1
|
Devuyst O, Ahn C, Barten TR, Brosnahan G, Cadnapaphornchai MA, Chapman AB, Cornec-Le Gall E, Drenth JP, Gansevoort RT, Harris PC, Harris T, Horie S, Liebau MC, Liew M, Mallett AJ, Mei C, Mekahli D, Odland D, Ong AC, Onuchic LF, P-C Pei Y, Perrone RD, Rangan GK, Rayner B, Torra R, Mustafa R, Torres VE. KDIGO 2025 Clinical Practice Guideline for the Evaluation, Management, and Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Kidney Int 2025; 107:S1-S239. [PMID: 39848759 DOI: 10.1016/j.kint.2024.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 01/25/2025]
|
2
|
Pan D, Jiang M, Tao G, Shi J, Song Z, Chen R, Wang D. The role of Ca 2+ signalling and InsP3R in the pathogenesis of intrahepatic cholestasis of pregnancy. J OBSTET GYNAECOL 2024; 44:2345276. [PMID: 38685831 DOI: 10.1080/01443615.2024.2345276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND In order to contribute new insights for future prevention and treatment of intrahepatic cholestasis of pregnancy (ICP), and to promote positive pregnancy outcomes, we evaluated serum Ca2+ levels and inositol 1,4,5-trisphosphate receptor (InsP3R) expression in the liver tissue of a rat ICP model. METHODS After establishing the model by injection of oestradiol benzoate and progesterone into pregnant rats, animals were divided into normal control (n = 5) and ICP model groups (n = 5). The expression of InsP3R protein in the liver, and serum levels of Ca2+, glycocholic acid and bile acid were detected. RESULTS InsP3R mRNA and protein were significantly lower in the ICP model group compared to the normal group, as determined by qPCR and immunohistochemistry, respectively. Serum enzyme-linked immunosorbent assay results revealed significantly higher levels of glycocholic acid and bile acid in the ICP model group compared to the normal group, while Ca2+ levels were significantly lower. The levers of Ca2+ were significantly and negatively correlated with the levels of glycocholic acid. The observed decrease in Ca2+ was associated with an increase in total bile acids, but there was no significant correlation. CONCLUSIONS Our results revealed that the expression of InsP3R and serum Ca2+ levels was significantly decreased in the liver tissue of ICP model rats. Additionally, Ca2+ levels were found to be negatively correlated with the level of glycocholic acid.
Collapse
Affiliation(s)
- Dan Pan
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Mengting Jiang
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Guoxian Tao
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Jinmei Shi
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Zhiwei Song
- Department of Medical Laboratory, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Ren Chen
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Dongguo Wang
- Department of Central Laboratory, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| |
Collapse
|
3
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Pham HN, Pham L, Sato K. Navigating the liver landscape: upcoming pharmacotherapies for primary sclerosing cholangitis. Expert Opin Pharmacother 2024; 25:895-906. [PMID: 38813599 DOI: 10.1080/14656566.2024.2362263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a bile duct disorder characterized by ductular reaction, hepatic inflammation, and liver fibrosis. The pathogenesis of PSC is still undefined, and treatment options for patients are limited. Previous clinical trials evaluated drug candidates targeting various cellular functions and pathways, such as bile acid signaling and absorption, gut bacteria and permeability, and lipid metabolisms. However, most of phase III clinical trials for PSC were disappointing, except vancomycin therapy, and there are still no established medications for PSC with efficacy and safety confirmed by phase IV clinical trials. AREAS COVERED This review summarizes the currently ongoing or completed clinical studies for PSC, which are phase II or further, and discusses therapeutic targets and strategies, limitations, and future directions and possibilities of PSC treatments. A literature search was conducted in PubMed and ClinicalTrials.gov utilizing the combination of the searched term 'primary sclerosing cholangitis' with other keywords, such as 'clinical trials,' 'antibiotics,' or drug names. Clinical trials at phase II or further were included for consideration. EXPERT OPINION Only vancomycin demonstrated promising therapeutic effects in the phase III clinical trial. Other drug candidates showed futility or inconsistent results, and the search for novel PSC treatments is still ongoing.
Collapse
Affiliation(s)
- Hoang Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Pham
- Department of Science and Mathematics, Texas A&M University - Central Texas, Killeen, TX, USA
| | - Keisaku Sato
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Abaturov A, Babуch V. Drug regulation of microRNA. CHILD`S HEALTH 2024; 18:572-583. [DOI: 10.22141/2224-0551.18.8.2023.1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The scientific review provides the mechanisms of drug regulation of microRNA in the human body. To write the article, information was searched using Scopus, Web of Science, MEDLINE, PubMed, Google Scholar, Embase, Global Health, The Cochrane Library databases. To restore the reduced functional activity of microRNAs, replacement therapy is used, with modified synthetic analogs of endogenous microRNAs, and drugs that enhance the production of the body’s own microRNAs. The authors state that numerous studies have confirmed the effectiveness of miRNA replacement therapy. It is known that there are several groups of drugs among miRNA inhibitors: anti-miRNA oligonucleotides, miRNA traps, miRNA mimics that prevent miRNA binding; peptide nucleic acids, small-molecule inhibitors. The authors suggest that the expression of drug-metabolizing enzymes is controlled by nuclear receptors and transcription factors, epigenetic regulation such as DNA methylation and histone acetylation, and post-translational modification. It is emphasized that ursodeoxycholic acid modulates the expression of some miRNAs. It is known that probiotic bacteria can modulate the expression level of miRNA genes. The use of probiotics is accompanied by a change in the expression of numerous genes of the body involved in the regulation of the inflammatory response, allergic reactions, metabolism and other biological processes. Thus, modern science is intensively studying the potential of using drugs that restore miRNA content or inhibit miRNA activity for the therapy of miRNA-dependent conditions. The results of scientific research confirmed the therapeutic effect of ursodeoxycholic acid and probiotic preparations due to the effect on the activity of miRNA generation in hepatobiliary diseases. Therefore, the introduction into clinical practice of drugs than can modulate the content and expression of specific miRNAs will certainly open new perspectives in the treatment of patients with hepatobiliary diseases.
Collapse
|
6
|
Cifuentes-Silva E, Cabello-Verrugio C. Bile Acids as Signaling Molecules: Role of Ursodeoxycholic Acid in Cholestatic Liver Disease. Curr Protein Pept Sci 2024; 25:206-214. [PMID: 37594109 DOI: 10.2174/1389203724666230818092800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Ursodeoxycholic acid (UDCA) is a natural substance physiologically produced in the liver. Initially used to dissolve gallstones, it is now successfully used in treating primary biliary cirrhosis and as adjuvant therapy for various hepatobiliary cholestatic diseases. However, the mechanisms underlying its beneficial effects still need to be clarified. Evidence suggests three mechanisms of action for UDCA that could benefit humans with cholestatic liver disease (CLD): protection of cholangiocytes against hydrophobic bile acid (BA) cytotoxicity, stimulation of hepatobiliary excretion, and protection of hepatocytes against BA-induced apoptosis. These mechanisms may act individually or together to potentiate them. At the molecular level, it has been observed that UDCA can generate modifications in the transcription and translation of proteins essential in the transport of BA, correcting the deficit in BA secretion in CLD, in addition to activating signaling pathways to translocate these transporters to the sites where they should fulfill their function. Inhibition of BA-induced hepatocyte apoptosis may play a role in CLD, characterized by BA retention in the hepatocyte. Thus, different mechanisms of action contribute to the improvement after UDCA administration in CLD. On the other hand, the effects of UDCA on tissues that possess receptors that may interact with BAs in pathological contexts, such as skeletal muscle, are still unclear. This work aims to describe the main molecular mechanisms by which UDCA acts in the human body, emphasizing the interaction in tissues other than the liver.
