1
|
Xiao Y, Zhong L, Liu J, Chen L, Wu Y, Li G. Progress and application of intelligent nanomedicine in urinary system tumors. J Pharm Anal 2024; 14:100964. [PMID: 39582528 PMCID: PMC11582553 DOI: 10.1016/j.jpha.2024.100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 11/26/2024] Open
Abstract
Urinary system tumors include malignancies of the bladder, kidney, and prostate, and present considerable challenges in diagnosis and treatment. The conventional therapeutic approaches against urinary tumors are limited by the lack of targeted drug delivery and significant adverse effects, thereby necessitating novel solutions. Intelligent nanomedicine has emerged as a promising therapeutic alternative for cancer in recent years, and uses nanoscale materials to overcome the inherent biological barriers of tumors, and enhance diagnostic and therapeutic accuracy. In this review, we have explored the recent advances and applications of intelligent nanomedicine for the diagnosis, imaging, and treatment of urinary tumors. The principles of nanomedicine design pertaining to drug encapsulation, targeting and controlled release have been discussed, with emphasis on the strategies for overcoming renal clearance and tumor heterogeneity. Furthermore, the therapeutic applications of intelligent nanomedicine, its advantages over traditional chemotherapy, and the challenges currently facing clinical translation of nanomedicine, such as safety, regulation and scalability, have also been reviewed. Finally, we have assessed the potential of intelligent nanomedicine in the management of urinary system tumors, emphasizing emerging trends such as personalized nanomedicine and combination therapies. This comprehensive review underscores the substantial contributions of nanomedicine to the field of oncology and offers a promising outlook for more effective and precise treatment strategies for urinary system tumors.
Collapse
Affiliation(s)
- Yingming Xiao
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Lei Zhong
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jinpeng Liu
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Li Chen
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yi Wu
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ge Li
- Emergency Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| |
Collapse
|
2
|
Li ZA, Wen KC, Liu JH, Zhang C, Zhang F, Li FQ. Strategies for intravesical drug delivery: From bladder physiological barriers and potential transport mechanisms. Acta Pharm Sin B 2024; 14:4738-4755. [PMID: 39664414 PMCID: PMC11628814 DOI: 10.1016/j.apsb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 12/13/2024] Open
Abstract
Intravesical drug delivery (IDD), as a noninvasive, local pathway of administration, has great clinical significance for bladder diseases, especially bladder cancer. Despite the many advantages of IDD such as enhanced focal drug exposure and avoidance of systemic adverse drug reactions, the effectiveness of drug delivery is greatly challenged by the physiological barriers of the bladder. In this review, the routes and barriers encountered in IDD are first discussed, and attention is paid to the potential internal/mucosal retention and absorption-transport mechanisms of drugs. On this basis, the avoidance, overcoming and utilization of the "three barriers" is further emphasized, and current design and fabrication strategies for intravesical drug delivery systems (IDDSs) are described mainly from the perspectives of constructing drug reservoirs, enhancing permeability and targeting, with the hope of providing systematic understanding and inspirations for the research of novel IDDSs and their treatment of bladder diseases.
Collapse
Affiliation(s)
- Zheng-an Li
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Kai-chao Wen
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Ji-heng Liu
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Feng Zhang
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Feng-qian Li
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| |
Collapse
|
3
|
Xu F, Xu X, Deng H, Yu Z, Huang J, Deng L, Chao H. The role of deubiquitinase USP2 in driving bladder cancer progression by stabilizing EZH2 to epigenetically silence SOX1 expression. Transl Oncol 2024; 49:102104. [PMID: 39197387 PMCID: PMC11399563 DOI: 10.1016/j.tranon.2024.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The Ubiquitin-proteasome system (UPS) is known to participate in multiple cellular events. The deubiquitinating enzyme USP2 (ubiquitin-specific protease 2) is involved in the vasculature remodeling process associated with bladder cancer (BLCA). However, the role of USP2 in BLCA progression has not been clearly defined and whether its regulatory mechanism involving EZH2 (Enhancer of Zeste Homolog 2) remains elusive yet. METHODS Differential expression patterns of USP2 and EZH2 were examined in 46 pairs of BLCA and adjacent normal tissues. USP2 knockdown plasmids were transfected into 5637 and J82 cells to detect its impact on cell proliferation, migration and invasion using CCK-8, EdU, wound healing and transwell assays. The USP2-EZH2-SOX1 cascade was confirmed through Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays. An in vivo verification was conducted using a xenograft model of nude mice. RESULTS USP2 was significantly upregulated in BLCA tissues and cells, which was associated with poor clinical prognosis in BLCA patients. USP2 depletion resulted in decreased cell proliferation, migration and invasion in BLCA cells. USP2 stabilized the EZH2 protein by directly binding to it, thereby reducing its ubiquitination. Ectopic introduction of EZH2 restored cell growth and invasion of BLCA cells, which had been inhibited by USP2 silencing. USP2-mediated stabilization of EZH2 promoted the enrichment of histone H3K27me3 and repression of SOX1. Involvement of the USP2-EZH2-SOX1 axis in tumor formation was ultimately verified in vivo. CONCLUSION Our findings reveal that a USP2-EZH2-SOX1 axis orchestrates the interplay between dysregulated USP2 and EZH2-mediated gene epigenetic silencing in BLCA progression.
Collapse
Affiliation(s)
- Fanghua Xu
- Department of Pathology, Ping Xiang People's Hospital, Pingxiang Economic and Technological Development District, Ping Xiang, Jiangxi 337000, China
| | - Xiangda Xu
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huanhuan Deng
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhaojun Yu
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianbiao Huang
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Leihong Deng
- Department of Ultrasonic medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Haichao Chao
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
4
|
Wang Y, Wang J, Zeng T, Qi J. Data-mining-based biomarker evaluation and experimental validation of SHTN1 for bladder cancer. Cancer Genet 2024; 288-289:43-53. [PMID: 39260052 DOI: 10.1016/j.cancergen.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Gene therapy in bladder cancer (BLCA) remains an area ripe for exploration. Recent studies have highlighted the crucial role of SHTN1 in the initiation and progression of various cancers and SHTN1 may have interacted with the FGFR gene. However, its specific function in BLCA remains unclear. MATERIALS AND METHODS We investigated the association between SHTN1 expression and prognosis, immune infiltration, and the tumor microenvironment (TME) across multiple malignancies using 433 BLCA samples from The Cancer Genome Atlas (TCGA). Differential gene expression analysis, functional annotation via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were performed for SHTN1-related genes by using R packages. Immune response and TME scores, along with drug sensitivity profiles of SHTN1, were analyzed using R packages. Immunohistochemistry (IHC) and western blotting were conducted to assess SHTN1 expression in surgical specimens from BLCA patients.CCK8 assay and cells wound healing assay were performed.The bioinformatics was analyzed by R software. Significant differences were evaluated using unpaired t test. RESULTS SHTN1 expression levels were significantly elevated in BLCA associated with poor prognosis (p < 0.01). Receiver operating characteristic (ROC) curves and nomograms demonstrated the diagnostic and prognostic efficacy of SHTN1 in BLCA. Notably, SHTN1 expression was higher in high-grade BLCA compared to lower-grade (p = 5.6e-10), a finding corroborated by IHC and western blotting. Pathway enrichment analysis revealed significant involvement of the Neuroactive ligand-receptor interaction and Chemical carcinogenesis - DNA adducts signaling pathways among SHTN1 differentially expressed genes. In terms of immune infiltration, T cells CD8, T cells follicular helper, and dendritic cells were predominant in the SHTN1 low-expression group, whereas macrophages M0 and M2, and mast cells were predominant in the high-expression group. Multivariate Cox regression analysis identified SHTN1 as an independent prognostic factor for overall survival (HR = 2.93; 95 % CI = 1.40-6.13; p = 0.004).CCK8 and wound healing experiments showed that SHTN1 knockdown reduced the cell proliferation and migration. Western blot showed that the EMT pathway was clearly associated with SHTN1. CONCLUSIONS Our findings suggest that SHTN1 holds promise as a prognostic and diagnostic biomarker for BLCA. Moreover, it is closely associated with elevated immune infiltration and distinct characteristics of the tumor microenvironment in BLCA.
Collapse
Affiliation(s)
- Yueying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiajun Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tao Zeng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
5
|
Li C, Luo P, Guo F, Jia X, Shen M, Zhang T, Wang S, Du T. Identification of HSPG2 as a bladder pro-tumor protein through NID1/AKT signaling. Cancer Cell Int 2024; 24:345. [PMID: 39438949 PMCID: PMC11515648 DOI: 10.1186/s12935-024-03527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE Heparan sulfate proteoglycans (HSPGs) are complex molecules found on the cell membrane and within the extracellular matrix, increasingly recognized for their role in tumor progression. This study aimed to investigate the involvement of Heparan sulfate proteoglycan 2 (HSPG2) in the progression of bladder cancer. METHODS We identified HSPG2 as a promoter of bladder tumor progression using single-cell RNA sequencing and transcriptome analysis of sequencing data from seven patient samples obtained from the Gene Expression Omnibus (GEO) database (GSE135337). Transcript profiles of 28 normal tissues and 407 bladder tumor tissues were analyzed for HSPG2 expression and survival outcomes using the Sanger tools and cBioPortal databases. HSPG2-overexpressing T24 and Biu-87 cell lines were generated, and cell proliferation and migration were assessed using CCK-8 and Transwell assays. Western blotting and immunostaining were performed to evaluate the activation of Nidogen-1 (NID1)/protein kinase B (AKT) signaling. Mouse models with patient-derived tumor organoids (HSPG2high and HSPG2low) were established to assess anticancer effects. RESULTS Our results demonstrated a marked upregulation of HSPG2 in malignant bladder tumors, which correlated significantly with poor patient prognosis. HSPG2 overexpression consistently enhanced bladder tumor cell proliferation and conferred chemotherapy resistance, as shown in both in vitro and in vivo experiments. Mechanistically, HSPG2 upregulated NID1 expression, leading to the activation of the AKT pro-survival signaling pathway and promoting sustained tumor growth in bladder cancer. CONCLUSION This study highlights the critical pro-tumor role of HSPG2/NID1/AKT signaling in bladder cancer and suggests its potential as a therapeutic target in clinical treatment.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Pengwei Luo
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengzhu Guo
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xu Jia
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Min Shen
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Ting Zhang
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Shusen Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Ting Du
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
6
|
Jiang Z, Liu Z. Target recycle initiated entropy driven assembly strategy for sensitive, enzyme-free, and portable miRNA detection. Anal Biochem 2024; 693:115593. [PMID: 38885872 DOI: 10.1016/j.ab.2024.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
MicroRNA (miRNA) is a pivotal biomarker in the diagnosis of various cancers, including bladder cancer (BCa). Despite their significance, the low abundance of miRNA presents a substantial challenge for sensitive and reliable detection. We introduce an innovative, highly sensitive assay for miRNA expression quantification that is both enzyme-free and portable. This method leverages the synergy of target recycling and entropy-driven assembly (EDA) for enhanced sensitivity and specificity. The proposed method possesses several advantages, including i) dual signal amplification through target recycling and EDA, which significantly boosts sensitivity with a lower limit of detection of 2.54 fM; ii) elimination of enzyme requirements, resulting in a cost-effective and stable signal amplification process; and iii) utilization of a personal glucose meter (PGM) for signal recording, rendering the method portable and adaptable to diverse settings. In summary, this PGM-based approach holds promising potential for clinical molecular diagnostics, offering a practical and efficient solution for miRNA analysis in cancer detection.
