1
|
Huangfu Z, Yang J, Sun J, Xu B, Tao L, Wu J, Wang F, Wang G, Meng F, Zhong Z. PSMA and Sigma-1 receptor dual-targeted peptide mediates superior radionuclide imaging and therapy of prostate cancer. J Control Release 2024; 375:767-775. [PMID: 39332777 DOI: 10.1016/j.jconrel.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Radionuclide therapy, in particular peptide receptor radionuclide therapy (PRRT), has emerged as a valuable means to combat malignant tumors. The specific affinity of ACUPA peptide toward prostate-specific membrane antigen (PSMA) renders the successful development of PRRT for prostate cancer. The clinical outcome of PRRT is, however, generally challenged by moderate tumor uptake and off-target toxicity. Here, we report on a novel design of Sigma-1 receptor and PSMA dual-receptor targeted peptide (S1R/PSMA-P) for superior radionuclide imaging and therapy of prostate cancer. S1R/PSMA-P was acquired with good purity and could efficiently be labeled with 177Lu to yield 177Lu-S1R/PSMA-P with high specific activity and radiostability. Interestingly, 177Lu-S1R/PSMA-P revealed greatly enhanced affinity to LNCaP cells over single-targeted control 177Lu-PSMA-617. The single photon emission computed tomography (SPECT) imaging demonstrated exceptional uptake and retention of 177Lu-S1R/PSMA-P in LNCaP tumor, affording about 2-fold better tumor accumulation while largely reduced uptake by most normal tissues compared to 177Lu-PSMA-617. The selective uptake in LNCaP tumor was also visualized by positron emission tomography (PET) with 68Ga-S1R/PSMA-P. In accordance, a single and low dosage of 177Lu-S1R/PSMA-P at 11.1 MBq effectively suppressed tumor growth without causing apparent side effects. This dual-targeting strategy presents an appealing radionuclide therapy for malignant tumors.
Collapse
Affiliation(s)
- Zhenyuan Huangfu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Juan Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Bin Xu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Lei Tao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiang Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
2
|
Sathekge MM, Bouchelouche K. Letter from the Editors. Semin Nucl Med 2024; 54:457-459. [PMID: 38972759 DOI: 10.1053/j.semnuclmed.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
|
3
|
Derdau V, Elmore CS, Hartung T, McKillican B, Mejuch T, Rosenbaum C, Wiebe C. The Future of (Radio)-Labeled Compounds in Research and Development within the Life Science Industry. Angew Chem Int Ed Engl 2023; 62:e202306019. [PMID: 37610759 DOI: 10.1002/anie.202306019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this review the applications of isotopically labeled compounds are discussed and put into the context of their future impact in the life sciences. Especially discussing their use in the pharma and crop science industries to follow their fate in the environment, in vivo or in complex matrices to understand the potential harm of new chemical structures and to increase the safety of human society.
Collapse
Affiliation(s)
- Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Research & Development, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Thomas Hartung
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruce McKillican
- Syngenta Crop Protection, LLC, North America Product Safety (retired), USA
| | - Tom Mejuch
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
4
|
Louis B, Nail V, Nachar O, Bouhlel A, Moyon A, Balasse L, Simoncini S, Chabert A, Fernandez S, Brige P, Hache G, Tintaru A, Morgat C, Dignat-George F, Garrigue P, Guillet B. Design and preclinical evaluation of a novel apelin-based PET radiotracer targeting APJ receptor for molecular imaging of angiogenesis. Angiogenesis 2023; 26:463-475. [PMID: 36973482 PMCID: PMC10328853 DOI: 10.1007/s10456-023-09875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
APJ has been extensively described in the pathophysiology of angiogenesis and cell proliferation. The prognostic value of APJ overexpression in many diseases is now established. This study aimed to design a PET radiotracer that specifically binds to APJ. Apelin-F13A-NODAGA (AP747) was synthesized and radiolabeled with gallium-68 ([68Ga]Ga-AP747). Radiolabeling purity was excellent (> 95%) and stable up to 2 h. Affinity constant of [67Ga]Ga-AP747 was measured on APJ-overexpressing colon adenocarcinoma cells and was in nanomolar range. Specificity of [68Ga]Ga-AP747 for APJ was evaluated in vitro by autoradiography and in vivo by small animal PET/CT in both colon adenocarcinoma mouse model and Matrigel plug mouse model. Dynamic of [68Ga]Ga-AP747 PET/CT biodistributions was realized on healthy mice and pigs for two hours, and quantification of signal in organs showed a suitable pharmacokinetic profile for PET imaging, largely excreted by urinary route. Matrigel mice and hindlimb ischemic mice were submitted to a 21-day longitudinal follow-up with [68Ga]Ga-AP747 and [68Ga]Ga-RGD2 small animal PET/CT. [68Ga]Ga-AP747 PET signal in Matrigel was significantly more intense than that of [68Ga]Ga-RGD2. Revascularization of the ischemic hind limb was followed by LASER Doppler. In the hindlimb, [68Ga]Ga-AP747 PET signal was more than twice higher than that of [68Ga]Ga-RGD2 on day 7, and significantly superior over the 21-day follow-up. A significant, positive correlation was found between the [68Ga]Ga-AP747 PET signal on day 7 and late hindlimb perfusion on day 21. We developed a new PET radiotracer that specifically binds to APJ, [68Ga]Ga-AP747 that showed more efficient imaging properties than the most clinically advanced tracer of angiogenesis, [68Ga]Ga-RGD2.