Collapse
Affiliation(s)
- Eduardo Cifuentes-Silva
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
7
|
Lenci I, Milana M, Signorello A, Grassi G, Baiocchi L. Secondary bile acids and the biliary epithelia: The good and the bad. World J Gastroenterol 2023; 29:357-366. [PMID: 36687129 PMCID: PMC9846939 DOI: 10.3748/wjg.v29.i2.357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The biliary tract has been considered for several decades a passive system just leading the hepatic bile to the intestine. Nowadays several researches demonstrated an important role of biliary epithelia (i.e. cholangiocytes) in bile formation. The study of biliary processes therefore maintains a continuous interest since the possible important implications regarding chronic cholestatic human diseases, such as primary biliary cholangitis or primary sclerosing cholangitis. Bile acids (BAs), produced by the liver, are the most represented organic molecules in bile. The physiologic importance of BAs was initially attributed to their behavior as natural detergents but several studies now demonstrate they are also important signaling molecules. In this minireview the effect of BAs on the biliary epithelia are reported focusing in particular on secondary (deriving by bacterial manipulation of primary molecules) ones. This class of BAs is demonstrated to have relevant biological effects, ranging from toxic to therapeutic ones. In this family ursodeoxycholic and lithocholic acid present the most interesting features. The molecular mechanisms linking ursodeoxycholic acid to its beneficial effects on the biliary tract are discussed in details as well as data on the processes leading to lithocholic damage. These findings suggest that expansion of research in the field of BAs/cholangiocytes interaction may increase our understanding of cholestatic diseases and should be helpful in designing more effective therapies for biliary disorders.
Collapse
Affiliation(s)
- Ilaria Lenci
- Hepatology Unit, Policlinico Tor Vergata, Rome 00133, Italy
| | - Martina Milana
- Hepatology Unit, Policlinico Tor Vergata, Rome 00133, Italy
| | | | | | | |
Collapse
|
8
|
Kyritsi K, Wu N, Zhou T, Carpino G, Baiocchi L, Kennedy L, Chen L, Ceci L, Meyer AA, Barupala N, Franchitto A, Onori P, Ekser B, Gaudio E, Wu C, Marakovits C, Chakraborty S, Francis H, Glaser S, Alpini G. Knockout of secretin ameliorates biliary and liver phenotypes during alcohol-induced hepatotoxicity. Cell Biosci 2023; 13:5. [PMID: 36624475 PMCID: PMC9830859 DOI: 10.1186/s13578-022-00945-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Alcohol-related liver disease (ALD) is characterized by ductular reaction (DR), liver inflammation, steatosis, fibrosis, and cirrhosis. The secretin (Sct)/secretin receptor (SR) axis (expressed only by cholangiocytes) regulates liver phenotypes in cholestasis. We evaluated the role of Sct signaling on ALD phenotypes. METHODS We used male wild-type and Sct-/- mice fed a control diet (CD) or ethanol (EtOH) for 8 wk. Changes in liver phenotypes were measured in mice, female/male healthy controls, and patients with alcoholic cirrhosis. Since Cyp4a10 and Cyp4a11/22 regulate EtOH liver metabolism, we measured their expression in mouse/human liver. We evaluated: (i) the immunoreactivity of the lipogenesis enzyme elongation of very-long-chain fatty acids 1 (Elovl, mainly expressed by hepatocytes) in mouse/human liver sections by immunostaining; (ii) the expression of miR-125b (that is downregulated in cholestasis by Sct) in mouse liver by qPCR; and (iii) total bile acid (BA) levels in mouse liver by enzymatic assay, and the mRNA expression of genes regulating BA synthesis (cholesterol 7a-hydroxylase, Cyp27a1, 12a-hydroxylase, Cyp8b1, and oxysterol 7a-hydroxylase, Cyp7b11) and transport (bile salt export pump, Bsep, Na+-taurocholate cotransporting polypeptide, NTCP, and the organic solute transporter alpha (OSTa) in mouse liver by qPCR. RESULTS In EtOH-fed WT mice there was increased biliary and liver damage compared to control mice, but decreased miR-125b expression, phenotypes that were blunted in EtOH-fed Sct-/- mice. The expression of Cyp4a10 increased in cholangiocytes and hepatocytes from EtOH-fed WT compared to control mice but decreased in EtOH-fed Sct-/- mice. There was increased immunoreactivity of Cyp4a11/22 in patients with alcoholic cirrhosis compared to controls. The expression of miR-125b decreased in EtOH-fed WT mice but returned at normal values in EtOH-fed Sct-/- mice. Elovl1 immunoreactivity increased in patients with alcoholic cirrhosis compared to controls. There was no difference in BA levels between WT mice fed CD or EtOH; BA levels decreased in EtOH-fed Sct-/- compared to EtOH-fed WT mice. There was increased expression of Cyp27a1, Cyp8b1, Cyp7b1, Bsep, NTCP and Osta in total liver from EtOH-fed WT compared to control mice, which decreased in EtOH-fed Sct-/- compared to EtOH-fed WT mice. CONCLUSIONS Targeting Sct/SR signaling may be important for modulating ALD phenotypes.
Collapse
Affiliation(s)
- Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza University of Rome, Rome, Italy
| | | | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Research, Indiana Center for Liver Research, Gastroenterology, Medicine, Richard L. Roudebush VA Medical Center and Indiana University, 702 Rotary Circle, Rm. 013C, Indianapolis, IN, 46202-2859, USA
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza University of Rome, Rome, Italy
| | - Alison Ann Meyer
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nipuni Barupala
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Antonio Franchitto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza University of Rome, Rome, Italy
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, IN, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza University of Rome, Rome, Italy
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, 8447 Riverside Parkway, MREB II, Room 2342, Bryan, TX, 77807-3260, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Division of Research, Indiana Center for Liver Research, Gastroenterology, Medicine, Richard L. Roudebush VA Medical Center and Indiana University, 702 Rotary Circle, Rm. 013C, Indianapolis, IN, 46202-2859, USA.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, 8447 Riverside Parkway, MREB II, Room 2342, Bryan, TX, 77807-3260, USA.
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Division of Research, Indiana Center for Liver Research, Gastroenterology, Medicine, Richard L. Roudebush VA Medical Center and Indiana University, 702 Rotary Circle, Rm. 013C, Indianapolis, IN, 46202-2859, USA.
| |
Collapse
|
9
|
Yuan Z, Wang J, Zhang H, Chai Y, Xu Y, Miao Y, Yuan Z, Zhang L, Jiang Z, Yu Q. Glycocholic acid aggravates liver fibrosis by promoting the up-regulation of connective tissue growth factor in hepatocytes. Cell Signal 2023; 101:110508. [PMID: 36341984 DOI: 10.1016/j.cellsig.2022.110508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
AIMS The precise role of bile acid in the progression of liver fibrosis has yet to be elucidated. In this study, common bile duct ligation was used as an in vivo mouse model for the evaluation of bile acids that promote liver connective tissue growth factor expression. MAIN METHODS Primary rat and mice hepatocytes, as well as primary rat hepatic stellate and HepaRG cells were evaluated as in vitro models for promoting the expression of connective tissue growth factor by bile acids. KEY FINDINGS Compared with taurochenodeoxycholic acid, glycochenodeoxycholic acid, and taurocholic acid, glycocholic acid (GCA) most strongly promoted the secretion of connective tissue growth factor in mouse primary hepatocytes, rat primary hepatocytes and HepaRGs. GCA did not directly promote the activation of hepatic stellate cells. The administration of GCA in mice with ligated bile ducts promotes the progression of liver fibrosis, which may promote the yes-associated protein of hepatocytes into the nucleus, resulting in the hepatocytes secreting more connective tissue growth factor for hepatic stellate cell activation. In conclusion, our data showed that GCA can induce the expression of connective tissue growth factor in hepatocytes by promoting the nuclear translocation of yes-associated protein, thereby activating hepatic stellate cells. SIGNIFICANCE Our findings help to elucidate the contribution of GCA to the progression of hepatic fibrosis in cholestatic disease and aid the clinical monitoring of cholestatic liver fibrosis development.