Collapse
Affiliation(s)
- Zhijun Jiang
- Department of Urinary Surgery, Yixing People's Hospital, Yixing City, Jiangsu Province, 214200, China
| | - Zhiyuan Liu
- Department of Urinary Surgery, Yixing People's Hospital, Yixing City, Jiangsu Province, 214200, China.
| |
Collapse
|
7
|
Jian Y, Chen Q, Al-Danakh A, Xu Z, Xu C, Sun X, Yu X, Yang D, Wang S. Identification and validation of sialyltransferase ST3Gal5 in bladder cancer through bioinformatics and experimental analysis. Int Immunopharmacol 2024; 138:112569. [PMID: 38959540 DOI: 10.1016/j.intimp.2024.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Bladder cancer (BLCA) is one of the top ten most common cancers in the world. Aberrant sialylation is a common feature in tumorigenesis and tumor immunity. This study seeks to explore the potential impact of sialyltransferase ST3Gal5 on BLCA. METHODS Initially, glycosyltransferase-related DEGs (GRDEGs) were identified using multiple bioinformatics approaches in TCGA-BLCA cohort and validated using GEO databases. Clinical prognosis integration facilitated the determination of ST3Gal5 as an independent prognostic factor in BLCA, employing univariate and multivariate Cox regression analyses. Immune cell infiltration was assessed via CIBERSORT and ssGSEA analyses, while HLA and immune checkpoint genes' levels, along with drug sensitivity, were evaluated in low- and high-ST3Gal5 groups. The TIDE and IPS scores were used to gauge the immune checkpoint blockade (ICB) response. Furthermore, functional experiments, both in vivo and in vitro, were conducted to elucidate the biological roles of ST3Gal5. RESULTS In agreement with bioinformatics findings, ST3Gal5 expression was down-regulated in BLCA tissues and cells, correlating with poorer prognostic outcomes. The StromalScore, ImmuneScore, and ESTIMATEScore were significantly elevated in low-ST3Gal5 group. Moreover, the levels of HLA and immune checkpoint genes were upregulated in low-ST3Gal5 group. Down-regulated ST3Gal5 promoted the proliferation, migration, and invasion of BLCA cells in vivo and in vitro. CONCLUSION Our findings demonstrated that low ST3Gal5 level promoted tumorigenesis and progression of BLCA, implying its potential as a predictive biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuli Jian
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China; Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China; Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Zhongyang Xu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chunyan Xu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiaoxin Sun
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiao Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China.
| | - Shujing Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
8
|
Zhang J, Zhang W, Liu J, Liu Y, Jiang Y, Ainiwaer A, Chen H, Gu Z, Chen H, Mao S, Guo Y, Xu T, Xu Y, Wu Y, Yao X, Yan Y. SOX7 inhibits the malignant progression of bladder cancer via the DNMT3B/CYGB axis. MOLECULAR BIOMEDICINE 2024; 5:36. [PMID: 39227479 PMCID: PMC11371982 DOI: 10.1186/s43556-024-00198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Bladder cancer (BCa) stands out as a highly prevalent malignant tumor affecting the urinary system. The Sex determining region Y-box protein family is recognized for its crucial role in BCa progression. However, the effect of Sex determining region Y-box 7 (SOX7) on BCa progression has not been fully elucidated. Herein, RNA-sequencing, western blot (WB), immunohistochemistry (IHC), immunofluorescence (IF) and tissue microarray were utilized to assess SOX7 expression in vitro and in vivo. Additionally, SOX7 expression, prognosis, and SOX7 + cytoglobin (CYGB) score were analyzed using R software. In vitro and vivo experiments were performed with BCa cell lines to validate the effect of SOX7 knockdown and overexpression on the malignant progression of BCa. The results showed that SOX7 exhibits low expression in BCa. It functions in diverse capacities, inhibiting the proliferative, migratory, and invasive capabilities of BCa. In addition, the experimental database demonstrated that SOX7 binds to the promoter of DNA methyltransferase 3 beta (DNMT3B), leading to the transcriptional inhibition of DNMT3B. This subsequently results in a reduced methylation of CYGB promoter, ultimately inhibiting the tumor progression of BCa. SOX7 + CYGB scores were significantly linked to patient prognosis. In conclusion, SOX7 inhibits the malignant progression of BCa via the DNMT3B/CYGB axis. Additionally, the SOX7 + CYGB score is capable of predicting the prognostic outcomes of BCa patients. Therefore, SOX7 and CYGB may play an important role in the progression of bladder cancer, and they can be used as prognostic markers of bladder cancer patients.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ji Liu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yuchao Liu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yufeng Jiang
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Chongming Branch, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ailiyaer Ainiwaer
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Xinjiang Uygur Autonomous Region, Kashgar Prefecture Second People's Hospital, Kashgar, China
| | - Hanyang Chen
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Zhuoran Gu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Chen
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yadong Guo
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yunfei Xu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Yuan Wu
- Department of Urology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.
| | - Xudong Yao
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Yang Yan
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
9
|
Wang X, Jin L, Zhang X, Li M, Zhu A, Zhang M, Fan H. Transcriptomic profiling and risk assessment in bladder cancer: Insights from copper death-related genes. Cell Signal 2024; 121:111237. [PMID: 38810861 DOI: 10.1016/j.cellsig.2024.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The study aimed to investigate the role of copper death-related genes (CRGs) in bladder cancer (BC) for improved prognosis assessment. METHODS Multi-omics techniques were utilized to analyze CRG expression in BC tissues from TCGA and GEO databases. Consensus clustering categorized patients into molecular subtypes based on clinical characteristics and immune cell infiltration. RESULTS An innovative risk assessment model identified eight critical genes associated with BC risk. In vitro and in vivo experiments validated LIPT1's significant impact on copper-induced cell death, proliferation, migration, and invasion in BC. CONCLUSION This multi-omics analysis elucidates the pivotal role of CRGs in BC progression, suggesting enhanced risk assessment through molecular subtype categorization and identification of key genes like LIPT1. Insights into these mechanisms offer the potential for improved diagnosis and treatment strategies for BC patients.
Collapse
Affiliation(s)
- Xu Wang
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Long Jin
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Xiaoyu Zhang
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Mingyu Li
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Ankang Zhu
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Ming Zhang
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Haitao Fan
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China.
| |
Collapse
|
10
|
El-Agrody E, Abol-Enein H, Mortada WI, Awadalla A, Tarabay HH, Elkhawaga OA. Does the Presence of Heavy Metals Influence the Gene Expression and Oxidative Stress in Bladder Cancer? Biol Trace Elem Res 2024; 202:3475-3482. [PMID: 38072891 PMCID: PMC11144142 DOI: 10.1007/s12011-023-03950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/01/2023] [Indexed: 06/02/2024]
Abstract
Heavy metal toxicity is associated with cancer progression. Studies have reported the relation between some metal ions and bladder cancer (BC). Direct influence of such agents in bladder carcinogenesis is still needed. Total 49 BC patients were included in the study. Level of Pb, Cr, Hg and Cd, oxidative stress markers, and gene expression of Bcl-2, Bax, IL-6, AKT, and P38 genes were detected in cancer and non-cancerous tissues obtained from bladder cancer patients. Concentrations of Pb, Cr, and Cd were significantly elevated in cancer tissues than normal, while Hg level was significantly increased in normal tissue than cancer. MDA level was significantly higher and SOD activity was lower in the cancer tissues compared to non-cancerous. The expressions of Bcl-2, IL-6, AKT, and P38 were significantly increased in the cancer tissues than in normal tissues while Bax level was significantly increased in non-cancerous tissue than in cancer tissue. In cancer tissue, there were significant correlations between Cr level with expression of Bax, AKT, and P38 while Cd level was significantly correlate with Bax, IL-6, AKT, and P38expression. The correlation between Cr and Cd with the expression of Bax, IL-6, AKT, and P38 may indicate a carcinogenic role of these metals on progression of bladder cancer.
Collapse
Affiliation(s)
- Eslam El-Agrody
- Department of Chemistry, Faculty of Science, Mansoura University, Biochemistry Division, Mansoura, Egypt
| | - Hassan Abol-Enein
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Wael I Mortada
- Clinical Chemistry Laboratory, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Heba H Tarabay
- Department of Chemistry, Faculty of Science, Mansoura University, Biochemistry Division, Mansoura, Egypt
| | - Om-Ali Elkhawaga
- Department of Chemistry, Faculty of Science, Mansoura University, Biochemistry Division, Mansoura, Egypt
| |
Collapse
|
11
|
Zhou Y, Zheng X, Sun Z, Wang B. Analysis of Bladder Cancer Staging Prediction Using Deep Residual Neural Network, Radiomics, and RNA-Seq from High-Definition CT Images. Genet Res (Camb) 2024; 2024:4285171. [PMID: 38715622 PMCID: PMC11074870 DOI: 10.1155/2024/4285171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 06/30/2024] Open
Abstract
Bladder cancer has recently seen an alarming increase in global diagnoses, ascending as a predominant cause of cancer-related mortalities. Given this pressing scenario, there is a burgeoning need to identify effective biomarkers for both the diagnosis and therapeutic guidance of bladder cancer. This study focuses on evaluating the potential of high-definition computed tomography (CT) imagery coupled with RNA-sequencing analysis to accurately predict bladder tumor stages, utilizing deep residual networks. Data for this study, including CT images and RNA-Seq datasets for 82 high-grade bladder cancer patients, were sourced from the TCIA and TCGA databases. We employed Cox and lasso regression analyses to determine radiomics and gene signatures, leading to the identification of a three-factor radiomics signature and a four-gene signature in our bladder cancer cohort. ROC curve analyses underscored the strong predictive capacities of both these signatures. Furthermore, we formulated a nomogram integrating clinical features, radiomics, and gene signatures. This nomogram's AUC scores stood at 0.870, 0.873, and 0.971 for 1-year, 3-year, and 5-year predictions, respectively. Our model, leveraging radiomics and gene signatures, presents significant promise for enhancing diagnostic precision in bladder cancer prognosis, advocating for its clinical adoption.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xingju Zheng
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhucheng Sun
- Interventional Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Wang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Lu G, Qiu Y. SPI1-mediated CXCL12 expression in bladder cancer affects the recruitment of tumor-associated macrophages. Mol Carcinog 2024; 63:448-460. [PMID: 38037991 DOI: 10.1002/mc.23663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Bladder cancer (BC) originates principally from the epithelial compartment of the bladder. The immune system and its diverse players, chemokines, in particular, have been related to the responses against BC. The goal of the study here was to examine if C-X-C motif chemokine 12 (CXCL12) in BC cells could manipulate protumorigenic properties of tumor-associated macrophages (TAMs) which affects anticancer immunity supporting tumor development in the tumor microenvironment. CXCL12 was found to be overexpressed in BC and predicted poor survival. CXCL12 in BC was associated with multiple immune cell infiltrations, with TAM infiltration playing a key role. CXCL12 elevated chemotaxis of TAMs. CXCL12 downregulation inhibited cellular activity and TAM and suppressed the ability of TAMs to secrete inflammatory factors and MMP9. Furthermore, chromatin immunoprecipitation analysis revealed that SPI1 was localized to the CXCL12 promoter in BC cells, suggesting that CXCL12 serves a direct target of SPI1, which was consistent with the fact that SPI1 reversed the repressive effects of si-CXCL12 on BC cell activity and TAM recruitment in vitro and in vivo. Collectively, these findings suggest that SPI1 is involved in modulating TAM recruitment, representing a new mechanism through which it may influence tumor growth. This may be partly mediated by regulating CXCL12 expression.