Collapse
Affiliation(s)
- Béatrice Louis
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
| | - Vincent Nail
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France
| | - Oriane Nachar
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France
| | - Ahlem Bouhlel
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
| | - Anaïs Moyon
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France
| | - Laure Balasse
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
| | | | | | | | - Pauline Brige
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Aix Marseille Univ, LIIE, Marseille, France
| | - Guillaume Hache
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
| | - Aura Tintaru
- Aix Marseille Univ, CNRS, CINaM, Marseille, France
| | - Clément Morgat
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000, Bordeaux, France
- Nuclear Medicine Department, University Hospital of Bordeaux, 33000, Bordeaux, France
| | | | - Philippe Garrigue
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France.
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France.
| | - Benjamin Guillet
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France
| |
Collapse
|
5
|
Lawal IO. Nuclear Medicine Training: Skills and Competencies Required for Practice in the 21st Century. World J Nucl Med 2023; 22:75-77. [PMID: 37223624 PMCID: PMC10202562 DOI: 10.1055/s-0043-1769588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Affiliation(s)
- Ismaheel O. Lawal
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Theranostics in Metastatic Castrate Resistant Prostate Cancer. Prostate Cancer 2021. [DOI: 10.36255/exonpublications.prostatecancer.theranostics.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
7
|
A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): "Lactosome" Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy. Life (Basel) 2021; 11:life11020158. [PMID: 33670777 PMCID: PMC7923095 DOI: 10.3390/life11020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
“Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the “89Zr-labeled CPP and TPP-loaded Lactosome particles” and future directions based on important milestones and recent developments in this platform.
Collapse
|
8
|
Covington MF, Schwarz SW, Hoffman JM. The Regulatory Process for Imaging Agents and Devices. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Maina T, Thakur M. SPECT Radiochemistry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 2020; 25:1174-1188. [PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Theranostics has the potential to revolutionize the diagnosis, treatment, and prognosis of cancer, where novel drug delivery systems could be used to detect the disease at an early stage with instantaneous treatment. Various preclinical approaches of nanoemulsions with entrapped contrast and chemotherapeutic agents have been documented to act specifically on the tumor microenvironment (TME) for both diagnostic and therapeutic purposes. However, bringing these theranostic nanoemulsions through preclinical trials to patients requires several fundamental hurdles to be overcome, including the in vivo behavior of the delivery tool, degradation, and clearance from the system, as well as long-term toxicities. Here, we discuss recent advances in the application of nanoemulsions in molecular imaging with simultaneous therapeutic efficacy in a single delivery system.
Collapse
Affiliation(s)
- Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
11
|
Silva F, Paulo A, Pallier A, Même S, Tóth É, Gano L, Marques F, Geraldes CF, Castro MMC, Cardoso AM, Jurado AS, López-Larrubia P, Lacerda S, Cabral Campello MP. Dual Imaging Gold Nanoplatforms for Targeted Radiotheranostics. MATERIALS 2020; 13:ma13030513. [PMID: 31978954 PMCID: PMC7040626 DOI: 10.3390/ma13030513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Gold nanoparticles (AuNPs) are interesting for the design of new cancer theranostic tools, mainly due to their biocompatibility, easy molecular vectorization, and good biological half-life. Herein, we report a gold nanoparticle platform as a bimodal imaging probe, capable of coordinating Gd3+ for Magnetic Resonance Imaging (MRI) and 67Ga3+ for Single Photon Emission Computed Tomography (SPECT) imaging. Our AuNPs carry a bombesin analogue with affinity towards the gastrin releasing peptide receptor (GRPr), overexpressed in a variety of human cancer cells, namely PC3 prostate cancer cells. The potential of these multimodal imaging nanoconstructs was thoroughly investigated by the assessment of their magnetic properties, in vitro cellular uptake, biodistribution, and radiosensitisation assays. The relaxometric properties predict a potential T1- and T2- MRI application. The promising in vitro cellular uptake of 67Ga/Gd-based bombesin containing particles was confirmed through biodistribution studies in tumor bearing mice, indicating their integrity and ability to target the GRPr. Radiosensitization studies revealed the therapeutic potential of the nanoparticles. Moreover, the DOTA chelating unit moiety versatility gives a high theranostic potential through the coordination of other therapeutically interesting radiometals. Altogether, our nanoparticles are interesting nanomaterial for theranostic application and as bimodal T1- and T2- MRI / SPECT imaging probes.