Collapse
Affiliation(s)
- Zihang Yuan
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Haoran Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yunxia Xu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Luyong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenzhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinwei Yu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Abstract
Bile acids wear many hats, including those of an emulsifier to facilitate nutrient absorption, a cholesterol metabolite, and a signaling molecule in various tissues modulating itching to metabolism and cellular functions. Bile acids are synthesized in the liver but exhibit wide-ranging effects indicating their ability to mediate organ-organ crosstalk. So, how does a steroid metabolite orchestrate such diverse functions? Despite the inherent chemical similarity, the side chain decorations alter the chemistry and biology of the different bile acid species and their preferences to bind downstream receptors distinctly. Identification of new modifications in bile acids is burgeoning, and some of it is associated with the microbiota within the intestine. Here, we provide a brief overview of the history and the various receptors that mediate bile acid signaling in addition to its crosstalk with the gut microbiota.
Collapse
Affiliation(s)
| | | | - Sayeepriyadarshini Anakk
- Correspondence: Sayeepriyadarshini Anakk, PhD, Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 506 S Mathews Ave, 453 Medical Sciences Bldg, Urbana, IL 61801, USA.
| |
Collapse
|
11
|
Norcia LF, Watanabe EM, Hamamoto Filho PT, Hasimoto CN, Pelafsky L, de Oliveira WK, Sassaki LY. Polycystic Liver Disease: Pathophysiology, Diagnosis and Treatment. Hepat Med 2022; 14:135-161. [PMID: 36200122 PMCID: PMC9528914 DOI: 10.2147/hmer.s377530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic liver disease (PLD) is a clinical condition characterized by the presence of more than 10 cysts in the liver. It is a rare disease Of genetic etiology that presents as an isolated disease or assoc\iated with polycystic kidney disease. Ductal plate malformation, ciliary dysfunction, and changes in cell signaling are the main factors involved in its pathogenesis. Most patients with PLD are asymptomatic, but in 2-5% of cases the disease has disabling symptoms and a significant reduction in quality of life. The diagnosis is based on family history of hepatic and/or renal polycystic disease, clinical manifestations, patient age, and polycystic liver phenotype shown on imaging examinations. PLD treatment has evolved considerably in the last decades. Somatostatin analogues hold promise in controlling disease progression, but liver transplantation remains a unique curative treatment modality.
Collapse
Affiliation(s)
- Luiz Fernando Norcia
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Erika Mayumi Watanabe
- Department of Radiology, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Pedro Tadao Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Claudia Nishida Hasimoto
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Leonardo Pelafsky
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Walmar Kerche de Oliveira
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| |
Collapse
|
12
|
Shulpekova Y, Shirokova E, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Sinitsyna A, Izotov A, Butkova T, Shulpekova N, Nechaev V, Damulin I, Okhlobystin A, Ivashkin V. A Recent Ten-Year Perspective: Bile Acid Metabolism and Signaling. Molecules 2022; 27:molecules27061983. [PMID: 35335345 PMCID: PMC8953976 DOI: 10.3390/molecules27061983] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Bile acids are important physiological agents required for the absorption, distribution, metabolism, and excretion of nutrients. In addition, bile acids act as sensors of intestinal contents, which are determined by the change in the spectrum of bile acids during microbial transformation, as well as by gradual intestinal absorption. Entering the liver through the portal vein, bile acids regulate the activity of nuclear receptors, modify metabolic processes and the rate of formation of new bile acids from cholesterol, and also, in all likelihood, can significantly affect the detoxification of xenobiotics. Bile acids not absorbed by the liver can interact with a variety of cellular recipes in extrahepatic tissues. This provides review information on the synthesis of bile acids in various parts of the digestive tract, its regulation, and the physiological role of bile acids. Moreover, the present study describes the involvement of bile acids in micelle formation, the mechanism of intestinal absorption, and the influence of the intestinal microbiota on this process.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Elena Shirokova
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Maria Zharkova
- Department of Hepatology University Clinical Hospital No.2, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia;
| | - Pyotr Tkachenko
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Igor Tikhonov
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Alexander Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | - Alexandra Sinitsyna
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Alexander Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | - Tatyana Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | | | - Vladimir Nechaev
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Igor Damulin
- Branch of the V. Serbsky National Medical Research Centre for Psychiatry and Narcology, 127994 Moscow, Russia;
| | - Alexey Okhlobystin
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Vladimir Ivashkin
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| |
Collapse
|
13
|
Lei L, Gao W, Loor JJ, Aboragah A, Fang Z, Du X, Zhang M, Song Y, Liu G, Li X. Reducing hepatic endoplasmic reticulum stress ameliorates the impairment in insulin signaling induced by high levels of β-hydroxybutyrate in bovine hepatocytes. J Dairy Sci 2021; 104:12845-12858. [PMID: 34538494 DOI: 10.3168/jds.2021-20611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022]
Abstract
Ketotic dairy cows exhibit a state of negative energy balance (NEB) characterized by elevated circulating levels of β-hydroxybutyrate (BHB) and fatty acids. Impaired hepatic insulin signaling in dairy cows occurs frequently during the transition into lactation, but its role on liver function during this period is not well known. In nonruminants, endoplasmic reticulum (ER) stress is a causal factor contributing to impaired insulin signaling in the liver. Thus, the aim of this study was to investigate the status of hepatic insulin and ER stress signaling and whether ER stress contributes to impaired insulin signaling in dairy cows with ketosis. Healthy (control cows, n = 10, BHB ≤0.6 mM) and ketotic (ketotic cows, n = 10, BHB ≥1.2 mM) cows at 3 to 10 d in milk were selected for liver biopsy and blood sampling before feeding. In vitro experiments were conducted with isolated hepatocytes from 5 healthy calves (1 d old, fasted female, 30-40 kg of body weight). Treatments included BHB (0, 0.9, 1.8, 3.6 mM), tauroursodeoxycholic acid (TUDCA, a canonical inhibitor of ER stress), and different incubation times (0.5, 1, 2, 3, 5, 7, 9, or 12 h). Ketotic cows had lower daily milk yield (median: 29.50 vs. 23.00 kg), higher plasma nonesterified fatty acid (NEFA) (median: 0.33 vs. 1.17 mM), BHB (median: 0.43 vs. 3.22 mM), aspartate aminotransferase (median: 70.58 vs. 155.70 U/L), alanine aminotransferase (median: 18.31 vs. 37.90 U/L), lower plasma glucose (median: 4.32 vs. 2.37 mg/dL), and revised quantitative insulin sensitivity check index (median: 0.39 vs. 0.37) compared with healthy cows. Increased abundance of phosphorylated insulin receptor substrate-1 (IRS1) and decreased abundance of phosphorylated protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in ketotic cows indicated a state of insulin resistance. In addition, abundance of phosphorylated protein kinase RNA-like ER kinase (PERK) and inositol requiring protein-1α (IRE1α), and cleavage of activating transcription factor-6 (ATF6) were greater in the liver of ketotic cows. In vitro, at the early stages of incubation, treatment with BHB upregulated abundance of phosphorylated of IRE1α, PERK, and the cleavage of ATF6, as well as several unfolded protein response genes [X-box-binding protein-1 (XBP1), 78 kDa glucose-regulated protein (GRP78), and C/EBP homologous protein (CHOP)]. Furthermore, in response to increasing doses of BHB, the phosphorylation level of PERK, IRE1α, and the cleavage of ATF6, and the abundance of XBP1, GRP78, and CHOP increased. In addition, BHB treatment increased phosphorylation of IRS1 and decreased phosphorylation of AKT and GSK3β, and upregulated abundance of gluconeogenic genes (phosphoenolpyruvate carboxykinase and glucose-6-phosphatase). Importantly, these changes were reversed by inhibiting ER stress with TUDCA treatment. Overall, the present study indicated that reversing ER stress during ketosis might help alleviate hepatic insulin resistance. Targeting ER stress may represent a potential therapeutic target for controlling the negative aspects of ketosis on liver function.