Collapse
Affiliation(s)
- Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
13
|
Ying X, Huang Y, Liu B, Hu W, Ji D, Chen C, Zhang H, Liang Y, Lv Y, Ji W. Targeted m 6A demethylation of ITGA6 mRNA by a multisite dCasRx-m 6A editor inhibits bladder cancer development. J Adv Res 2024; 56:57-68. [PMID: 37003532 PMCID: PMC10834799 DOI: 10.1016/j.jare.2023.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
INTRODUCTION N6-methyladenosine (m6A) modification contributes to the pathogenesis and development of various cancers, including bladder cancer (BCa). In particular, integrin α6 (ITGA6) promotes BCa progression by cooperatively regulating multisite m6A modification. However, the therapeutic effect of targeting ITGA6 multisite m6A modifications in BCa remains unknown. OBJECTIVES We aim to develop a multisite dCasRx- m6A editor for assessing the effects of the multisite dCasRx-m6A editor targeted m6A demethylation of ITGA6 mRNA in BC growth and progression. METHODS The multisite dCasRx- m6A editor was generated by cloning. m6A-methylated RNA immunoprecipitation (meRIP), luciferase reporter, a single-base T3 ligase-based qPCR-amplification, Polysome profiling and meRIP-seq experiments were performed to determine the targeting specificity of the multisite dCasRx-m6A editor. We performed cell phenotype analysis and used in vivo mouse xenograft models to assess the effects of the multisite dCasRx-m6A editor in BC growth and progression. RESULTS We designed a targeted ITGA6 multi-locus guide (g)RNA and established a bidirectional deactivated RfxCas13d (dCasRx)-based m6A-editing platform, comprising a nucleus-localized dCasRx fused with the catalytic domains of methyltransferase-like 3 (METTL3-CD) or α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5-CD), to simultaneously manipulate the methylation of ITGA6 mRNA at four m6A sites. The results confirmed the dCasRx-m6A editor modified m6A at multiple sites in ITGA6 mRNA, with low off-target effects. Moreover, targeted m6A demethylation of ITGA6 mRNA by the multisite dCasRx-m6A editor significantly reduced BCa cell proliferation and migration in vitro and in vivo. Furthermore, the dCasRx-ALKBH5-CD and ITGA6 multi-site gRNA delivered to 5-week-old BALB/cJNju-Foxn1nu/Nju nude mice via adeno-associated viral vectors significantly inhibited BCa cell growth. CONCLUSION Our study proposes a novel therapeutic tool for the treatment of BC by applying the multisite dCasRx-m6A editor while highlighting its potential efficacy for treating other diseases associated with abnormal m6A modifications.
Collapse
Affiliation(s)
- Xiaoling Ying
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yapeng Huang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Bixia Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - WenYu Hu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ding Ji
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Cong Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaomin Liang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yifan Lv
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
14
|
Dong Y, Wu X, Xu C, Hameed Y, Abdel-Maksoud MA, Almanaa TN, Kotob MH, Al-Qahtani WH, Mahmoud AM, Cho WC, Li C. Prognostic model development and molecular subtypes identification in bladder urothelial cancer by oxidative stress signatures. Aging (Albany NY) 2024; 16:2591-2616. [PMID: 38305808 PMCID: PMC10911378 DOI: 10.18632/aging.205499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Mounting studies indicate that oxidative stress (OS) significantly contributes to tumor progression. Our study focused on bladder urothelial cancer (BLCA), an escalating malignancy worldwide that is growing rapidly. Our objective was to verify the predictive precision of genes associated with overall survival (OS) by constructing a model that forecasts outcomes for bladder cancer and evaluates the prognostic importance of these genetic markers. METHODS Transcriptomic data were obtained from TCGA-BLCA and GSE31684, which are components of the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. To delineate distinct molecular subtypes, we employed the non-negative matrix factorization (NMF)method. The significance of OS-associated genes in predicting outcomes was assessed using lasso regression, multivariate Cox analysis, and univariate Cox regression analysis. For external validation, we employed the GSE31684 dataset. CIBERSORT was utilized to examine the tumor immune microenvironment (TIME). A nomogram was created and verified using calibration and receiver operating characteristic (ROC) curves, which are based on risk signatures. We examined variations in clinical characteristics and tumor mutational burden (TMB) among groups classified as high-risk and low-risk. To evaluate the potential of immunotherapy, the immune phenomenon score (IPS) was computed based on the risk score. In the end, the pRRophetic algorithm was employed to forecast the IC50 values of chemotherapy medications. RESULTS In our research, we examined the expression of 275 genes associated with OS in 19 healthy and 414 cancerous tissues of the bladder obtained from the TCGA database. As a result, a new risk signature was created that includes 4 genes associated with OS (RBPMS, CRYAB, P4HB, and PDGFRA). We found two separate groups, C1 and C2, that showed notable variations in immune cells and stromal score. According to the Kaplan-Meier analysis, patients classified as high-risk experienced a considerably reduced overall survival in comparison to those categorized as low-risk (P<0.001). The predictive capability of the model was indicated by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve surpassing 0.6. Our model showed consistent distribution of samples from both the GEO database and TCGA data. Both the univariate and multivariate Cox regression analyses validated the importance of the risk score in relation to overall survival (P < 0.001). According to our research, patients with a lower risk profile may experience greater advantages from using a CTLA4 inhibitor, whereas patients with a higher risk profile demonstrated a higher level of responsiveness to Paclitaxel and Cisplatin. In addition, methotrexate exhibited a more positive outcome in patients with low risk compared to those with high risk. CONCLUSIONS Our research introduces a novel model associated with OS gene signature in bladder cancer, which uncovers unique survival results. This model can assist in tailoring personalized treatment approaches and enhancing patient therapeutic effect in the management of bladder cancer.
Collapse
Affiliation(s)
- Ying Dong
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xiaoqing Wu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaojie Xu
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Yasir Hameed
- Department of Biochemistry, Biotechnology, The Islamia University of Bahawalpur, Pakistan
| | - Mostafa A. Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Taghreed N. Almanaa
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed H. Kotob
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Wahidah H. Al-Qahtani
- Department of Food Sciences and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman M. Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
15
|
Li L, Li C, Miao F, Chen W, Kong X, Ye R, Wang F. Cyclanoline Reverses Cisplatin Resistance in Bladder Cancer Cells by Inhibiting the JAK2/STAT3 Pathway. Anticancer Agents Med Chem 2024; 24:1360-1370. [PMID: 39129292 DOI: 10.2174/0118715206304668240729093158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Cisplatin is a key therapeutic agent for bladder cancer, yet the emergence of cisplatin resistance presents a significant clinical challenge. OBJECTIVE This study aims to investigate the potential and mechanisms of cyclanoline (Cyc) in overcoming cisplatin resistance. METHODS Cisplatin-resistant T24 and BIU-87 cell models (T24/DR and BIU-87/DR) were established by increasing gradual concentration. Western Blot (WB) assessed the phosphorylation of STAT3, JAK2, and JAK3. T24/DR and BIU-87/DR cell lines were treated with selective STAT3 phosphorylation modulators, and cell viability was evaluated by CCK-8. Cells were subjected to cisplatin, Cyc, or their combination. Immunofluorescence (IHC) examined p-STAT3 expression. Protein and mRNA levels of apoptosis-related and cell cycle-related factors were measured. Changes in proliferation, invasion, migration, apoptosis, and cell cycle were monitored. In vivo, subcutaneous tumor transplantation models in nude mice were established, assessing tumor volume and weight. Changes in bladder cancer tissues were observed through HE staining, and the p-STAT3 was assessed via WB and IHC. RESULTS Cisplatin-resistant cell lines were successfully established, demonstrating increased phosphorylation of STAT3, JAK2, and JAK3. Cisplatin or Cyc treatment decreased p-STAT3, inhibited invasion and migration, and induced apoptosis and cell cycle arrest in the G0/G1 phase in vitro. In vivo, tumor growth was significantly suppressed, with extensive tumor cell death. IHC and WB consistently showed a substantial downregulation of STAT3 phosphorylation. These changes were more pronounced when cisplatin and Cyc were administered in combination. CONCLUSION Cyc reverses cisplatin resistance via JAK/STAT3 inhibition in bladder cancer, offering a potential clinical strategy to enhance cisplatin efficacy in treating bladder cancer.
Collapse
Affiliation(s)
- Linjin Li
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, 325099, Wenzhou, China
| | - Chengpeng Li
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, 325099, Wenzhou, China
| | - Feilong Miao
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, 325099, Wenzhou, China
| | - Wu Chen
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, 325099, Wenzhou, China
| | - Xianghui Kong
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, 325099, Wenzhou, China
| | - Ruxian Ye
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, 325099, Wenzhou, China
| | - Feng Wang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| |
Collapse
|
16
|
Thapa R, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Saleem S, Khan R, Altwaijry N, Dureja H, Singh SK, Dua K. A review of Glycogen Synthase Kinase-3 (GSK3) inhibitors for cancers therapies. Int J Biol Macromol 2023; 253:127375. [PMID: 37839597 DOI: 10.1016/j.ijbiomac.2023.127375] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The intricate molecular pathways governing cancer development and progression have spurred intensive investigations into novel therapeutic targets. Glycogen Synthase Kinase-3 (GSK3), a complex serine/threonine kinase, has emerged as a key player with intricate roles in various cellular processes, including cell proliferation, differentiation, apoptosis, and metabolism. Harnessing GSK3 inhibitors as potential candidates for cancer therapy has garnered significant interest due to their ability to modulate key signalling pathways that drive oncogenesis. The review encompasses a thorough examination of the molecular mechanisms underlying GSK3's involvement in cancer progression, shedding light on its interaction with critical pathways such as Wnt/β-catenin, PI3K/AKT, and NF-κB. Through these interactions, GSK3 exerts influence over tumour growth, invasion, angiogenesis, and metastasis, rendering it an attractive target for therapeutic intervention. The discussion includes preclinical and clinical studies, showcasing the inhibitors efficacy across a spectrum of cancer types, including pancreatic, ovarian, lung, and other malignancies. Insights from recent studies highlight the potential synergistic effects of combining GSK3 inhibitors with conventional chemotherapeutic agents or targeted therapies, opening avenues for innovative combinatorial approaches. This review provides a comprehensive overview of the current state of research surrounding GSK3 inhibitors as promising agents for cancer treatment.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
17
|
Yin G, Zheng S, Zhang W, Dong X, Qi L, Li Y. Classification of bladder cancer based on immune cell infiltration and construction of a risk prediction model for prognosis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 53:47-57. [PMID: 38229504 PMCID: PMC10945491 DOI: 10.3724/zdxbyxb-2023-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
OBJECTIVES To classify bladder cancer based on immune cell infiltration score and to construct a prognosis assessment model of patients with bladder cancer. METHODS The transcriptome data and clinical data of breast cancer patients were obtained from the The Cancer Genome Atlas (TCGA) database. Single sample gene set enrichment analysis was used to calculate the infiltration scores of 16 immune cells. The classification of breast cancer patients was achieved by unsupervised clustering, and the sensitivity of patients with different types to immunotherapy and chemotherapy was analyzed. The key modules significantly related to the infiltration of key immune cells were identified by weighted correlation network analysis (WGCNA), and the key genes in the modules were identified. A risk scoring model and a nomogram for prognosis assessment of bladder cancer patients were constructed and verified. RESULTS B cells, mast cells, neutrophils, T helper cells and tumor infiltrating lymphocytes were determined to be the key immune cells of bladder cancer. The patients were clustered into two groups (Cluster 1 ´ and Custer 2) based on immune cell infiltration scores. Compared with patients with Cluster 1 ´, patients with Cluster 2 were more likely to benefit from immunotherapy (P<0.05), and patients with Cluster 2 were more sensitive to Enbeaten, Docetaxel, Cyclopamine, and Akadixin (P<0.05). 35 genes related to key immune cells were screened out by WGCNA and 4 genes (GPR171, HOXB3, HOXB5 and HOXB6) related to the prognosis of bladder cancer were further screened by LASSO Cox regression. The areas under the ROC curve (AUC) of the bladder cancer prognosis risk scoring model based on these 4 genes to predict the 1-, 3- and 5-year survival of patients were 0.735, 0.765 and 0.799, respectively. The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1-, 3-, and 5-year overall survival of bladder cancer patients. CONCLUSIONS According to the immune cell infiltration score, bladder cancer patients can be classified. Furthermore, bladder cancer prognosis risk scoring model and nomogram based on key immune cell-related genes have high accuracy in predicting the prognosis of bladder cancer patients.
Collapse
Affiliation(s)
- Guicao Yin
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China.
| | - Shengqi Zheng
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Wei Zhang
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Xin Dong
- School of Nursing, School of Public Health, Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Lezhong Qi
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Yifan Li
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China.
| |
Collapse
|
18
|
Ma L, Li M, Zhang Y, Liu K. Recent advances of antitumor leading compound Erianin: Mechanisms of action and structural modification. Eur J Med Chem 2023; 261:115844. [PMID: 37804769 DOI: 10.1016/j.ejmech.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Erianin, a bioactive compound extracted from Dendrobium, a traditional Chinese medicine, exhibits remarkable anti-cancer properties through diverse molecular mechanisms and has attracted the attention of medicinal chemists. However, the low solubility in water, rapid metabolism and elimination from the body lead to poor bioavailability of Erianin, and greatly hinder its clinical application. The development of new Erianin derivatives is continuously proceed to improve its anticancer effects. In recent years, although important progress in the development of Erianin and the publication of some reviews in this aspect, the mechanism against various cancers, pharmacokinetic study, structural modification as well as structure-activity relationships have not been thoroughly considered. This review is aimed at providing complete picture regarding the above aspects by reviewing studies from 2000 to 2023.06. This review also supplies some important viewpoints on the design and future directions for the development of Erianin derivatives as possible clinically effective anticancer agents.
