The wall thickness using OSEM and SD algorithms were 19.4 ± 2.0 and 16.7 ± 1.5 mm in patients with normal, and 27.9 ± 4.9 and 21.8 ± 2.6 mm in patients with HCM. CONCLUSION The SD algorithm in cases of HCM may not be able to correctly assess wall thickness and LV volume. Our study suggests that the OSEM is more suitable in cases of HCM than the SD algorithm.
Collapse
Affiliation(s)
- Kunihito Tsuboi
- Department of Radiological Technology, Kurashiki Central Hospital, Kurashiki, Japan.
| | - Akio Nagaki
- Department of Radiological Technology, Kurashiki Central Hospital, Kurashiki, Japan
- Department of Quantum Medical Technology, Kanazawa University, Kanazawa, Japan
| | - Takayuki Shibutani
- Department of Quantum Medical Technology, Kanazawa University, Kanazawa, Japan
| | - Masahisa Onoguchi
- Department of Quantum Medical Technology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Nakajima K, Yoneyama H, Slomka P. Beware the pitfalls of beauty: High-quality myocardial images with resolution recovery. J Nucl Cardiol 2021; 28:245-248. [PMID: 30972723 DOI: 10.1007/s12350-019-01715-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Kanazawa University, Kanazawa, 920-8640, Japan.
| | - Hiroto Yoneyama
- Department of Radiology Technology, Kanazawa University Hospital, Kanazawa, Japan
| | - Piotr Slomka
- AIM Program/Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, USA
| |
Collapse
|
10
|
Ito T, Matsusaka Y, Onoguchi M, Ichikawa H, Okuda K, Shibutani T, Shishido M, Sato K. Experimental evaluation of the GE NM/CT 870 CZT clinical SPECT system equipped with WEHR and MEHRS collimator. J Appl Clin Med Phys 2021; 22:165-177. [PMID: 33426812 PMCID: PMC7882118 DOI: 10.1002/acm2.13158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose A high‐energy‐resolution whole‐body SPECT‐CT device (NM/CT 870 CZT; C‐SPECT) equipped with a CZT detector has been developed and is being used clinically. A MEHRS collimator has also been developed recently, with an expected improvement in imaging accuracy using medium‐energy radionuclides. The objective of this study was to compare and analyze the accuracies of the following devices: a WEHR collimator and the MEHRS collimator installed on a C‐SPECT, and a NaI scintillation detector‐equipped Anger‐type SPECT (A‐SPECT) scanner, with a LEHR and LMEGP. Methods A line phantom was used to measure the energy resolutions including collimator characteristics in the planar acquisition of each device using 99mTc and 123I. We also measured the system's sensitivity and high‐contrast resolution using a lead bar phantom. We evaluated SPECT spatial resolution, high‐contrast resolution, radioactivity concentration linearity, and homogeneity, using a basic performance evaluation phantom. In addition, the effect of scatter correction was evaluated by varying the sub window (SW) employed for scattering correction. Results The energy resolution with 99mTc was 5.6% in C‐SPECT with WEHR and 9.9% in A‐SPECT with LEHR. Using 123I, the results were 9.1% in C‐SPECT with WEHR, 5.5% in C‐SPECT with MEHRS, and 10.4% in A‐SPECT with LMEGP. The planar spatial resolution was similar under all conditions, but C‐SPECT performed better in SPECT acquisition. High‐contrast resolution was improved in C‐SPECT under planar condition and SPECT. The sensitivity and homogeneity were improved by setting the SW for scattering correction to 3% of the main peak in C‐SPECT. Conclusion C‐SPECT demonstrates excellent energy resolution and improved high‐contrast resolution for each radionuclide. In addition, when using 123I, careful attention should be paid to SW for scatter correction. By setting the appropriate SW, C‐SPECT with MEHRS has an excellent scattered ray removal effect, and highly homogenous imaging is possible while maintaining the high‐contrast resolution.
Collapse
Affiliation(s)
- Toshimune Ito
- Department of Radiology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Yohji Matsusaka
- Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo, Japan
| | - Masahisa Onoguchi
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hajime Ichikawa
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Radiology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Koichi Okuda
- Department of Physics, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Takayuki Shibutani
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaaki Shishido
- Department of Radiology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan.,Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kozo Sato
- Department of Diagnostic Radiology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
11
|
Piekarski E, Manrique A, Rouzet F, Le Guludec D. Current Status of Myocardial Perfusion Imaging With New SPECT/CT Cameras. Semin Nucl Med 2020; 50:219-226. [PMID: 32284108 DOI: 10.1053/j.semnuclmed.2020.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myocardial perfusion imaging (MPI) with Single-Photon Emission Computed Tomography (SPECT) has a major role in the management of coronary artery disease. Recent technological advances regarding SPECT detectors with the use of solid-state detectors has allowed for improved imaging quality since a decade with dramatic dose and/or time reduction of imaging protocols due to improved sensitivity and spatial resolution, and is now performed as a routine exam. Interestingly, this new technology has modified our everyday practice, from acquisition protocols (low dose and ultra-fast protocols) to image semiology. Numerous studies have shown how these technical advances have allowed for improved patient management, with similar or improved diagnostic and prognostic information derived from MPI. These improvements have also led to the straightforward implementation of myocardial blood flow measurement. This article reviews the current status of MPI using new SPECT and SPECT/CT cameras.