Collapse
Affiliation(s)
- Lin Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Wenwen Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Ahmad Aboragah
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Zhiyuan Fang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xiliang Du
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Min Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Yuxiang Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
14
|
Baiocchi L, Lenci I, Milana M, Kennedy L, Sato K, Zhang W, Ekser B, Ceci L, Meadows V, Glaser S, Alpini G, Francis H. Cyclic AMP Signaling in Biliary Proliferation: A Possible Target for Cholangiocarcinoma Treatment? Cells 2021; 10:1692. [PMID: 34359861 PMCID: PMC8303798 DOI: 10.3390/cells10071692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma is a lethal disease with scarce response to current systemic therapy. The rare occurrence and large heterogeneity of this cancer, together with poor knowledge of its molecular mechanisms, are elements contributing to the difficulties in finding an appropriate cure. Cholangiocytes (and their cellular precursors) are considered the liver component giving rise to cholangiocarcinoma. These cells respond to several hormones, neuropeptides and molecular stimuli employing the cAMP/PKA system for the translation of messages in the intracellular space. For instance, in physiological conditions, stimulation of the secretin receptor determines an increase of intracellular levels of cAMP, thus activating a series of molecular events, finally determining in bicarbonate-enriched choleresis. However, activation of the same receptor during cholangiocytes' injury promotes cellular growth again, using cAMP as the second messenger. Since several scientific pieces of evidence link cAMP signaling system to cholangiocytes' proliferation, the possible changes of this pathway during cancer growth also seem relevant. In this review, we summarize the current findings regarding the cAMP pathway and its role in biliary normal and neoplastic cell proliferation. Perspectives for targeting the cAMP machinery in cholangiocarcinoma therapy are also discussed.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Hepatology Unit, University of Tor Vergata, 00133 Rome, Italy; (L.B.); (I.L.); (M.M.)
| | - Ilaria Lenci
- Hepatology Unit, University of Tor Vergata, 00133 Rome, Italy; (L.B.); (I.L.); (M.M.)
| | - Martina Milana
- Hepatology Unit, University of Tor Vergata, 00133 Rome, Italy; (L.B.); (I.L.); (M.M.)
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Ludovica Ceci
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
| | - Vik Meadows
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA;
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Ji S, Pan Y, Zhu L, Tan J, Tang S, Yang Q, Zhang Z, Lou D, Wang B. A novel 7α-hydroxysteroid dehydrogenase: Magnesium ion significantly enhances its activity and thermostability. Int J Biol Macromol 2021; 177:111-118. [PMID: 33592267 DOI: 10.1016/j.ijbiomac.2021.02.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays an important role in the efficient biotransformation of taurochenodeoxycholic acid (TCDCA) to tauroursodeoxycholic acid (TUDCA). In this paper, a novel NADP(H)-dependent 7α-HSDH (named J-1-1) was discovered, heterologously expressed in Escherichia coli and biochemically characterized. J-1-1 exhibited high enzymatic activities. The specific activities of J-1-1 toward TCDCA, glycochenodeoxycholic acid (GCDCA) and ethyl benzoylacetate (EBA) were 188.3 ± 0.2, 217.6 ± 0.4, and 20.0 ± 0.2 U·mg-1, respectively, in 50 mM Glycine-NaOH, pH 10.5. Simultaneously, J-1-1 showed high thermostability; 73% of its activity maintained after heat treatment at 40 °C for 100 h. Particularly noteworthy is that magnesium ion could stabilize the structure of J-1-1, resulting in the enhancement of its enzymatic activity and thermostability. The enzymatic activity of J-1-1 increased 40-fold in the presence of 50 mM Mg2+, and T0.5 increased by approximately 6 °C. Furthermore, after heat treatment at 40 °C for 20 min, the control group only retained 52% of the residual enzyme activity, while the residual enzyme activity of the experimental group was still 77% of the J-1-1 enzyme activity with Mg2+ and without heat treatment. These properties of 7α-HSDH would be expected to contribute to more extensive applications in the biotransformation of related substrates.
Collapse
Affiliation(s)
- Shunlin Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China; Modern Life Science Experiment Teaching Center, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Shijin Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Qiong Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China; Chongqing Key Laboratory of Inorganic Special Functional Materials, Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal University, Chongqing 408100, PR China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
16
|
Engin A. Bile Acid Toxicity and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:229-258. [PMID: 33539018 DOI: 10.1007/978-3-030-49844-3_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1β)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
17
|
Barten TRM, Bernts LHP, Drenth JPH, Gevers TJG. New insights into targeting hepatic cystogenesis in autosomal dominant polycystic liver and kidney disease. Expert Opin Ther Targets 2020; 24:589-599. [PMID: 32250187 DOI: 10.1080/14728222.2020.1751818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Polycystic liver disease (PLD) is a rare disease defined by the growth of hepatic cysts and occurs either isolated or as an extrarenal manifestation of polycystic kidney disease. While surgery has been the mainstay in treatment of symptomatic PLD, recently discovered regulatory mechanisms affecting hepatic cystogenesis provide potential new therapies to reduce hepatic cyst burden.Areas covered: This review summarizes intracellular pathways and therapeutic targets involved in hepatic cystogenesis. While drugs that target cAMP, mTOR and bile acids were evaluated in clinical trials, investigation in autophagy, Wnt and miRNA signaling pathways are still in the pre-clinical phase. Recent epidemiological data present female hormones as a promising therapeutic target. Additionally, therapeutic advances in renal cystogenesis are reviewed for their potential application in treatment of hepatic cysts.Expert opinion: Further elucidation of the pathophysiology of hepatic cystogenesis is needed to provide additional targets and improve the efficacy of current treatments. The most promising therapeutic target in PLD is the female hormone pathway, given the increased severity in women and the harmful effects of exogenous estrogens. In addition, combining current pharmaceutical and surgical therapies can lead to improved outcomes. Lastly, the rarity of PLD creates the need to share expertise internationally.
Collapse
Affiliation(s)
- Thijs R M Barten
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Lucas H P Bernts
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Tom J G Gevers
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| |
Collapse
|
18
|
Pinto C, Ninfole E, Benedetti A, Maroni L, Marzioni M. Aging-Related Molecular Pathways in Chronic Cholestatic Conditions. Front Med (Lausanne) 2020; 6:332. [PMID: 32039217 PMCID: PMC6985088 DOI: 10.3389/fmed.2019.00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is commonly defined as the time-dependent functional decline of organs and tissues. Average life expectancy has increased considerably over the past century and is estimated to increase even further, consequently also the interest in understanding the aging processes. Although aging is not a disease, it is the major risk factor for the development of many chronic diseases. Pathologies, such as Primary Biliary Cholangitis (PBC) and Primary Sclerosing Cholangitis (PSC) are cholestatic liver diseases characterized by chronic inflammation, biliary damage and ultimately liver fibrosis, targeting specifically cholangiocytes. To date, the influence of aging in these biliary diseases is not fully understood. Currently, liver transplantation is the only solution because of lacking in efficiently therapies. Although liver cells have a high regenerative capacity, they undergo extensive molecular changes in response to aging. Following time-dependent damage induced by aging, the cells initially activate protective compensatory processes that, if hyperstimulated, can lead to the decline of regenerative ability and the development of pathologies. Recent studies have introduced novel therapeutic tools for cholangiopathies that have showed to have promising potential as novel therapies for PSC and PBC and for the development of new drugs. The recent advancements in understanding of molecular aging have undoubtedly the potential to unveil new pathways for selective drug treatments, but further studies are needed to deepen their knowledge.