Collapse
Affiliation(s)
- Lu Ma
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Menglong Li
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yueteng Zhang
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China; Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
19
|
Gugleva V, Ahchiyska K, Georgieva D, Mihaylova R, Konstantinov S, Dimitrov E, Toncheva-Moncheva N, Rangelov S, Forys A, Trzebicka B, Momekova D. Development, Characterization and Pharmacological Evaluation of Cannabidiol-Loaded Long Circulating Niosomes. Pharmaceutics 2023; 15:2414. [PMID: 37896174 PMCID: PMC10609774 DOI: 10.3390/pharmaceutics15102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Cannabidiol (CBD) is a promising drug candidate with pleiotropic pharmacological activity, whose low aqueous solubility and unfavorable pharmacokinetics have presented obstacles to its full clinical implementation. The rational design of nanocarriers, including niosomes for CBD encapsulation, can provide a plausible approach to overcoming these limitations. The present study is focused on exploring the feasibility of copolymer-modified niosomes as platforms for systemic delivery of CBD. To confer steric stabilization, the niosomal membranes were grafted with newly synthesized amphiphilic linear or star-shaped 3- and 4-arm star-shaped copolymers based on polyglycidol (PG) and poly(ε-caprolactone) (PCL) blocks. The niosomes were prepared by film hydration method and were characterized by DLS, cryo-TEM, encapsulation efficacy, and in vitro release. Free and formulated cannabidiol were further investigated for cytotoxicity and pro-apoptotic and anti-inflammatory activities in vitro in three human tumor cell lines. The optimal formulation, based on Tween 60:Span60:Chol (3.5:3.5:3 molar ration) modified with 2.5 mol% star-shaped 3-arm copolymer, is characterized by a size of 235 nm, high encapsulation of CBD (94%), and controlled release properties. Niosomal cannabidiol retained the antineoplastic activity of the free agent, but noteworthy superior apoptogenic and inflammatory biomarker-modulating effects were established at equieffective exposure vs. the free drug. Specific alterations in key signaling molecules, implicated in programmed cell death, cancer cell biology, and inflammation, were recorded with the niosomal formulations.
Collapse
Affiliation(s)
- Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 84 Tsar Osvoboditel Str., 9000 Varna, Bulgaria;
| | - Katerina Ahchiyska
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (K.A.); (D.G.)
| | - Dilyana Georgieva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (K.A.); (D.G.)
| | - Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (R.M.); (S.K.)
| | - Spiro Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (R.M.); (S.K.)
| | - Erik Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.D.); (N.T.-M.); (S.R.)
| | - Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.D.); (N.T.-M.); (S.R.)
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.D.); (N.T.-M.); (S.R.)
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (K.A.); (D.G.)
| |
Collapse
|
20
|
Zuo M, Chen H, Liao Y, He P, Xu T, Tang J, Zhang N. Sulforaphane and bladder cancer: a potential novel antitumor compound. Front Pharmacol 2023; 14:1254236. [PMID: 37781700 PMCID: PMC10540234 DOI: 10.3389/fphar.2023.1254236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Bladder cancer (BC) is a common form of urinary tract tumor, and its incidence is increasing annually. Unfortunately, an increasing number of newly diagnosed BC patients are found to have advanced or metastatic BC. Although current treatment options for BC are diverse and standardized, it is still challenging to achieve ideal curative results. However, Sulforaphane, an isothiocyanate present in cruciferous plants, has emerged as a promising anticancer agent that has shown significant efficacy against various cancers, including bladder cancer. Recent studies have demonstrated that Sulforaphane not only induces apoptosis and cell cycle arrest in BC cells, but also inhibits the growth, invasion, and metastasis of BC cells. Additionally, it can inhibit BC gluconeogenesis and demonstrate definite effects when combined with chemotherapeutic drugs/carcinogens. Sulforaphane has also been found to exert anticancer activity and inhibit bladder cancer stem cells by mediating multiple pathways in BC, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-B (NF-κB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), zonula occludens-1 (ZO-1)/beta-catenin (β-Catenin), miR-124/cytokines interleukin-6 receptor (IL-6R)/transcription 3 (STAT3). This article provides a comprehensive review of the current evidence and molecular mechanisms of Sulforaphane against BC. Furthermore, we explore the effects of Sulforaphane on potential risk factors for BC, such as bladder outlet obstruction, and investigate the possible targets of Sulforaphane against BC using network pharmacological analysis. This review is expected to provide a new theoretical basis for future research and the development of new drugs to treat BC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
21
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
22
|
Mdanda S, Ngema LM, Mdlophane A, Sathekge MM, Zeevaart JR. Recent Innovations and Nano-Delivery of Actinium-225: A Narrative Review. Pharmaceutics 2023; 15:1719. [PMID: 37376167 DOI: 10.3390/pharmaceutics15061719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/13/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The actinium-225 (225Ac) radioisotope exhibits highly attractive nuclear properties for application in radionuclide therapy. However, the 225Ac radionuclide presents multiple daughter nuclides in its decay chain, which can escape the targeted site, circulate in plasma, and cause toxicity in areas such as kidneys and renal tissues. Several ameliorative strategies have been devised to circumvent this issue, including nano-delivery. Alpha-emitting radionuclides and nanotechnology applications in nuclear medicine have culminated in major advancements that offer promising therapeutic possibilities for treating several cancers. Accordingly, the importance of nanomaterials in retaining the 225Ac daughters from recoiling into unintended organs has been established. This review expounds on the advancements of targeted radionuclide therapy (TRT) as an alternative anticancer treatment. It discusses the recent developments in the preclinical and clinical investigations on 225Ac as a prospective anticancer agent. Moreover, the rationale for using nanomaterials in improving the therapeutic efficacy of α-particles in targeted alpha therapy (TAT) with an emphasis on 225Ac is discussed. Quality control measures in the preparation of 225Ac-conjugates are also highlighted.
Collapse
Affiliation(s)
- Sipho Mdanda
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
- Johns Hopkins Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Baltimore, MD 21218, USA
| | - Amanda Mdlophane
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Mike M Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Radiochemistry, The South African Nuclear Energy Corporation, Pelindaba, Hartbeespoort 0240, South Africa
| |
Collapse
|
23
|
Chen Y, Yin L, Hao M, Xu W, Gao J, Sun Y, Wang Q, Chen S, Liang Y, Guo R, Zhang J, Li J, Zhai Q, Cheng R, Wang J, Wang H, Yang Z. Medicarpin induces G1 arrest and mitochondria-mediated intrinsic apoptotic pathway in bladder cancer cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:211-225. [PMID: 37307373 DOI: 10.2478/acph-2023-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 06/14/2023]
Abstract
Bladder cancer (BC) is the tenth most commonly diagnosed cancer. High recurrence, chemoresistance, and low response rate hinder the effective treatment of BC. Hence, a novel therapeutic strategy in the clinical management of BC is urgently needed. Medicarpin (MED), an isoflavone from Dalbergia odorifera, can promote bone mass gain and kill tumor cells, but its anti-BC effect remains obscure. This study reve aled that MED effectively inhibited the proliferation and arrested the cell cycle at the G1 phase of BC cell lines T24 and EJ-1 in vitro. In addition, MED could significantly suppress the tumor growth of BC cells in vivo. Mechanically, MED induced cell apoptosis by upregulating pro-apoptotic proteins BAK1, Bcl2-L-11, and caspase-3. Our data suggest that MED suppresses BC cell growth in vitro and in vivo via regulating mitochondria-mediated intrinsic apoptotic pathways, which can serve as a promising candidate for BC therapy.
Collapse
Affiliation(s)
- Yuan Chen
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Liqi Yin
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingxuan Hao
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenkai Xu
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Jixian Gao
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Yuxin Sun
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Qiao Wang
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Shi Chen
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Youfeng Liang
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Guo
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinku Zhang
- 3Department of Pathology, First Central Hospital of Baoding City, Baoding 071000, Hebei, China
- 4Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, Baoding 071000, Hebei, China
| | - Jinmei Li
- 3Department of Pathology, First Central Hospital of Baoding City, Baoding 071000, Hebei, China
- 4Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, Baoding 071000, Hebei, China
| | - Qiongli Zhai
- 5Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Runfen Cheng
- 5Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jiansong Wang
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Haifeng Wang
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Zhao Yang
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
- 6College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China
| |
Collapse
|
24
|
Li S, Zhai G, He R, Chen G, Wang S, Liu J, Cheng J, Yan H, Huang Z. Down-regulation and clinical significance of Sorbin and SH3 domain-containing protein 1 in bladder cancer tissues. IET Syst Biol 2023; 17:70-82. [PMID: 36854874 PMCID: PMC10116029 DOI: 10.1049/syb2.12060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 03/02/2023] Open
Abstract
Bladder cancer (BC) is a common cancer worldwide with a high prevalence. This study was conducted to elucidate the expression and clinical significance of Sorbin and SH3 domain-containing protein 1 (SORBS1) in BC as well as to explore its molecular mechanism in BC tumourigenesis. RNA-sequencing data, microarray, and Immunohistochemistry (IHC) were applied to elucidated the SORBS1 expression at multiple levels. After that, the relationship between tumour-immune infiltration and SORBS1 was also explored. Finally, SORBS1-related genes in BC were identified to perform functional enrichment analyses. The expression integration revealed that the comprehensive expression of SORBS1 at the mRNA level was -1.02 and that at the protein level was -3.73, based on 12 platforms, including 1221 BC and 187 non-BC samples. SORBS1 was negatively correlated with tumour purity (correlation = -0.342, p < 0.001) and positively correlated with macrophage (correlation = 0.358, p < 0.001). The results of enrichment analyses revealed that the most significant biological pathways of SORBS1-related genes were epithelial-mesenchymal transition. SORBS1 was significantly down-regulated in BC and may play a role as tumour suppressor. This study provides new directions and biomarkers for future BC diagnosis.
Collapse
Affiliation(s)
- Sheng‐Hua Li
- Department of UrologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionChina
| | - Gao‐Qiang Zhai
- Department of UrologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionChina
| | - Rong‐Quan He
- Department of Medical OncologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionChina
| | - Gang Chen
- Department of Medical PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionChina
| | - Shi‐Shuo Wang
- Department of Medical PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionChina
| | - Jia‐Lin Liu
- Department of UrologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionChina
| | - Ji‐Wen Cheng
- Department of UrologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionChina
| | - Hai‐Biao Yan
- Department of UrologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionChina
| | - Zhi‐Guang Huang
- Department of Medical PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionChina
| |
Collapse
|
25
|
Jiang L, Sun G, Zou L, Guan Y, Hang Y, Liu Y, Zhou Z, Zhang X, Huang X, Pan H, Rong S, Ma H. Noncoding RNAs as a potential biomarker for the prognosis of bladder cancer: a systematic review and meta-analysis. Expert Rev Mol Diagn 2023; 23:325-334. [PMID: 36970945 DOI: 10.1080/14737159.2023.2195554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
OBJECTIVE The relationship between noncoding RNAs and the prognosis of bladder cancer (BC) is still controversial. The purpose of this study is to evaluate the relationship between noncoding RNAs and prognosis by meta-analysis. METHODS Comprehensive retrieval of PubMed, Embase, the Cochrane Library, the Web of Science, CNKI, and WanFang databases is related to the correlation between noncoding RNAs and the prognosis of BC. Data were extracted, and the literature quality was evaluated. STATA16.0 served for the meta-analysis. RESULTS 1. CircRNAs: High circ-ZFR expression led to poor overall survival (OS) of BC. 2. LncRNAs: Low lnc-GAS5 expression predicted poor OS of BC, high lnc-TUG1 expression predicted poor OS of BC. 3. MiRNAs: High miR-21 expression predicted poor OS of BC, high miR-222 expression led to poor OS of BC, high miR-155 expression predicted poor progression-free survival (PFS) of BC, high miR-143 expression caused poor PFS of BC, low miR-214 expression could result in poor recurrence-free survival (RFS) of BC. CONCLUSIONS High circ-ZFR, lnc-TUG1, miR-222, and miR-21 expressions were correlated with poor OS of BC; high miR-155 and miR-143 expression predicted poor PFS of BC; low lnc-GAS5 expression predicted poor OS of BC; low miR-214 expression predicted poor RFS of BC.