Collapse
Affiliation(s)
- Eve Piekarski
- Nuclear Medicine Department, Bichat Hospital, AP-HP, Paris, France; Université de Paris, Paris, France; Laboratory for Vascular Translational Science, INSERM, Paris, France
| | - Alain Manrique
- Normandie Univ, UNICAEN, Caen, France; Médecine Nucléaire, CHU de Caen, Caen, France; GIP Cyceron, Campus Jules Horowitz, Caen, France
| | - François Rouzet
- Nuclear Medicine Department, Bichat Hospital, AP-HP, Paris, France; Université de Paris, Paris, France; Laboratory for Vascular Translational Science, INSERM, Paris, France
| | - Dominique Le Guludec
- Nuclear Medicine Department, Bichat Hospital, AP-HP, Paris, France; Université de Paris, Paris, France; Laboratory for Vascular Translational Science, INSERM, Paris, France.
| |
Collapse
|
12
|
Mastrocola LE, Amorim BJ, Vitola JV, Brandão SCS, Grossman GB, Lima RDSL, Lopes RW, Chalela WA, Carreira LCTF, Araújo JRND, Mesquita CT, Meneghetti JC. Update of the Brazilian Guideline on Nuclear Cardiology - 2020. Arq Bras Cardiol 2020; 114:325-429. [PMID: 32215507 PMCID: PMC7077582 DOI: 10.36660/abc.20200087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Barbara Juarez Amorim
- Universidade Estadual de Campinas (Unicamp), Campinas, SP - Brazil
- Sociedade Brasileira de Medicina Nuclear (SBMN), São Paulo, SP - Brazil
| | | | | | - Gabriel Blacher Grossman
- Hospital Moinhos de Vento, Porto Alegre, RS - Brazil
- Clínica Cardionuclear, Porto Alegre, RS - Brazil
| | - Ronaldo de Souza Leão Lima
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brazil
- Fonte Imagem Medicina Diagnóstica, Rio de Janeiro, RJ - Brazil
- Clínica de Diagnóstico por Imagem (CDPI), Grupo DASA, Rio de Janeiro, RJ - Brazil
| | | | - William Azem Chalela
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brazil
| | | | | | | | - José Claudio Meneghetti
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brazil
| |
Collapse
|
13
|
Abstract
Cardiac SPECT continues to play a critical role in detecting and managing cardiovascular disease, in particularly coronary artery disease (CAD) (Jaarsma et al 2012 J. Am. Coll. Cardiol. 59 1719-28), (Agostini et al 2016 Eur. J. Nucl. Med. Mol. Imaging 43 2423-32). While conventional dual-head SPECT scanners using parallel-hole collimators and scintillation crystals with photomultiplier tubes are still the workhorse of cardiac SPECT, they have the limitations of low photon sensitivity (~130 count s-1 MBq-1), poor image resolution (~15 mm) (Imbert et al 2012 J. Nucl. Med. 53 1897-903), relatively long acquisition time, inefficient use of the detector, high radiation dose, etc. Recently our field observed an exciting growth of new developments of dedicated cardiac scanners and collimators, as well as novel imaging algorithms for quantitative cardiac SPECT. These developments have opened doors to new applications with potential clinical impact, including ultra-low-dose imaging, absolute quantification of myocardial blood flow (MBF) and coronary flow reserve (CFR), multi-radionuclide imaging, and improved image quality as a result of attenuation, scatter, motion, and partial volume corrections (PVCs). In this article, we review the recent advances in cardiac SPECT instrumentation and imaging methods. This review mainly focuses on the most recent developments published since 2012 and points to the future of cardiac SPECT from an imaging physics perspective.
Collapse
Affiliation(s)
- Jing Wu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, United States of America
| | | |
Collapse
|
14
|
Yoshinaga K, Manabe O, Tamaki N. Absolute quantification of myocardial blood flow. J Nucl Cardiol 2018; 25:635-651. [PMID: 27444500 DOI: 10.1007/s12350-016-0591-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/01/2016] [Indexed: 12/22/2022]
Abstract
With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.