Collapse
Affiliation(s)
- Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Elisabetta Ninfole
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
19
|
Sato K, Glaser S, Kennedy L, Liangpunsakul S, Meng F, Francis H, Alpini G. Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:461-472. [PMID: 30990740 DOI: 10.1080/14728222.2019.1608950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The common predominant clinical features of cholangiopathies such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and biliary atresia (BA) are biliary damage/senescence and liver fibrosis. Curative therapies are lacking, and liver transplantation is the only option. An understanding of the mechanisms and pathogenesis is needed to develop novel therapies. Previous studies have developed various disease-based research models and have identified candidate therapeutic targets. Areas covered: This review summarizes recent studies performed in preclinical models of cholangiopathies and the current understanding of the pathophysiology representing potential targets for novel therapies. A literature search was conducted in PubMed using the combination of the searched term 'cholangiopathies' with one or two keywords including 'model', 'cholangiocyte', 'animal', or 'fibrosis'. Papers published within five years were obtained. Expert opinion: Access to appropriate research models is a key challenge in cholangiopathy research; establishing more appropriate models for PBC is an important goal. Several preclinical studies have demonstrated promising results and have led to novel therapeutic approaches, especially for PSC. Further studies on the pathophysiology of PBC and BA are necessary to identify candidate targets. Innovative therapeutic approaches such as stem cell transplantation have been introduced, and those therapies could be applied to PSC, PBC, and BA.
Collapse
Affiliation(s)
- Keisaku Sato
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Shannon Glaser
- c Department of Medical Physiology , Texas A&M University Collage of Medicine , Temple , TX , USA
| | - Lindsey Kennedy
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Suthat Liangpunsakul
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Fanyin Meng
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Heather Francis
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Gianfranco Alpini
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| |
Collapse
|
20
|
Baiocchi L, Zhou T, Liangpunsakul S, Lenci I, Santopaolo F, Meng F, Kennedy L, Glaser S, Francis H, Alpini G. Dual Role of Bile Acids on the Biliary Epithelium: Friend or Foe? Int J Mol Sci 2019; 20:1869. [PMID: 31014010 PMCID: PMC6514722 DOI: 10.3390/ijms20081869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
Bile acids are a family of amphipathic compounds predominantly known for their role in solubilizing and absorbing hydrophobic compounds (including liposoluble vitamins) in the intestine. Bile acids also are key signaling molecules and inflammatory agents that activate transcriptional factors and cell signaling pathways that regulate lipid, glucose, and energy metabolism in various human disorders, including chronic liver diseases. However, in the last decade increased awareness has been founded on the physiological and chemical heterogeneity of this category of compounds and their possible beneficial or injurious effects on the biliary tree. In this review, we provide an update on the current understanding of the molecular mechanism involving bile acid and biliary epithelium. The last achievements of the research in this field are summarized, focusing on the molecular aspects and the elements with relevance regarding human liver diseases.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, College of Medicine 702 SW HK Dodgen Loop, Temple, TX 76504, USA.
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Ilaria Lenci
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Francesco Santopaolo
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Lindsey Kennedy
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine 702 SW HK Dodgen Loop, Temple, TX 76504, USA.
| | - Heather Francis
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| |
Collapse
|
21
|
Sato K, Meng F, Fava G, Glaser S, Alpini G. Functional roles of gut bacteria imbalance in cholangiopathies. LIVER RESEARCH 2019; 3:40-45. [DOI: 10.1016/j.livres.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Ursodeoxycholate inhibits mast cell activation and reverses biliary injury and fibrosis in Mdr2 -/- mice and human primary sclerosing cholangitis. J Transl Med 2018; 98:1465-1477. [PMID: 30143751 PMCID: PMC6214746 DOI: 10.1038/s41374-018-0101-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 02/07/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is used to treat biliary disorders; and, bile acids alter mast cell (MC) histamine release. MCs infiltrate Mdr2-/- mice liver (model of primary sclerosing cholangitis (PSC)). MC-derived histamine increases inflammation, hepatic stellate cell (HSC) activation and fibrosis. The objective was to determine the effects of UDCA treatment on MC infiltration, biliary damage, inflammation and fibrosis in Mdr2-/- mice and human PSC. Wild-type and Mdr2-/- mice were fed bile acid control diet or UDCA (0.5% wt/wt). Human samples were collected from control and PSC patients treated with placebo or UDCA (15 mg/kg/BW). MC infiltration was measured by immunhistochemistry and quantitative polymerase chain reaction (qPCR) for c-Kit, chymase, and tryptase. The HDC/histamine/histamine receptor (HR)-axis was evaluated by EIA and qPCR. Intrahepatic bile duct mass (IBDM) and biliary proliferation was evaluated by CK-19 and Ki-67 staining. Fibrosis was detected by immunostaining and qPCR for fibrotic markers. Inflammatory components were measured by qPCR. HSC activation was measured by SYP-9 staining. Inflammation was detected by qPCR for CD68. In vitro, MCs were treated with UDCA (40 μM) prior to HA secretion evaluation and coculturing with cholangiocytes or HSCs. BrDU incorporation and fibrosis by qPCR was performed. UDCA reduced MC number, the HDC/histamine/HR-axis, IBDM, HSC activation, inflammation, and fibrosis in Mdr2-/- mice and PSC patients. In vitro, UDCA decreases MC-histamine release, which was restored by blocking ASBT and FXRβ. Proliferation and fibrosis decreased after treatment with UDCA-treated MCs. We conclude that UDCA acts on MCs reducing histamine levels and decreases the inflammatory/hyperplastic/fibrotic reaction seen in PSC. Ursodeoxycholic acid (UDCA) is used to treat biliary disorders; and, bile acids alter mast cell (MC) histamine release. Following liver injury like primary sclerosing cholangitis in mice and humans, MCs infiltrate. MC-derived histamine increases biliary damage, fibrosis, and inflammation. UDCA treatment decreases these parameters via reduced MC activation.
Collapse
|
23
|
Ji Q, Wang B, Li C, Hao J, Feng W. Co-immobilised 7α- and 7β-HSDH as recyclable biocatalyst: high-performance production of TUDCA from waste chicken bile. RSC Adv 2018; 8:34192-34201. [PMID: 35548603 PMCID: PMC9086975 DOI: 10.1039/c8ra06798h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/26/2018] [Indexed: 11/21/2022] Open
Abstract
Chicken gallbladder has long been considered to be worthless and discarded as waste. The main composition of chicken bile is taurochenodeoxycholic acid (TCDCA), which is the isomeride of tauroursodeoxycholic acid (TUDCA). TUDCA has been effectively used for treatment of many diseases. In this paper, 7α- and 7β-hydroxysteroid dehydrogenases (HSDH) were co-immobilised on modified chitosan microspheres, and used as recyclable biocatalyst for the catalysis of chicken bile. The catalytic reaction reached equilibrium within 4 h compared with 1 h using TCDCA as substrate. After four continuous batch reactions, the conversion of TCDCA was lower than 40% and TUDCA yield was about 15% for the catalysis of chicken bile. TUDCA yield was approximately 62% after equilibrium and the content of TUDCA in reaction product was as high as 33.16%. Furthermore, the experiments showed that activity of enzymes were significantly inhibited by bilirubin, Cu2+ and Ca2+ in complex substrate. The research described not only widens the utilization of chicken bile, but also provides a clean way for the preparation of TUDCA.