Collapse
|
26
|
Lima APB, da Silva GN. Long Non-Coding RNA and Chemoresistance in Bladder Cancer - A Mini Review. Cancer Invest 2023; 41:164-172. [PMID: 36373675 DOI: 10.1080/07357907.2022.2146703] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bladder cancer is the 10th most common cancer worldwide. It is a heterogeneous disease, comprising several tumor subtypes with differences in histology, genomic aberrations, prognosis and sensitivity to anti-cancer treatments. Although the treatment of bladder cancer is based tumor classifications and gradings, patients have different clinical response. In recent years, long non-coding RNAs (lncRNAs) were associated with bladder cancer chemoresistance. Thus, lncRNAs seem to be promising targets in treatment of bladder cancer. This review highlights the recent findings concerning lncRNAs and their relevance to the chemoresistance of bladder cancer. This may provide a basis for exploiting more robust therapeutic approaches in the future.
Collapse
Affiliation(s)
- Ana Paula Braga Lima
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.,Programa de Pós-graduação em Ciência Biológicas (CBIOL), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.,Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
27
|
Liu B, Su J, Fan B, Ni X, Jin T. High expression of KIF20A in bladder cancer as a potential prognostic target for poor survival of renal cell carcinoma. Medicine (Baltimore) 2023; 102:e32667. [PMID: 36637953 PMCID: PMC9839245 DOI: 10.1097/md.0000000000032667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Urinary system tumors are malignant tumors, including renal cancer and bladder cancer. however, molecular target of them remains unclear. GSE14762 and GSE53757 were downloaded from GEO database to screen differentially expressed genes (DEGs). Weighted gene co-expression network analysis was performed. Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes were used for enrichment analysis. Gene ontology and Kyoto encyclopedia of genes and genomes analyses were performed on whole genome, as formulated by gene set enrichment analysis. Survival analysis was also performed. Comparative toxicogenomics database was used to identify diseases most associated with hub genes. A total of 1517 DEGs were identified. DEGs were mainly enriched in cancer pathway, HIF-1 signaling pathway, organic acid metabolism, glyoxylate and dicarboxylate metabolism, and protein homodimerization activity. Ten hub genes (TPX2, ASPM, NUSAP1, RAD51AP1, CCNA2, TTK, PBK, MELK, DTL, kinesin family member 20A [KIF20A]) were obtained, which were up-regulated in tumor tissue. The expression of KIF20A was related with the overall survival of renal and bladder cancer. KIF20A was up-regulated in the tumor tissue, and might worsen the overall survival of bladder and kidney cancer. KIF20A could be a novel biomarker of bladder and kidney cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
- * Correspondence: Bin Liu, Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Hebei 050000, PR China (e-mail: )
| | - Jianzhi Su
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| | - Bo Fan
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| | - Xiaochen Ni
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| | - Tingting Jin
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| |
Collapse
|
28
|
Ru R, Chen G, Liang X, Cao X, Yuan L, Meng M. Sea Cucumber Derived Triterpenoid Glycoside Frondoside A: A Potential Anti-Bladder Cancer Drug. Nutrients 2023; 15:nu15020378. [PMID: 36678249 PMCID: PMC9861588 DOI: 10.3390/nu15020378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Bladder cancer is a highly recurrent disease and a common cause of cancer-related deaths worldwide. Despite recent developments in diagnosis and therapy, the clinical outcome of bladder cancer remains poor; therefore, novel anti-bladder cancer drugs are urgently needed. Natural bioactive substances extracted from marine organisms such as sea cucumbers, scallops, and sea urchins are believed to have anti-cancer activity with high effectiveness and less toxicity. Frondoside A is a triterpenoid glycoside isolated from sea cucumber, Cucumaria frondosa. It has been demonstrated that Frondoside A exhibits anti-proliferative, anti-invasive, anti-angiogenic, anti-cancer, and potent immunomodulatory effects. In addition, CpG oligodeoxynucleotide (CpG-ODN) has also been shown to have potent anti-cancer effects in various tumors models, such as liver cancer, breast cancer, and bladder cancer. However, very few studies have investigated the effectiveness of Frondoside A against bladder cancer alone or in combination with CpG-ODN. In this study, we first investigated the individual effects of both Frondoside A and CpG-ODN and subsequently studied their combined effects on human bladder cancer cell viability, migration, apoptosis, and cell cycle in vitro, and on tumor growth in nude mice using human bladder cancer cell line UM-UC-3. To interrogate possible synergistic effects, combinations of different concentrations of the two drugs were used. Our data showed that Frondoside A decreased the viability of bladder cancer cells UM-UC-3 in a concentration-dependent manner, and its inhibitory effect on cell viability (2.5 μM) was superior to EPI (10 μM). We also showed that Frondoside A inhibited UM-UC-3 cell migration, affected the distribution of cell cycle and induced cell apoptosis in concentration-dependent manners, which effectively increased the sub-G1 (apoptotic) cell fraction. In addition, we also demonstrated that immunomodulator CpG-ODN could synergistically potentiate the inhibitory effects of Frondoside A on the proliferation and migration of human bladder cancer cell line UM-UC-3. In in vivo experiments, Frondoside A (800 μg/kg/day i.p. for 14 days) alone and in combination with CpG-ODN (1 mg/kg/dose i.p.) significantly decreased the growth of UM-UC-3 tumor xenografts, without any significant toxic side-effects; however, the chemotherapeutic agent EPI caused weight loss in nude mice. Taken together, these findings indicated that Frondoside A in combination with CpG-ODN is a promising therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Ruizhen Ru
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gengzhan Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoxia Liang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N6N5, Canada
| | - Lihong Yuan
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (L.Y.); (M.M.); Tel.: +86-020-39352201 (L.Y. & M.M.)
| | - Minjie Meng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (L.Y.); (M.M.); Tel.: +86-020-39352201 (L.Y. & M.M.)
| |
Collapse
|
29
|
Ren J, Yu H, Li W, Jin X, Yan B. Downregulation of CBX7 induced by EZH2 upregulates FGFR3 expression to reduce sensitivity to cisplatin in bladder cancer. Br J Cancer 2023; 128:232-244. [PMID: 36396821 PMCID: PMC9902481 DOI: 10.1038/s41416-022-02058-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cisplatin-based cytotoxic chemotherapy is considered to be the first-line therapy for advanced bladder cancer (BC), but resistance to cisplatin limits its antitumor effect. Fibroblast growth factor receptor 3 (FGFR3) has been reported to contribute to the progression and cisplatin resistance of BC. Meanwhile, chromobox protein homologue 7 (CBX7) was reported to inhibit BC progression. And our previous RNA-seq data on CBX7 (GSE185630) suggested that CBX7 might repress FGFR3, but the underlying mechanism and other cancer-related functions of CBX7 are still unknown. METHODS Silico analysis of RNA-seq data to identify the upstream regulators and downstream target genes of CBX7. The western blot analysis, quantitative real-time PCR (RT-qPCR), chromatin immunoprecipitation (ChIP)-qPCR analysis, CCK-8 assay, and nude mice xenograft models were used to confirm the enhancer of zeste homologue (EZH2)/CBX7/ FGFR3 axis. RESULTS In this study, we first showed that CBX7 is downregulated in BC. Then, we revealed that EZH2 represses CBX7 expression by increasing H3K27me3 in BC cells. Moreover, we demonstrated that CBX7 directly downregulates FGFR3 expression and sensitises BC cells to cisplatin treatment by inactivating the phosphatidylinositol 3-kinase (PI3K)-(RAC-alpha serine/threonine-protein kinase) AKT signalling pathway. CONCLUSIONS These results suggest that CBX7 is an ideal candidate to overcome cisplatin resistance in BC.
Collapse
Affiliation(s)
- Jiannan Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Haixin Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| | - Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
30
|
CD46 protects the bladder cancer cells from cetuximab-mediated cytotoxicity. Sci Rep 2022; 12:22420. [PMID: 36575233 PMCID: PMC9794803 DOI: 10.1038/s41598-022-27107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is an effective target for those patients with metastatic colorectal cancers that retain the wild-type RAS gene. However, its efficacy in many cancers, including bladder cancer, is unclear. Here, we studied the in vitro effects of cetuximab monoclonal antibodies (mAbs) targeting EGFR on the bladder cancer cells and role of CD46. Cetuximab was found to inhibit the growth of both colon and bladder cancer cell lines. Furthermore, cetuximab treatment inhibited AKT and ERK phosphorylation in the bladder cancer cells and reduced the expression of CD46 membrane-bound proteins. Restoration of CD46 expression protected the bladder cancer cells from cetuximab-mediated inhibition of AKT and ERK phosphorylation. We hypothesized that CD46 provides protection to the bladder cancer cells against mAb therapies. Bladder cancer cells were also susceptible to cetuximab-mediated immunologic anti-tumor effects. Further, cetuximab enhanced the cell killing by activating both antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in bladder cancer cells. Restoration of CD46 expression protected the cells from both CDC and ADCC induced by cetuximab. Together, CD46 exhibited a cancer-protective effect against both direct (by involvement of PBMC or complement) and indirect cytotoxic activity by cetuximab in bladder cancer cells. Considering its clinical importance, CD46 could be an important link in the action mechanism of ADCC and CDC intercommunication and may be used for the development of novel therapeutic strategies.
Collapse
|
31
|
Fahmy S, Preis E, Dayyih AA, Alawak M, El-Said Azzazy HM, Bakowsky U, Shoeib T. Thermosensitive Liposomes Encapsulating Nedaplatin and Picoplatin Demonstrate Enhanced Cytotoxicity against Breast Cancer Cells. ACS OMEGA 2022; 7:42115-42125. [PMID: 36440163 PMCID: PMC9686199 DOI: 10.1021/acsomega.2c04525] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Thermosensitive liposomes (TSL) have been used for localized temperature-responsive release of chemotherapeutics into solid cancers, with a minimum of one invention currently in clinical trials (phase III). In this study, TSL was designed using a lipid blend comprising 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (DSPE-PEG-2000) (molar ratio of 88:9:2.8:0.2). Either nedaplatin (ND) or p-sulfonatocalix[4]arene-nedaplatin was encapsulated in the aqueous inner layer of TSL to form (ND-TSL) or p-SC4-ND-TSL, respectively. The hydrophobic platinum-based drug picoplatin (P) was loaded into the external lipid bilayer of the TSL to develop P-TSL. The three nanosystems were studied in terms of size, PDI, surface charge, and on-shelf stability. Moreover, the entrapment efficiency (EE%) and release % at 37 and 40 °C were evaluated. In a 30 min in vitro release study, the maximum release of ND, p-SC4-ND, and picoplatin at 40 °C reached 74, 79, and 75%, respectively, compared to approximately 10% at 37 °C. This demonstrated temperature-triggered drug release from the TSL in all three developed systems. The designed TSL exhibited significant in vitro anticancer activity at 40 °C when tested on human mammary gland/breast adenocarcinoma cells (MDA-MB-231). The cytotoxicity of ND-TSL, p-SC4-ND-TSL, and P-TSL at 40 °C was approximately twice those observed at 37 °C. This study suggests that TSL is a promising nanoplatform for the temperature-triggered release of platinum-based drugs into cancer cells.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Department
of Chemistry, American University in Cairo
(AUC), AUC Avenue, P.O. Box 74, New Cairo11835, Egypt
- Department
of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, AL109AB, Cairo11835, Egypt
| | - Eduard Preis
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | - Alice Abu Dayyih
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | - Mohamed Alawak
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | | | - Udo Bakowsky
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | - Tamer Shoeib
- Department
of Chemistry, American University in Cairo
(AUC), AUC Avenue, P.O. Box 74, New Cairo11835, Egypt
| |
Collapse
|
32
|
Chen G, Chen Y, Xu R, Zhang G, Zou X, Wu G. Impact of SOX2 function and regulation on therapy resistance in bladder cancer. Front Oncol 2022; 12:1020675. [PMID: 36465380 PMCID: PMC9709205 DOI: 10.3389/fonc.2022.1020675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2024] Open
Abstract
Bladder cancer (BC) is a malignant disease with high rates of recurrence and mortality. It is mainly classified as non-muscle-invasive BC and muscle-invasive BC (MIBC). Often, MIBC is chemoresistant, which, according to cancer stem cells (CSCs) theory, is linked to the presence of bladder cancer stem cells (BCSCs). Sex-determining region Y- (SRY) Box transcription factor 2 (SOX2), which is a molecular marker of BCSCs, is aberrantly over-expressed in chemoresistant BC cell lines. It is one of the standalone prognostic factors for BC, and it has an inherently significant function in the emergence and progression of the disease. This review first summarizes the role of SRY-related high-mobility group protein Box (SOX) family genes in BC, focusing on the SOX2 and its significance in BC. Second, it discusses the mechanisms relevant to the regulation of SOX2. Finally, it summarizes the signaling pathways related to SOX2 in BC, suggests current issues to be addressed, and proposes potential directions for future research to provide new insights for the treatment of BC.