Collapse
Affiliation(s)
- Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Carlos F.G.C. Geraldes
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- Coimbra Chemistry Center, University of Coimbra, 3004-535 Coimbra, Portugal
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde. Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - M. Margarida C.A. Castro
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- Coimbra Chemistry Center, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ana M. Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
- Institute for Interdisciplinary Research of the University of Coimbra, 3030-789 Coimbra, Portugal
| | - Amália S. Jurado
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, c/ Arturo Duperier 4, 28029 Madrid, Spain;
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
- Correspondence: (M.P.C.C.); (S.L.)
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
- Correspondence: (M.P.C.C.); (S.L.)
| |
Collapse
|
12
|
Nelson BJB, Wilson J, Richter S, Duke MJM, Wuest M, Wuest F. Taking cyclotron 68Ga production to the next level: Expeditious solid target production of 68Ga for preparation of radiotracers. Nucl Med Biol 2020; 80-81:24-31. [PMID: 32004935 DOI: 10.1016/j.nucmedbio.2020.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Gallium-68 is an important radionuclide for positron emission tomography (PET) with steadily increasing applications of 68Ga-based radiopharmaceuticals for clinical use. Current 68Ga sources are primarily 68Ge/68Ga-generators, along with successful attempts of 68Ga production using a cyclotron. This study evaluated cyclotron 68Ga production and automated separation using expeditiously manufactured solid targets, demonstrates an order of magnitude improvement in yield compared to 68Ge/68Ga generators, and presents a convenient alternative to existing cyclotron production processes. A comparison of radiolabeling and preclinical PET imaging was performed with both cyclotron and generator produced 68Ga. METHODS 100 mg enriched 68Zn (99.3% 68Zn, 0.48% 67Zn, 0.1% 66Zn) pellets pressed on silver discs were bombarded for 20-75 min using 12.5 MeV proton beam energies and 10-30 μA currents. 68Ga was separated using an automated TRASIS AllinOne synthesizer employing AG 50W-X8 and UTEVA resins. Post-separation recovery of the 68Zn by electrolysis yielded 76.7 ± 4.3%. Radionuclidic purity of cyclotron-produced 68Ga was investigated with gamma spectroscopy using a HPGe-detector. Radiolabeling was investigated using the macrocyclic chelator DOTA and the bombesin-derived peptide NOTA-BBN2. PET imaging was performed using [68Ga]Ga-NOTA-BBN2 in a PC3 xenograft model. RESULTS 600 μA·min fresh and recycled quadruplet 68Zn target irradiations (n = 8) at 12.5 MeV and 30 μA yielded 13.9 ± 1.0 GBq 68Ga; 2200 μA·min irradiations (n = 3) yielded 37.5 ± 1.9 GBq 68Ga. HPGe analysis showed EOB 0.0074% and 0.0084% of total activity of 66Ga and 67Ga, respectively. Metal impurities were 0.06 ± 0.03 μg/GBq Zn, 0.13 ± 0.007 μg/GBq Fe, and 0.02 ± 0.01 μg/GBq Al for cyclotron 68Ga. Cyclotron and 68Ge/68Ga generator 68Ga respective DOTA and NOTA-BBN2 labeling incorporations were 99.4 ± 0.0% and 99.3 ± 0.2%, and 90.4 ± 1.5% and 93.0 ± 3.6% determined by radio-thin layer chromatography (radio-TLC). Preclinical PET imaging comparison between generator and cyclotron produced 68Ga showed identical radiotracer tumor uptake and biodistribution profiles in PC3 tumor bearing mice. CONCLUSIONS Cyclotron 68Ga production provides highly scalable production with equivalent or superior quality 68Ga to a 68Ge/68Ga generator, while providing identical biodistribution and tumor uptake profiles. Our described targetry is simpler and more cost-effective than existing liquid and solid targetry, enabling a turnkey production system for multi-facility distribution of cyclotron produced 68Ga. The manufacturing simplicity described has potential applications for producing other radiometals such as 44Sc. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Our cost-effective method of solid target 68Ga production can enhance 68Ga production capabilities to meet the high demand for 68Ga-radiopharmaceuticals for research and clinical use.
Collapse
Affiliation(s)
- Bryce J B Nelson
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - John Wilson
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - Susan Richter
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - M John M Duke
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
13
|
|
14
|
Recent Advances in Nuclear Imaging of Receptor Expression to Guide Targeted Therapies in Breast Cancer. Cancers (Basel) 2019; 11:cancers11101614. [PMID: 31652624 PMCID: PMC6826563 DOI: 10.3390/cancers11101614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer remains the most frequent cancer in women with different patterns of disease progression and response to treatments. The identification of specific biomarkers for different breast cancer subtypes has allowed the development of novel targeting agents for imaging and therapy. To date, patient management depends on immunohistochemistry analysis of receptor status on bioptic samples. This approach is too invasive, and in some cases, not entirely representative of the disease. Nuclear imaging using receptor tracers may provide whole-body information and detect any changes of receptor expression during disease progression. Therefore, imaging is useful to guide clinicians to select the best treatments for each patient and to evaluate early response thus reducing unnecessary therapies. In this review, we focused on the development of novel tracers that are ongoing in preclinical and/or clinical studies as promising tools to lead treatment decisions for breast cancer management.
Collapse
|
15
|
|