Collapse
Affiliation(s)
- Qingzhi Ji
- School of Pharmacy, Yancheng Teachers' University No. 2, Hope Avenue Yancheng Jiangsu 224051 P. R. China +86-0515-88258773 +86-0515-88258773
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University Chongqing 400030 P. R. China
| | - Chou Li
- College of Marine and Bio-engineering, Yancheng Teachers' University Yancheng Jiangsu 224051 P. R. China
| | - Jinglan Hao
- School of Pharmacy, Yancheng Teachers' University No. 2, Hope Avenue Yancheng Jiangsu 224051 P. R. China +86-0515-88258773 +86-0515-88258773
| | - Wenjing Feng
- School of Pharmacy, Yancheng Teachers' University No. 2, Hope Avenue Yancheng Jiangsu 224051 P. R. China +86-0515-88258773 +86-0515-88258773
| |
Collapse
|
24
|
Trampert DC, Nathanson MH. Regulation of bile secretion by calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1761-1770. [PMID: 29787781 DOI: 10.1016/j.bbamcr.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
Calcium (Ca2+) signaling controls secretion in many types of cells and tissues. In the liver, Ca2+ regulates secretion in both hepatocytes, which are responsible for primary formation of bile, and cholangiocytes, which line the biliary tree and further condition the bile before it is secreted. Cholestatic liver diseases, which are characterized by impaired bile secretion, may result from impaired Ca2+ signaling mechanisms in either hepatocytes or cholangiocytes. This review will discuss the Ca2+ signaling machinery and mechanisms responsible for regulation of secretion in both hepatocytes and cholangiocytes, and the pathophysiological changes in Ca2+ signaling that can occur in each of these cell types to result in cholestasis.
Collapse
Affiliation(s)
- David C Trampert
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| |
Collapse
|
25
|
Kim BJ, Arai Y, Choi B, Park S, Ahn J, Han IB, Lee SH. Restoration of articular osteochondral defects in rat by a bi-layered hyaluronic acid hydrogel plug with TUDCA-PLGA microsphere. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Cheung AC, Lorenzo Pisarello MJ, LaRusso NF. Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1220-1231. [PMID: 28716705 PMCID: PMC5777905 DOI: 10.1016/j.bbadis.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic biliary tree. They serve predominantly to mediate the content of luminal biliary fluid, which is controlled via numerous signaling pathways influenced by endogenous (e.g., bile acids, nucleotides, hormones, neurotransmitters) and exogenous (e.g., microbes/microbial products, drugs etc.) molecules. When injured, cholangiocytes undergo apoptosis/lysis, repair and proliferation. They also become senescent, a form of cell cycle arrest, which may prevent propagation of injury and/or malignant transformation. Senescent cholangiocytes can undergo further transformation to a senescence-associated secretory phenotype (SASP), where they begin secreting pro-inflammatory and pro-fibrotic signals that may contribute to disease initiation and progression. These and other concepts related to cholangiocyte pathobiology will be reviewed herein. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Angela C Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Maria J Lorenzo Pisarello
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
27
|
Song C, Wang B, Tan J, Zhu L, Lou D. Discovery of tauroursodeoxycholic acid biotransformation enzymes from the gut microbiome of black bears using metagenomics. Sci Rep 2017; 7:45495. [PMID: 28436439 PMCID: PMC5402301 DOI: 10.1038/srep45495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022] Open
Abstract
Tauroursodeoxycholic acid (TUDCA) has been used to treat many diseases effectively. 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 7β-hydroxysteroid dehydrogenase (7β-HSDH) are two key enzymes that drive the efficient biosynthesis of TUDCA from taurochenodeoxycholic acid (TCDCA) in vitro. In this study, a metagenomic approach was used to isolate 7α- and 7β-HSDHs from fecal samples of black bears. Five new 7α-HSDHs and one new 7β-HSDH enzyme were discovered and identified from the gut microbiota of black bears, and four of them presented good enzymatic properties. Our data also suggest cooperation in the biotransformation of TUDCA by the gut microbiota in black bears. In conclusion, this work expands the natural enzyme bank of HSDHs, provides promising candidate enzymes for application in the biosynthesis TUDCA and the epimerization reaction of bile acids at the C-7 position, and provides a data set for the discovery of novel enzymes in the gut micriobiome of black bears.
Collapse
Affiliation(s)
- Can Song
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing 400067, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Deshuai Lou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
28
|
Bile acids and their receptors during liver regeneration: "Dangerous protectors". Mol Aspects Med 2017; 56:25-33. [PMID: 28302491 DOI: 10.1016/j.mam.2017.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Tissue repair is orchestrated by a finely tuned interplay between processes of regeneration, inflammation and cell protection, allowing organisms to restore their integrity after partial loss of cells or organs. An important, although largely unexplored feature is that after injury and during liver repair, liver functions have to be maintained to fulfill the peripheral demand. This is particularly critical for bile secretion, which has to be finely modulated in order to preserve liver parenchyma from bile-induced injury. However, mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides cytokines and growth factors, bile acids (BA) and their receptors constitute an insufficiently explored signaling network during liver regeneration and repair. BA signal through both nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors which distributions are large in the organism, and which activation elicits a wide array of biological responses. While a number of studies have been dedicated to FXR signaling in liver repair processes, TGR5 remains poorly explored in this context. Because of the massive and potentially harmful BA overload that faces the remnant liver after partial ablation or destruction, both BA-induced adaptive and proliferative responses may stand in a central position to contribute to the regenerative response. Based on the available literature, both BA receptors may act in synergy during the regeneration process, in order to protect the remnant liver and maintain biliary homeostasis, otherwise potentially toxic BA overload would result in parenchymal insult and compromise optimal restoration of a functional liver mass.
Collapse
|
29
|
Hall C, Sato K, Wu N, Zhou T, Kyritsi K, Meng F, Glaser S, Alpini G. Regulators of Cholangiocyte Proliferation. Gene Expr 2017; 17:155-171. [PMID: 27412505 PMCID: PMC5494439 DOI: 10.3727/105221616x692568] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholangiocytes, a small population of cells within the normal liver, have been the focus of a significant amount of research over the past two decades because of their involvement in cholangiopathies such as primary sclerosing cholangitis and primary biliary cholangitis. This article summarizes landmark studies in the field of cholangiocyte physiology and aims to provide an updated review of biliary pathogenesis. The historical approach of rodent extrahepatic bile duct ligation and the relatively recent utilization of transgenic mice have led to significant discoveries in cholangiocyte pathophysiology. Cholangiocyte physiology is a complex system based on heterogeneity within the biliary tree and a number of signaling pathways that serve to regulate bile composition. Studies have expanded the list of neuropeptides, neurotransmitters, and hormones that have been shown to be key regulators of proliferation and biliary damage. The peptide histamine and hormones, such as melatonin and angiotensin, angiotensin, as well as numerous sex hormones, have been implicated in cholangiocyte proliferation during cholestasis. Numerous pathways promote cholangiocyte proliferation during cholestasis, and there is growing evidence to suggest that cholangiocyte proliferation may promote hepatic fibrosis. These pathways may represent significant therapeutic potential for a subset of cholestatic liver diseases that currently lack effective therapies.
Collapse
Affiliation(s)
- Chad Hall
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- †Baylor Scott & White Digestive Disease Research Center, Temple, TX, USA
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Keisaku Sato
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Nan Wu
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Tianhao Zhou
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | | | - Fanyin Meng
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Shannon Glaser
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Gianfranco Alpini
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| |
Collapse
|
30
|
Cervantes-Alvarez E, Wang Y, Collin de l'Hortet A, Guzman-Lepe J, Zhu J, Takeishi K. Current strategies to generate mature human induced pluripotent stem cells derived cholangiocytes and future applications. Organogenesis 2017; 13:1-15. [PMID: 28055309 DOI: 10.1080/15476278.2016.1278133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cell research has significantly evolved over the last few years, allowing the differentiation of pluripotent cells into almost any kind of lineage possible. Studies that focus on the liver have considerably taken a leap into this novel technology, and hepatocyte-like cells are being generated that are close to resembling actual hepatocytes both genotypically and phenotypically. The potential of this extends from disease models to bioengineering, and even also innovative therapies for end-stage liver disease. Nonetheless, too few attention has been given to the non-parenchymal cells which are also fundamental for normal liver function. This includes cholangiocytes, the cells of the biliary epithelium, without whose role in bile modification and metabolism would impair hepatocyte survival. Such can be observed in diseases that target them, so called cholangiopathies, for which there is much yet to study so as to improve therapeutical options. Protocols that describe the induction of human induced pluripotent stem cells into cholangiocytes are scarce, although progress is being achieved in this area as well. In order to give the current view on this emerging research field, and in hopes to motivate further advances, we present here a review on the known differentiation strategies with sight into future applications.