Collapse
Affiliation(s)
- Guodong Chen
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Chen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiquan Xu
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Gengqing Wu
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
33
|
Bai Y, Zhang Q, Liu F, Quan J. A novel cuproptosis-related lncRNA signature predicts the prognosis and immune landscape in bladder cancer. Front Immunol 2022; 13:1027449. [PMID: 36451815 PMCID: PMC9701814 DOI: 10.3389/fimmu.2022.1027449] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022] Open
Abstract
Background Bladder cancer (BLCA) is one of the deadliest diseases, with over 550,000 new cases and 170,000 deaths globally every year. Cuproptosis is a copper-triggered programmed cell death and is associated with the prognosis and immune response of various cancers. Long non-coding RNA (lncRNA) could serve as a prognostic biomarker and is involved in the progression of BLCA. Methods The gene expression profile of cuproptosis-related lncRNAs was analyzed by using data from The Cancer Genome Atlas. Cox regression analysis and least absolute shrinkage and selection operator analysis were performed to construct a cuproptosis-related lncRNA prognostic signature. The predictive performance of this signature was verified by ROC curves and a nomogram. We also explored the difference in immune-related activity, tumor mutation burden (TMB), tumor immune dysfunction and exclusion (TIDE), and drug sensitivity between the high- and low-risk groups. Results We successfully constructed a cuproptosis-related lncRNA prognostic signature for BLCA including eight lncRNAs (RNF139-AS1, LINC00996, NR2F2-AS1, AL590428.1, SEC24B-AS1, AC006566.1, UBE2Q1-AS1, and AL021978.1). Multivariate Cox analysis suggested that age, clinical stage, and risk score were the independent risk factors for predicting prognosis of BLCA. Further analysis revealed that this signature not only had higher diagnostic efficiency compared to other clinical features but also had a good performance in predicting the 1-year, 3-year, and 5-year overall survival rate in BLCA. Notably, BLCA patients with a low risk score seemed to be associated with an inflamed tumor immune microenvironment and had a higher TMB level than those with a high risk score. In addition, patients with a high risk score had a higher TIDE score and a higher half maximal inhibitory concentration value of many therapeutic drugs than those with a low risk score. Conclusion We identified a novel cuproptosis-related lncRNA signature that could predict the prognosis and immune landscape of BLCA.
Collapse
Affiliation(s)
| | | | - Feng Liu
- *Correspondence: Jing Quan, ; Feng Liu,
| | - Jing Quan
- *Correspondence: Jing Quan, ; Feng Liu,
| |
Collapse
|
34
|
Prognostic Signature Development on the Basis of Macrophage Phagocytosis-Mediated Oxidative Phosphorylation in Bladder Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4754935. [PMID: 36211821 PMCID: PMC9537622 DOI: 10.1155/2022/4754935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Background Macrophages are correlated with the occurrence and progression of bladder cancer (BCa). However, few research has focused on the predictive relevance of macrophage phagocytosis-mediated oxidative phosphorylation (MPOP) with BCa overall survival. Herein, we aimed to propose the targeted macrophage control based on MPOP as a treatment method for BCa immunotherapy. Methods The mRNA expression data sets and clinical data of bladder cancer originated from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data set. A systematic study of several GEO data sets found differentially expressed macrophage phagocytosis regulators (DE-MPR) between BCa and normal tissues. To discover overall survival-associated DE-MPR and develop prognostic gene signature with performance validated based on receiver operating curves and Kaplan-Meier curves, researchers used univariate and Lasso Cox regression analysis (ROC). External validation was done with GSE13057 and GSE69795. To clarify its molecular mechanism and immune relevance, GO/KEGG enrichment analysis and tumor immune analysis were used. To find independent bladder cancer prognostic variables, researchers employed multivariate Cox regression analysis. Finally, using TCGA data set, a predictive nomogram was built. Results In BCa, a four-gene signature of oxidative phosphorylation composed of PTPN6, IKZF3, HDLBP, and EMC1 was found to predict overall survival. With the MPOP feature, the ROC curve showed that TCGA data set and the external validation data set performed better in predicting overall survival than the traditional AJCC stage. The four-gene signature can identify cancers from normal tissue and separate patients into the high-risk and low-risk groups with different overall survival rates. The four MPOP-gene signature was an independent predictive factor for BCa. In predicting overall survival, a nomogram integrating genetic and clinical prognostic variables outperformed AJCC staging. Multiple oncological features and invasion-associated pathways were identified in the high-risk group, which were also correlated with significantly lower levels of immune cell infiltration. Conclusion This paper found the MPOP-feature gene and developed a predictive nomogram capable of accurately predicting bladder cancer overall survival. The above discoveries can contribute to the development of personalized treatments and medical decisions.
Collapse
|
35
|
Shahidi M, Abazari O, Dayati P, Bakhshi A, Zavarreza J, Modarresi MH, Haghiralsadat F, Rahmanian M, Naghib SM, Tofighi D. Multicomponent siRNA/miRNA-loaded modified mesoporous silica nanoparticles targeted bladder cancer for a highly effective combination therapy. Front Bioeng Biotechnol 2022; 10:949704. [PMID: 35992340 PMCID: PMC9388766 DOI: 10.3389/fbioe.2022.949704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2022] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer is one of the concerning urological malignant diseases in the world, which has a clinical need for effective targeted therapy. The development of nanotechnology-based gene delivery to bladder tumor sites is an effective strategy for targeted cancer therapy with low/no toxicity. With this view, in the present work, the mesoporous silica nanoparticles (MSNs) modified with c(RGDfK)-PLGA-PEG [c(RGDfK)-MSN NPs] were constructed for co-delivery of miR-34a and siPD-L1 within bladder cancer cells and tissues. Our findings showed that miR-34a is downregulated while PD-L1 is up-regulated in cell lines and animal studies. This nano-carrier is biocompatible in the serum environment and effectively protects miR-34a and siPD-L1 against serum degradation. However, we showed that c(RGDfK)-MSN NPs could simultaneously downregulate PD-L1 expression and up-regulate miR-34a in the T24 cells and T24 mice model and enhance anti-tumor effects both in vivo and in vitro. In conclusion, these findings presented new suggestions for improving targeted therapeutic strategies with specified molecular objectives for bladder cancer treatment.
Collapse
Affiliation(s)
- Maryamsadat Shahidi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Parisa Dayati
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Bakhshi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Javad Zavarreza
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | | | - Fateme Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Rahmanian
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Davood Tofighi
- Department of Psychology, Epidemiology, and Research Design Support (BERD), Clinical and Translational Science Center, University of NM, Albuquerque, NM, United States
| |
Collapse
|
36
|
Hoang TT, Mandleywala K, Viray T, Tan KV, Lewis JS, Pereira PMR. EGFR-Targeted ImmunoPET of UMUC3 Orthotopic Bladder Tumors. Mol Imaging Biol 2022; 24:511-518. [PMID: 35147837 PMCID: PMC10187976 DOI: 10.1007/s11307-022-01708-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Immuno-positron emission tomography (immunoPET) combines the specificity of an antibody with the sensitivity of PET to image dysregulated pathways in cancer. This study examines the performance of immunoPET using the radioimmunoconjugate [89Zr]Zr-DFO-Panitumumab to detect epidermal growth factor receptor (EGFR) expression in an orthotopic model of bladder cancer (BCa). PROCEDURES Expression and quantification of EGFR receptors were confirmed in four different BCa cell lines. Binding assays validated [89Zr]Zr-DFO-Panitumumab specificity for EGFR-expressing UMUC3 BCa cells. Subcutaneous and orthotopic UMUC3 xenografts were then used for PET imaging and ex vivo biodistribution of the radioimmunoconjugate. Control cohorts included non-tumor mice, 89Zr-labeled non-specific IgG, and blocking experiments. RESULTS [89Zr]Zr-DFO-Panitumumab binds specifically to EGFR-expressing UMUC3 cells with a Bmax value of 5.9 × 104 EGFRs/cell in vitro. ImmunoPET/CT images show localization of the antibody in subcutaneous UMUC3 xenografts and murine bladder tumors. In the orthotopic model, the immunoPET signal correlates with the respective tumor volume. Ex vivo biodistribution analysis further confirmed imaging results. CONCLUSION The preclinical data presents a proof of concept for utilizing EGFR-targeted immunoPET to image BCa with altered EGFR protein levels.
Collapse
Affiliation(s)
- Tran T Hoang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tara Viray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kel Vin Tan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA.
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Patricia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
37
|
Cheng Z, Ye F, Xu C, Liang Y, Zhang Z, Chen X, Dai X, Ou Y, Mou Z, Li W, Chen Y, Zhou Q, Zou L, Mao S, Jiang H. The potential mechanism of Longsheyangquan Decoction on the treatment of bladder cancer: Systemic network pharmacology and molecular docking. Front Pharmacol 2022; 13:932039. [PMID: 35910372 PMCID: PMC9330057 DOI: 10.3389/fphar.2022.932039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
Our goal was to explore the bioactive constituents of Longsheyangquan (LSYQ) Decoction and elucidate its mechanisms on the treatment of bladder cancer (BCa). A total of 38 compounds were selected based on their pharmacokinetic properties in three large traditional Chinese medicine (TCM) databases. 654 putative targets of LSYQ Decoction were predicted using a structure-based, reverse-docking algorithm online, of which 343 overlapped with BCa-related protein-coding genes. The protein-protein interaction (PPI) network was constructed to perform module analysis for further Gene Ontology (GO) annotations and Kyoto Encyclopedia Genes and Genomes (KEGG) pathway enrichment analysis, which identified CDK2, EGFR, MMP9 and PTGS2 as hub targets. The TCM-compound-target network and compound-target-pathway network together revealed that quercetin, diosmetin, enhydrin and luteolin were the main components of LSYQ Decoction. Finally, molecular docking showed the affinity between the key compounds and the hub target proteins to verify the accuracy of drug target prediction in the first place. The present study deciphered the core components and targets of LSYQ Decoction on the treatment of BCa in a comprehensive systemic pharmacological manner.