Collapse
Affiliation(s)
- Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Osamu Manabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
15
|
Goshen E, Beilin L, Stern E, Kenig T, Goldkorn R, Ben-Haim S. Feasibility study of a novel general purpose CZT-based digital SPECT camera: initial clinical results. EJNMMI Phys 2018. [PMID: 29536291 PMCID: PMC5849748 DOI: 10.1186/s40658-018-0205-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background The performance of a prototype novel digital single-photon emission computed tomography (SPECT) camera with multiple pixelated CZT detectors and high sensitivity collimators (Digital SPECT; Valiance X12 prototype, Molecular Dynamics) was evaluated in various clinical settings. Images obtained in the prototype system were compared to images from an analog camera fitted with high-resolution collimators. Clinical feasibility, image quality, and diagnostic performance of the prototype were evaluated in 36 SPECT studies in 35 patients including bone (n = 21), brain (n = 5), lung perfusion (n = 3), and parathyroid (n = 3) and one study each of sentinel node and labeled white blood cells. Images were graded on a scale of 1–4 for sharpness, contrast, overall quality, and diagnostic confidence. Results Digital CZT SPECT provided a statistically significant improvement in sharpness and contrast in clinical cases (mean score of 3.79 ± 0.61 vs. 3.26 ± 0.50 and 3.92 ± 0.29 vs. 3.34 ± 0.47 respectively, p < 0.001 for both). Overall image quality was slightly higher for the digital SPECT but not statistically significant (3.74 vs. 3.66). Conclusion CZT SPECT provided significantly improved image sharpness and contrast compared to the analog system in the clinical settings evaluated. Further studies will evaluate the diagnostic performance of the system in large patient cohorts in additional clinical settings.
Collapse
Affiliation(s)
- Elinor Goshen
- Department of Nuclear Medicine, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | - Eli Stern
- Molecular Dynamics, Hamilton, Bermuda
| | - Tal Kenig
- Molecular Dynamics, Hamilton, Bermuda
| | - Ronen Goldkorn
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Nuclear Cardiology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Simona Ben-Haim
- Department of Nuclear Medicine, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Institute of Nuclear Medicine, University College London and UCL Hospitals, London, UK
| |
Collapse
|
16
|
Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score. Int J Cardiol 2017. [PMID: 28622946 DOI: 10.1016/j.ijcard.2017.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Quantitative assessment of myocardial flow reserve (MFR) by single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is challenging but may facilitate evaluation of multi-vessel coronary artery disease (CAD). METHODS We enrolled 153 patients with suspected or known CAD, referred for pharmacological stress MPI. They underwent a 99mTc-perfusion stress/rest SPECT with an ultrafast cadmium-zinc-telluride (CZT) camera. Dynamic data were acquired and time-activity curves fitted to a 1-tissue compartment analysis with input function. K1 was assigned for stress and rest data. The MFR index (MFRi) was calculated as K1 stress/K1 at-rest. The findings were validated by invasive coronary angiography in 69 consecutive patients. RESULTS The global MFRi was 1.46 (1.16-1.76), 1.33 (1.12-1.54), and 1.18 (1.01-1.35), for 1-vessel disease (VD), 2-VD, and 3-VD, respectively. In the 3-VD, global MFRi was lower than that in 0-VD (1.63 [1.22-2.04], P<0.0001) and 1-VD (P=0.003). Multivariate logistic regression analysis for 3-VD showed significant associations with smoking history (odds ratio [OR]: 4.4 [0.4-8.4]), left ventricular ejection fraction (OR: 61.6 [57.5-66.0]), and global MFRi (OR: 119.6 [111.5-127.7], P=0.002). A cut-off value of 1.3 yielded 93.3% sensitivity and 75.9% specificity for diagnosing 3-VD. Fractional flow reserve positively correlated with regional MFRi (r=0.62, P=0.008), and the SYNTAX score correlated negatively with global MFRi (r=0.567, P=0.0003). CONCLUSION We developed and validated a clinically available method for MFR quantification by dynamic 99mTc-perfusion SPECT utilizing a CZT camera, which improves the detectability of multi-vessel CAD.
Collapse
|
17
|
Alenazy AB, Wells RG, Ruddy TD. New solid state cadmium-zinc-telluride technology for cardiac single photon emission computed tomographic myocardial perfusion imaging. Expert Rev Med Devices 2017; 14:213-222. [PMID: 28276752 DOI: 10.1080/17434440.2017.1296763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is well established as diagnostic test for patients with suspected or known coronary artery disease. New camera systems have been developed with cadmium-zinc-telluride (CZT) detectors, novel collimator designs and reconstruction software. Areas covered: We review the current state of cardiac SPECT, advances in conventional camera technology and the development and clinical validation of solid-state CZT cameras. Expert commentary: The development of CZT systems is timely and addresses current issues for clinical SPECT imaging. These systems have a significant increase in photon sensitivity, permitting much lower radiation patient doses at a time when the lay and medical communities are very concerned about the radiation doses resulting from medical imaging. The increased count sensitivity permits shorter acquisition times and greater patient throughput which may address the ongoing and increasing issue of decreased funding for healthcare and, particularly, diagnostic imaging. The improved image resolution should improve diagnostic accuracy and increase the value of SPECT imaging for management of patients with CAD at a time of significant competition from other imaging modalities.
Collapse
Affiliation(s)
- Ali B Alenazy
- a Department of Medicine , University of Ottawa , Ottawa , Canada.,b Division of Cardiology , University of Ottawa Heart Institute , Ottawa , Canada
| | - R Glenn Wells
- a Department of Medicine , University of Ottawa , Ottawa , Canada.,b Division of Cardiology , University of Ottawa Heart Institute , Ottawa , Canada
| | - Terrence D Ruddy
- a Department of Medicine , University of Ottawa , Ottawa , Canada.,b Division of Cardiology , University of Ottawa Heart Institute , Ottawa , Canada
| |
Collapse
|
18
|
|