Collapse
Affiliation(s)
- Eduardo Cervantes-Alvarez
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA.,b PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City , México
| | - Yang Wang
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA.,c Department of Hepatobiliary Surgery , Peking University People's Hospital , Beijing , China
| | | | - Jorge Guzman-Lepe
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Jiye Zhu
- c Department of Hepatobiliary Surgery , Peking University People's Hospital , Beijing , China
| | - Kazuki Takeishi
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
31
|
Ji Q, Tan J, Zhu L, Lou D, Wang B. Preparing tauroursodeoxycholic acid (TUDCA) using a double-enzyme-coupled system. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Sun Y, Haapanen K, Li B, Zhang W, Van de Water J, Gershwin ME. Women and primary biliary cirrhosis. Clin Rev Allergy Immunol 2016; 48:285-300. [PMID: 25241227 DOI: 10.1007/s12016-014-8449-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary biliary cirrhosis occurs more frequently in women, and previous studies indicated that the average age of primary biliary cirrhosis (PBC) onset makes pregnancy in PBC patients uncommon. However, more recently, improved diagnostic testing has enabled detection of PBC in younger women, including those of childbearing age. This has led investigators to become increasingly interested in the relationship between the ontogeny of PBC and pregnancy. Published cases indicate that the typical age for pregnant women to be diagnosed with PBC is in the early 30s, and that during gestation, pruritus and jaundice are the most common symptoms. During gestation, susceptible women may experience onset of PBC resulting from the drastic changes in female hormones; this would include not only the mitochondrial damage due to accumulation of bile acids but also changes in the immune response during the different stages of pregnancy that might play an important role in the breakdown of self-tolerance. The mechanisms underlying the potential relationship between PBC and pregnancy warrant further investigation. For women first diagnosed with PBC during gestation, or those for whom first appearance of a flare up occurs during and postpartum, investigation of the immune response throughout gestation could provide new avenues for immunologic therapeutic intervention and the discovery of new treatment strategies for PBC.
Collapse
Affiliation(s)
- Ying Sun
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
33
|
Iijima T, Hoshino J, Suwabe T, Sumida K, Mise K, Kawada M, Imafuku A, Hayami N, Hiramatsu R, Hasegawa E, Sawa N, Takaichi K, Ubara Y. Ursodeoxycholic Acid for Treatment of Enlarged Polycystic Liver. Ther Apher Dial 2015; 20:73-8. [DOI: 10.1111/1744-9987.12326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Koki Mise
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
| | | | - Aya Imafuku
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
| | - Noriko Hayami
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
| | | | - Eiko Hasegawa
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
| | - Naoki Sawa
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
| | - Kenmei Takaichi
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
- Okinaka Memorial Institute for Medical Research; Toranomon Hospital; Kajigaya Japan
| | - Yoshifumi Ubara
- Nephrology Center; Toranomon Hospital; Kajigaya Japan
- Okinaka Memorial Institute for Medical Research; Toranomon Hospital; Kajigaya Japan
| |
Collapse
|
34
|
Munoz-Garrido P, Marin JJG, Perugorria MJ, Urribarri AD, Erice O, Sáez E, Úriz M, Sarvide S, Portu A, Concepcion AR, Romero MR, Monte MJ, Santos-Laso Á, Hijona E, Jimenez-Agüero R, Marzioni M, Beuers U, Masyuk TV, LaRusso NF, Prieto J, Bujanda L, Drenth JPH, Banales JM. Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease. J Hepatol 2015; 63:952-961. [PMID: 26044126 PMCID: PMC4575914 DOI: 10.1016/j.jhep.2015.05.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive biliary cystogenesis. Current therapies show short-term and/or modest beneficial effects. Cystic cholangiocytes hyperproliferate as a consequence of diminished intracellular calcium levels ([Ca(2+)]i). Here, the therapeutic value of ursodeoxycholic acid (UDCA) was investigated. METHODS Effect of UDCA was examined in vitro and in polycystic (PCK) rats. Hepatic cystogenesis and fibrosis, and the bile acid (BA) content were evaluated from the liver, bile, serum, and kidneys by HPLC-MS/MS. RESULTS Chronic treatment of PCK rats with UDCA inhibits hepatic cystogenesis and fibrosis, and improves their motor behaviour. As compared to wild-type animals, PCK rats show increased BA concentration ([BA]) in liver, similar hepatic Cyp7a1 mRNA levels, and diminished [BA] in bile. Likewise, [BA] is increased in cystic fluid of PLD patients compared to their matched serum levels. In PCK rats, UDCA decreases the intrahepatic accumulation of cytotoxic BA, normalizes their diminished [BA] in bile, increases the BA secretion in bile and diminishes the increased [BA] in kidneys. In vitro, UDCA inhibits the hyperproliferation of polycystic human cholangiocytes via a PI3K/AKT/MEK/ERK1/2-dependent mechanism without affecting apoptosis. Finally, the presence of glycodeoxycholic acid promotes the proliferation of polycystic human cholangiocytes, which is inhibited by both UDCA and tauro-UDCA. CONCLUSIONS UDCA was able to halt the liver disease of a rat model of PLD through inhibiting cystic cholangiocyte hyperproliferation and decreasing the levels of cytotoxic BA species in the liver, which suggests the use of UDCA as a potential therapeutic tool for PLD patients.
Collapse
Affiliation(s)
- Patricia Munoz-Garrido
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - José J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - María J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; IKERBASQUE, Basque Foundation for Science, Spain
| | - Aura D Urribarri
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Oihane Erice
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elena Sáez
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Miriam Úriz
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Sarai Sarvide
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Ainhoa Portu
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Axel R Concepcion
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Marta R Romero
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - María J Monte
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Álvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elizabeth Hijona
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Raúl Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Marco Marzioni
- Department of Gastroenterology, "Università Politecnica delle Marche", Ancona, Italy
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jesús Prieto
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Joost P H Drenth
- Department of Gastroenterology & Hepatology, Radboud University Nijmegen Medical Center, The Netherlands
| | - Jesús M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; IKERBASQUE, Basque Foundation for Science, Spain; Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain.
| |
Collapse
|
35
|
Jourdainne V, Péan N, Doignon I, Humbert L, Rainteau D, Tordjmann T. The Bile Acid Receptor TGR5 and Liver Regeneration. Dig Dis 2015; 33:319-26. [PMID: 26045264 DOI: 10.1159/000371668] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Most of the literature on the bile acid (BA) membrane receptor TGR5 is dedicated to its potential role in the metabolic syndrome, through its regulatory impact on energy expenditure, insulin and GLP-1 secretion, and inflammatory processes. While the receptor was cloned in 2002, very little data are available on TGR5 functions in the normal and diseased liver. However, TGR5 is highly expressed in Kupffer cells and liver endothelial cells, and is particularly enriched in the biliary tract [cholangiocytes and gallbladder (GB) smooth muscle cells]. We recently demonstrated that TGR5 has a crucial protective impact on the liver in case of BA overload, including after partial hepatectomy. KEY MESSAGES TGR5-KO mice after PH exhibited periportal bile infarcts, excessive hepatic inflammation and defective adaptation of biliary composition (bicarbonate and chloride). Most importantly, TGR5-KO mice had a more hydrophobic BA pool, with more secondary BA than WT animals, suggesting that TGR5-KO bile may be harmful for the liver, mainly in situations of BA overload. As GB is both the tissue displaying the highest level of TGR5 expression and a crucial physiological site for the regulation of BA pool hydrophobicity by reducing secondary BA, we investigated whether TGR5 may control BA pool composition through an impact on GB. Preliminary data suggest that in the absence of TGR5, reduced GB filling dampens the cholecystohepatic shunt, resulting in more secondary BA, more hydrophobic BA pool and extensive liver injury in case of BA overload. CONCLUSIONS In the setting of BA overload, TGR5 is protective of the liver through the regulation of not only secretory and inflammatory processes, but also through the control of BA pool composition, at least in part by targeting the GB. Thereby, TGR5 appears to be crucial for protecting the regenerating liver from BA overload.