Collapse
Affiliation(s)
- Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheyu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Haowen Jiang,
| |
Collapse
|
38
|
Prognosis Analysis and Perioperative Research of Elderly Patients with Non-Muscle-Invasive Bladder Cancer under Computed Tomography Image of Three-Dimensional Reconstruction Algorithm. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6168528. [PMID: 35800229 PMCID: PMC9192276 DOI: 10.1155/2022/6168528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
To analyze the application value of computed tomography (CT) based on a three-dimensional reconstruction algorithm in perioperative nursing research and prognosis analysis of non-muscle-invasive bladder cancer (NMIBC), a retrospective study was performed on 124 patients with NMIBC who underwent surgical treatment in the hospital. All patients underwent CT examination based on the three-dimensional reconstruction algorithm before surgery, and transurethral resection of the bladder tumor was performed. The patients receiving conventional care were classified as the control group, and those receiving comprehensive care were classified as the case group, and the recovery status and recurrence of the two groups were compared. The results showed that the accuracy, specificity, and sensitivity of CT imaging information based on the three-dimensional reconstruction algorithm for NMIBC patients were 89.38, 93.77, and 84.39, respectively. The incidence of bladder spasm (9.68%), bladder flushing time (1.56 d), and retention of drainage tube time (2.68 d) in the case group were obviously lower compared with the control group (30.65%, 2.32 d, and 5.19 d) (
< 0.05). Serum BLCA-1 (3.72 ng/mL) and CYFRA21-1 (5.68 μg/mL) in the case group were significantly lower than those in the control group, with a statistically considerable difference (
< 0.05). Compared with the control group, the scores of role function (89.82 points), emotional function (84.76 points), somatic function (79.23 points), and social function (73.93 points) in the case group were observably higher (
< 0.05). In addition, one year after the operation, CT examination showed that the recurrence rate in the case group (6.45%) was significantly lower than that in the control group (22.58%) (
< 0.05). Therefore, CT detection based on the three-dimensional reconstruction algorithm was particularly important for preoperative diagnosis, prognosis, and recurrence monitoring of NMIBC patients. It could provide great clinical value for the diagnosis and prognosis monitoring of NMIBC.
Collapse
|
39
|
Zhang L, Shao G, Shao J, Zhao J. PRMT5-activated c-Myc promote bladder cancer proliferation and invasion through up-regulating NF-κB pathway. Tissue Cell 2022; 76:101788. [PMID: 35339800 DOI: 10.1016/j.tice.2022.101788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022]
Abstract
AIM PRMT5 and c-Myc were considered as oncogene of bladder cancer. Nevertheless, whether the interaction between of PRMT5 and c-Myc affect bladder cancer progress is unknown. Herein, we explore the above points and discuss deeply its' potential mechanism. METHOD 5637 and T24 cells were study subjects in vitro. Western blot was used to examined the protein expression. CCK8 and transwell assay were used to analyze proliferation and invasion ability. Additionally, xenograft tumor model was established. Mice imaging experiment, Immunochemistry assay and western blot were carried out. RESULT Western blot result showed successful transfection of PRMT5-siRNA and c-Myc-siRNA. PRMT5-siRNA could inhibit c-Myc expression, and decrease the proliferation and invasion of bladder cells. And c-Myc overexpression could reverse inhibitory action caused by PRMT5 silence. And in vitro studies found low-expression of c-Myc reduced proliferation and invasion of tumor cells and make the NF-κB pathway inactivation. In vivo studies also demonstrated that inhibiting PRMT5 could downregulate c-Myc expression and inhibit the bladder cancer progress, and the potential mechanism was likely to be related to NF-κB signaling pathway. CONCLUSION In a word, low-expression of PRMT5 suppressed c-Myc, and thus inhibited proliferation and invasion ability of 5637 and T24 cells through NF-κB pathway.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Guangfeng Shao
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jianhui Shao
- Spine Surgery, Weifang City People's Hospital, Weifang, Shandong, PR China
| | - Jie Zhao
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
40
|
Sun X, Xin S, Jin L, Zhang Y, Ye L. Neurexophilin 4 is a prognostic biomarker correlated with immune infiltration in bladder cancer. Bioengineered 2022; 13:13986-13999. [PMID: 35758021 PMCID: PMC9276049 DOI: 10.1080/21655979.2022.2085284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Recent studies have shown that NXPH family member 4 (NXPH4) plays an important role in the progression of cancer. However, the potential role of NXPH4 in bladder cancer (BCa) remains to be explored. The purpose of the present study was to identify whether NXPH4 could be used as a biomarker to predict the prognosis of BCa. We first examined the expression of NXPH4 in pan-cancer, and then focused on BCa. Univariate and multivariate Cox regression analysis were used to investigate whether NXPH4 could be used as an independent prognostic indicator. Gene set enrichment analysis (GSEA) was used for functional analysis of NXPH4-related genes. CIBERSORT algorithm was used to calculate immune cell infiltration levels with different NXPH4 expression. Finally, the expression of NXPH4 was validated in clinical tissue specimens and bladder cancer cell lines by immunohistochemistry and qRT-PCR. The tumor-promoting effects of NXPH4 were further investigated using counting kit-8 (CCK-8), colony formation, EdU assays, and tumor xenograft model. Our results showed that NXPH4 was highly expressed in BCa tissues. Patients in the high NXPH4 expression group had shorter overall survival (OS) and progression-free survival (PFS). We found that immune-related pathways were enriched in NXPH4-related genes. Immune cell infiltrations in BCa were also associated with different NXPH4 expression. NXPH4 was further found to be highly expressed in our validation specimens. The proliferative effect of NXPH4 was confirmed in BCa in vivo and in vitro. Overall, NXPH4 is a biomarker for predicting BCa prognosis and associated with immune infiltration.Abbreviations: NXPH4: Neurexophilin 4; BCa: Bladder cancer; TCGA-BLCA: The Cancer Genome Atlas Urothelial Bladder Carcinoma; shRNA: short hairpin RNA; NC: Negative control; OS: Overall survival; PFS: Progression-free survival; TME: Tumor microenvironment; IPS: immunophenoscore; ICIs: Immune checkpoint inhibitors; DEGs: Differential expression genes.
Collapse
Affiliation(s)
- Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Jin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
41
|
Lu J, Zhu D, Li L. Biological Functions and Molecular Mechanisms of MiR-608 in Cancer. Front Oncol 2022; 12:870983. [PMID: 35387124 PMCID: PMC8977622 DOI: 10.3389/fonc.2022.870983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, microRNAs (miRNAs) have attracted much attention because of their prominent role in cancer. An increasing number of studies have shown that miRNAs play an important role in a variety of tumors. miR-608 has been reported to be decreased in cancers, especially in solid tumors. miR-608 is regarded as a tumor suppressor, which has been verified through a large number of experiments both in vivo and in vitro. miR-608 participates in many biological processes, including cell proliferation, invasion, migration, and apoptosis, by inhibiting transmembrane proteins and many signaling pathways. Here, we summarize the expression profile and biological functions and mechanism of miR-608, suggesting that miR-608 is an ideal diagnostic and prognostic biomarker and a treatment target for cancer.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Sun M, Liu X, Zhao W, Zhang B, Deng P. Circ_0058063 contributes to cisplatin-resistance of bladder cancer cells by upregulating B2M through acting as RNA sponges for miR-335-5p. BMC Cancer 2022; 22:313. [PMID: 35321689 PMCID: PMC8943922 DOI: 10.1186/s12885-022-09419-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer (BC) is one of the most common malignant tumors of the urinary system, and cisplatin (CDDP) is a critical chemical drug for the treatment of BC. However, CDDP-resistance seriously limits the therapeutic efficacy of this drug for clinical utilization. Thus, identification of pivotal molecule targets that regulate CDDP-resistance in BC become urgent and necessary. In this study, we firstly identified a novel BC-associated circular RNA circ_0058063 that participates in the regulation of CDDP-resistance in BC. Specifically, circ_0058063 was significantly overexpressed in CDDP-resistant tissue and cells, in contrast with the corresponding CDDP-sensitive counterparts. Further loss-of-function experiments validated that downregulation of circ_0058063 suppressed cell proliferation and tumor growth, whereas induced cell apoptosis in the CDDP-resistant BC cells in vitro and in vivo. In addition, we disclosed that circ_0058063 acts as a sponge for miR-335-5p to positively regulate B2M expression, and further rescuing experiments verified that the enhancing effects of sh-circ_0058063 on CDDP-sensitivity in the CDDP-resistant BC cells were abrogated by silencing miR-335-5p. Taken together, our results demonstrated that circ_0058063 contributed to CDDP resistance of bladder cancer cells via sponging miR-335-5p, and B2M might be the downstream effector gene. This study firstly evidenced that targeting circ_0058063 might be an effective strategy to improve CDDP-sensitivity in BC.
Collapse
Affiliation(s)
- Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, NO. 36 Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province Shenyang, China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, NO. 36 Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province Shenyang, China.
| | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Bin Zhang
- Department of Urology, Shengjing Hospital of China Medical University, NO. 36 Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province Shenyang, China
| | - Peng Deng
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
43
|
Yang F, Liu X, He J, Xian S, Yang P, Mai Z, Li M, Liu Y, Zhang X. Occludin facilitates tumour angiogenesis in bladder cancer by regulating IL8/STAT3 through STAT4. J Cell Mol Med 2022; 26:2363-2376. [PMID: 35224833 PMCID: PMC8995457 DOI: 10.1111/jcmm.17257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/10/2023] Open
Abstract
Bladder cancer (BLCA) is a common genitourinary cancer in patients, and tumour angiogenesis is indispensable for its occurrence and development. However, the indepth mechanism of tumour angiogenesis in BLCA remains elusive. According to recent studies, the tight junction protein family member occludin (OCLN) is expressed at high levels in BLCA tissues and correlates with a poor prognosis. Downregulation of OCLN inhibits tumour angiogenesis in BLCA cells and murine xenografts, whereas OCLN overexpression exerts the opposite effect. Mechanistically, the RT‐qPCR analysis and Western blotting results showed that OCLN increased interleukin‐8 (IL8) and p‐signal transducer and activator of transcription 3 (STAT3) levels to promote BLCA angiogenesis. RNA sequencing analysis and dual‐luciferase reporter assays indicated that OCLN regulated IL8 transcriptional activity via the transcription factor STAT4. In summary, our results provide new perspectives on OCLN, as this protein participates in the development of BLCA angiogenesis by activating the IL8/STAT3 pathway via STAT4 and may serve as a novel and unique therapeutic target.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pathology The Fifth Affiliated Hospital of Sun Yat‐Sen University Zhuhai China
| | - Xue‐Qi Liu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐Sen University Sun Yat‐Sen University Shenzhen China
| | - Jian‐Zhong He
- Department of Pathology The Fifth Affiliated Hospital of Sun Yat‐Sen University Zhuhai China
| | - Shi‐Ping Xian
- Department of Pathology The Fifth Affiliated Hospital of Sun Yat‐Sen University Zhuhai China
| | - Peng‐Fei Yang
- Department of Pathology The Fifth Affiliated Hospital of Sun Yat‐Sen University Zhuhai China
| | - Zhi‐Ying Mai
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐Sen University Sun Yat‐Sen University Shenzhen China
| | - Miao Li
- Department of Hematology The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital Shenzhen China
| | - Ye Liu
- Department of Pathology The Fifth Affiliated Hospital of Sun Yat‐Sen University Zhuhai China
| | - Xing‐Ding Zhang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐Sen University Sun Yat‐Sen University Shenzhen China
| |
Collapse
|
44
|
Xu F, Tang Q, Wang Y, Wang G, Qian K, Ju L, Xiao Y. Development and Validation of a Six-Gene Prognostic Signature for Bladder Cancer. Front Genet 2021; 12:758612. [PMID: 34938313 PMCID: PMC8685517 DOI: 10.3389/fgene.2021.758612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Human bladder cancer (BCa) is the most common urogenital system malignancy. Patients with BCa have limited treatment efficacy in clinical practice. Novel biomarkers could provide more crucial information conferring to cancer diagnosis, treatment, and prognosis. Here, we aimed to explore and identify novel biomarkers associated with cancer-specific survival of patients with BCa to build a prognostic signature. Based on univariate Cox regression, Lasso regression, and multivariate Cox regression analysis, we conducted an integrated analysis in the training set (GSE32894) and established a six-gene signature to predict the cancer-specific survival for human BCa. The six genes were Cyclin Dependent Kinase 4 (CDK4), E2F Transcription Factor 7 (E2F7), Collagen Type XI Alpha 1 Chain (COL11A1), Bradykinin Receptor B2 (BDKRB2), Yip1 Interacting Factor Homolog B (YIF1B), and Zinc Finger Protein 415 (ZNF415). Then, we validated the prognostic value of the model by using two other datasets (GSE13507 and TCGA). Also, we conducted univariate and multivariate Cox regression analyses, and results indicated that the six-gene signature was an independent prognostic factor of cancer-specific survival of patients with BCa. Functional analysis was performed based on the differentially expressed genes of low- and high-risk patients, and we found that they were enriched in lipid metabolic and cell division-related biological processes. Meanwhile, the gene set enrichment analysis (GSEA) revealed that high-risk samples were enriched in cell cycle and cancer-related pathways [G2/M checkpoint, E2F targets, mitotic spindle, mTOR signaling, spermatogenesis, epithelial–mesenchymal transition (EMT), DNA repair, PI3K/AKT/mTOR signaling, unfolded protein response (UPR), and MYC targets V2]. Lastly, we detected the relative expression of each signature in BCa cell lines by quantitative real-time PCR (qRT-PCR). As far as we know, currently, the present study is the first research that developed and validated a cancer-specific survival prognostic index based on three independent cohorts. The results revealed that this six-gene signature has a predictive ability for cancer-specific prognosis. Moreover, we also verified the relative expression of these six signatures between the bladder cell line and four BCa cell lines by qRT-PCR. Nevertheless, experiments to further explore the function of six genes are lacking.
Collapse
Affiliation(s)
- Fei Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qianqian Tang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yejinpeng Wang
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Human Genetic Resource Preservation Center of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Human Genetic Resource Preservation Center of Wuhan University, Wuhan, China
| | - Lingao Ju
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Human Genetic Resource Preservation Center of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Human Genetic Resource Preservation Center of Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Tang C, Liu H, Fan Y, He J, Li F, Wang J, Hou Y. Functional Nanomedicines for Targeted Therapy of Bladder Cancer. Front Pharmacol 2021; 12:778973. [PMID: 34867408 PMCID: PMC8635105 DOI: 10.3389/fphar.2021.778973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/29/2021] [Indexed: 12/29/2022] Open
Abstract
Bladder cancer is one of most common malignant urinary tract tumor types with high incidence worldwide. In general, transurethral resection of non-muscle-invasive bladder cancer followed by intravesical instillation of chemotherapy is the standard treatment approach to minimize recurrence and delay progression of bladder cancer. However, conventional intravesical chemotherapy lacks selectivity for tumor tissues and the concentration of drug is reduced with the excretion of urine, leading to frequent administration and heavy local irritation symptoms. While nanomedicines can overcome all the above shortcomings and adhere to the surface of bladder tumors for a long time, and continuously and efficiently release drugs to bladder cancers. The rapid advances in targeted therapy have led to significant improvements in drug efficacy and precision of targeted drug delivery to eradicate tumor cells, with reduced side-effects. This review summarizes the different available nano-systems of targeted drug delivery to bladder cancer tissues. The challenges and prospects of targeted therapy for bladder cancer are additionally discussed.
Collapse
Affiliation(s)
- Chao Tang
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Heng Liu
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Yanpeng Fan
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Jiahao He
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Fuqiu Li
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, China
| | - Jin Wang
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Yuchuan Hou
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
An immune cell infiltration-related gene signature predicts prognosis for bladder cancer. Sci Rep 2021; 11:16679. [PMID: 34404901 PMCID: PMC8370985 DOI: 10.1038/s41598-021-96373-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
To explore novel therapeutic targets, develop a gene signature and construct a prognostic nomogram of bladder cancer (BCa). Transcriptome data and clinical traits of BCa were downloaded from UCSC Xena database and Gene Expression Omnibus (GEO) database. We then used the method of Single sample Gene Set Enrichment analysis (ssGSEA) to calculate the infiltration abundances of 24 immune cells in eligible BCa samples. By weighted correlation network analysis (WGCNA), we identified turquoise module with strong and significant association with the infiltration abundance of immune cells which were associated with overall survival of BCa patients. Subsequently, we developed an immune cell infiltration-related gene signature based on the module genes (MGs) and immune-related genes (IRGs) from the Immunology Database and Analysis Portal (ImmPort). Then, we tested the prognostic power and performance of the signature in both discovery and external validation datasets. A nomogram integrated with signature and clinical features were ultimately constructed and tested. Five prognostic immune cell infiltration-related module genes (PIRMGs), namely FPR1, CIITA, KLRC1, TNFRSF6B, and WFIKKN1, were identified and used for gene signature development. And the signature showed independent and stable prognosis predictive power. Ultimately, a nomogram consisting of signature, age and tumor stage was constructed, and it showed good and stable predictive ability on prognosis. Our prognostic signature and nomogram provided prognostic indicators and potential immunotherapeutic targets for BCa. Further researches are needed to verify the clinical effectiveness of this nomogram and these biomarkers.
Collapse
|
47
|
Fu Y, Sun S, Bi J, Kong C, Yin L. A novel immune-related gene pair prognostic signature for predicting overall survival in bladder cancer. BMC Cancer 2021; 21:810. [PMID: 34266411 PMCID: PMC8281685 DOI: 10.1186/s12885-021-08486-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Bladder cancer (BC) is the ninth most common malignant tumor. We constructed a risk signature using immune-related gene pairs (IRGPs) to predict the prognosis of BC patients. Methods The mRNA transcriptome, simple nucleotide variation and clinical data of BC patients were downloaded from The Cancer Genome Atlas (TCGA) database (TCGA-BLCA). The mRNA transcriptome and clinical data were also extracted from Gene Expression Omnibus (GEO) datasets (GSE31684). A risk signature was built based on the IRGPs. The ability of the signature to predict prognosis was analyzed with survival curves and Cox regression. The relationships between immunological parameters [immune cell infiltration, immune checkpoints, tumor microenvironment (TME) and tumor mutation burden (TMB)] and the risk score were investigated. Finally, gene set enrichment analysis (GSEA) was used to explore molecular mechanisms underlying the risk score. Results The risk signature utilized 30 selected IRGPs. The prognosis of the high-risk group was significantly worse than that of the low-risk group. We used the GSE31684 dataset to validate the signature. Close relationships were found between the risk score and immunological parameters. Finally, GSEA showed that gene sets related to the extracellular matrix (ECM), stromal cells and epithelial-mesenchymal transition (EMT) were enriched in the high-risk group. In the low-risk group, we found a number of immune-related pathways in the enriched pathways and biofunctions. Conclusions We used a new tool, IRGPs, to build a risk signature to predict the prognosis of BC. By evaluating immune parameters and molecular mechanisms, we gained a better understanding of the mechanisms underlying the risk signature. This signature can also be used as a tool to predict the effect of immunotherapy in patients with BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08486-0.
Collapse
Affiliation(s)
- Yang Fu
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Shanshan Sun
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| | - Lei Yin
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
48
|
Wu H, Zhang ZY, Zhang Z, Xiao XY, Gao SL, Lu C, Zuo L, Zhang LF. Prediction of bladder cancer outcome by identifying and validating a mutation-derived genomic instability-associated long noncoding RNA (lncRNA) signature. Bioengineered 2021; 12:1725-1738. [PMID: 33955803 PMCID: PMC8806732 DOI: 10.1080/21655979.2021.1924555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bladder cancer is one of the most common malignant tumors worldwide. Accordingly, its incidence and mortality are high. One of the characteristics of cancer is genomic instability. New studies suggest that long non-coding RNAs (lncRNAs) play an important role in maintaining genomic instability. This study aimed to identify a genomic instability-associated lncRNA signature to predict the outcome of patients with bladder cancer. We downloaded data for bladder cancer patients from The Cancer Genome Atlas database to obtain lncRNA expression profiles as well as somatic mutation profiles. Using the lncRNA computational framework, a genomic instability-related lncRNA signature (GIlncSig) was established and the prognostic value of this signature was assessed and validated. A five-lncRNA signature based on genomic instability (CFAP58-DT, MIR100HG, LINC02446, AC078880.3, and LINC01833) was obtained from 58 differentially expressed lncRNAs. Patients were divided into high-risk and low-risk groups, with the high-risk group having a substantially worse prognosis than the low-risk group. Univariate and multivariate Cox analyses indicated that GIlncSig may be an independent prognostic factor; this finding was subsequently validated. In addition, enrichment analysis indicated that GIlncSig is associated with genomic instability in bladder cancer. GIlncSig has a predictive value for the prognosis of bladder cancer patients and provides guidance for the clinical treatment of these patients.
Collapse
Affiliation(s)
- Hao Wu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Graduate School, Dalian Medical University, Dalian, China
| | - Zi-Yi Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Graduate School, Dalian Medical University, Dalian, China
| | - Ze Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Graduate School, Dalian Medical University, Dalian, China
| | | | - Sheng-Lin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chao Lu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Li-Feng Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
49
|
Fu Y, Sun S, Bi J, Kong C, Yin L. Construction and analysis of a ceRNA network and patterns of immune infiltration in bladder cancer. Transl Androl Urol 2021; 10:1939-1955. [PMID: 34159075 PMCID: PMC8185653 DOI: 10.21037/tau-20-1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Bladder cancer (BC) is the ninth most common malignant tumor, accounting for an estimate of 549,000 new BC cases and 200,000 BC-related deaths worldwide in 2018. The prognosis of BC has not substantially improved despite significant advances in the diagnosis and treatment of the disease. Methods The RNA sequencing (RNA-seq) data and clinical information of BC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm was used to assess immune infiltration. The survival analyses were performed using the selected components of a ceRNA network and selected immune cell types by least absolute shrinkage and selection operator (LASSO) Cox regression to calculate the risk score. The accuracy of prognosis prediction was determined by receiver operating characteristic (ROC) curves, survival curves, and nomograms. Finally, the correlation analysis was performed to investigate the relationships between the signature components of the ceRNA network and the immune cell signature. Results Two completed survival analyses included selected components of the ceRNA network (ELN, SREBF1, DSC2, TTLL7, DIP2C, SATB1, hsa-miR-20a-5p, and hsa-miR-29c-3p) and selected immune cell types (M0 macrophages, M2 macrophages, resting mast cells, and neutrophils). ROC curves, survival curves (all P values <0.05), nomograms, and calibration curves indicated that the accuracy of the two survival analyses was acceptable. Moreover, the correlations between TTLL7 and resting mast cells (R=0.24, P<0.001), DSC2 and resting mast cells (R=−0.23, P<0.001), ELN and resting mast cells (R=0.44, P<0.001), and hsa-miR-29c-3p and M0 macrophages (R=−0.29, P<0.001) were significant, indicating that interactions of these factors may play significant roles in the prognosis of BC. Conclusions TTLL7, DSC2, ELN, hsa-miR-29c-3p, resting mast cells, and M0 macrophages may play an important role in the development of BC. However, additional studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Yang Fu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Sun
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Yin
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
50
|
Liang Y, Wang Y, Wang L, Liang Z, Li D, Xu X, Chen Y, Yang X, Zhang H, Niu H. Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer. Bioact Mater 2021; 6:433-446. [PMID: 32995671 PMCID: PMC7490593 DOI: 10.1016/j.bioactmat.2020.08.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is one of the concerning malignancies worldwide, which is lacking effective targeted therapy. Gene therapy is a potential approach for bladder cancer treatment. While, a safe and effective targeted gene delivery system is urgently needed for prompting the bladder cancer treatment in vivo. In this study, we confirmed that the bladder cancer had CD44 overexpression and small interfering RNAs (siRNA) with high interfere to Bcl2 oncogene were designed and screened. Then hyaluronic acid dialdehyde (HAD) was prepared in an ethanol-water mixture and covalently conjugated to the chitosan nanoparticles (CS-HAD NPs) to achieve CD44 targeted siRNA delivery. The in vitro and in vivo evaluations indicated that the siRNA-loaded CS-HAD NPs (siRNA@CS-HAD NPs) were approximately 100 nm in size, with improved stability, high siRNA encapsulation efficiency and low cytotoxicity. CS-HAD NPs could target to CD44 receptor and deliver the therapeutic siRNA into T24 bladder cancer cells through a ligand-receptor-mediated targeting mechanism and had a specific accumulation capacity in vivo to interfere the targeted oncogene Bcl2 in bladder cancer. Overall, a CD44 targeted gene delivery system based on natural macromolecules was developed for effective bladder cancer treatment, which could be more conducive to clinical application due to its simple preparation and high biological safety.
Collapse
Affiliation(s)
- Ye Liang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Yonghua Wang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Liping Wang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhijuan Liang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Dan Li
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaoyu Xu
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Yuanbin Chen
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xuecheng Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Haitao Niu
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|