Collapse
|
36
|
Webster CRL, Johnston AN, Anwer MS. Protein kinase Cδ protects against bile acid apoptosis by suppressing proapoptotic JNK and BIM pathways in human and rat hepatocytes. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1207-15. [PMID: 25359536 PMCID: PMC4269680 DOI: 10.1152/ajpgi.00165.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Retained bile acids, which are capable of inducing cell death, activate protein kinase Cδ (PKC-δ) in hepatocytes. In nonhepatic cells, both pro- and antiapoptotic effects of PKC-δ are described. The aim of this study was to determine the role of PKC-δ in glycochenodeoxycholate (GCDC)-induced apoptosis in rat hepatocytes and human HUH7-Na-taurocholate-cotransporting polypeptide (Ntcp) cells. Apoptosis was monitored morphologically by Hoechst staining and biochemically by immunoblotting for caspase 3 cleavage. The role of PKC-δ was evaluated with a PKC activator (phorbol myristate acetate, PMA) and PKC inhibitors (chelerythrine, H-7, or calphostin), PKC-δ knockdown, and wild-type (WT) or constitutively active (CA) PKC-δ. PKC-δ activation was monitored by immunoblotting for PKC-δ Thr505 and Tyr311 phosphorylation or by membrane translocation. JNK and Akt phosphorylation and the amount of total bisindolylmaleimide (BIM) were determined by immunoblotting. GCDC induced the translocation of PKC-δ to the mitochondria and/or plasma membrane in rat hepatocytes and HUH7-Ntcp cells and increased PKC-δ phosphorylation on Thr505, but not on Tyr311, in HUH7-Ntcp cells. GCDC-induced apoptosis was attenuated by PMA and augmented by PKC inhibition in rat hepatocytes. In HUH-Ntcp cells, transfection with CA or WT PKC-δ attenuated GCDC-induced apoptosis, whereas knockdown of PKC-δ increased GCDC-induced apoptosis. PKC-δ silencing increased GCDC-induced JNK phosphorylation, decreased GCDC-induced Akt phosphorylation, and increased expression of BIM. GCDC translocated BIM to the mitochondria in rat hepatocytes, and knockdown of BIM in HUH7-Ntcp cells decreased GCDC-induced apoptosis. Collectively, these results suggest that PKC-δ does not mediate GCDC-induced apoptosis in hepatocytes. Instead PKC-δ activation by GCDC stimulates a cytoprotective pathway that involves JNK inhibition, Akt activation, and downregulation of BIM.
Collapse
Affiliation(s)
- Cynthia R. L. Webster
- 1Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts;
| | - Andrea N. Johnston
- 1Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts;
| | - M. Sawkat Anwer
- 2Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts
| |
Collapse
|
37
|
Buryova H, Chalupsky K, Zbodakova O, Kanchev I, Jirouskova M, Gregor M, Sedlacek R. Liver protective effect of ursodeoxycholic acid includes regulation of ADAM17 activity. BMC Gastroenterol 2013; 13:155. [PMID: 24172289 PMCID: PMC3835136 DOI: 10.1186/1471-230x-13-155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/18/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) is used to treat primary biliary cirrhosis, intrahepatic cholestasis, and other cholestatic conditions. Although much has been learned about the molecular basis of the disease pathophysiology, our understanding of the effects of UDCA remains unclear. Possibly underlying its cytoprotective, anti-apoptotic, anti-oxidative effects, UDCA was reported to regulate the expression of TNFα and other inflammatory cytokines. However, it is not known if this effect involves also modulation of ADAM family of metalloproteinases, which are responsible for release of ectodomains of inflammatory cytokines from the cell surface. We hypothesized that UDCA modulates ADAM17 activity, resulting in amelioration of cholestasis in a murine model of bile duct ligation (BDL). METHODS The effect of UDCA on ADAM17 activity was studied using the human liver hepatocellular carcinoma cell line HepG2. Untransfected cells or cells ectopically expressing human ADAM17 were cultured with or without UDCA and further activated using phorbol-12-myristate-13-acetate (PMA). The expression and release of ADAM17 substrates, TNFα, TGFα, and c-Met receptor (or its soluble form, sMet) were evaluated using ELISA and quantitative real-time (qRT) PCR. Immunoblotting analyses were conducted to evaluate expression and activation of ADAM17 as well as the level of ERK1/2 phosphorylation after UDCA treatment. The regulation of tissue inhibitor of metalloproteinases-1 (TIMP-1) by UDCA was studied using zymography and qRT-PCR. A mouse model of acute cholestasis was induced by common BDL technique, during which mice received daily orogastric gavage with either UDCA or vehicle only. Liver injury was quantified using alkaline phosphatase (ALP), relative liver weight, and confirmed by histological analysis. ADAM17 substrates in sera were assessed using a bead multiplex assay. RESULTS UDCA decreases amount of shed TNFα, TGFα, and sMet in cell culture media and the phosphorylation of ERK1/2. These effects are mediated by the reduction of ADAM17 activity in PMA stimulated cells although the expression ADAM17 is not affected. UDCA reduced the level of the mature form of ADAM17. Moreover, UDCA regulates the expression of TIMP-1 and gelatinases activity in PMA stimulated cells. A BDL-induced acute cholangitis model was characterized by increased relative liver weight, serum levels of ALP, sMet, and loss of intracellular glycogen. UDCA administration significantly decreased ALP and sMet levels, and reduced relative liver weight. Furthermore, hepatocytes of UDCA-treated animals retained their metabolic activity as evidenced by the amount of glycogen storage. CONCLUSIONS The beneficial effect of UDCA appears to be mediated in part by the inhibition of ADAM17 activation and, thus, the release of TNFα, a strong pro-inflammatory factor. The release of other ADAM17 substrates, TGFα and sMet, are also regulated this way, pointing to a general impact on the release of ADAM17 substrates, which are pivotal for liver regeneration and function. In parallel, UDCA upregulates TIMP-1 that in turn inhibits matrix metalloproteinases, which destroy the hepatic ECM in diseased liver. This control of extracellular matrix turnover represents an additional beneficial path of UDCA treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v, v, i,, Videnska 1083, Prague CZ142 20, Czech Republic.
| |
Collapse
|
38
|
Han Y, Glaser S, Meng F, Francis H, Marzioni M, McDaniel K, Alvaro D, Venter J, Carpino G, Onori P, Gaudio E, Alpini G, Franchitto A. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp Biol Med (Maywood) 2013; 238:549-65. [PMID: 23856906 DOI: 10.1177/1535370213489926] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the recent advances related to the heterogeneity of different-sized bile ducts with regard to the morphological and phenotypical characteristics, and the differential secretory, apoptotic and proliferative responses of small and large cholangiocytes to gastrointestinal hormones/peptides, neuropeptides and toxins. We describe several in vivo and in vitro models used for evaluating biliary heterogeneity. Subsequently, we discuss the heterogeneous proliferative and apoptotic responses of small and large cholangiocytes to liver injury and the mechanisms regulating the differentiation of small into large (more differentiated) cholangiocytes. Following a discussion on the heterogeneity of stem/progenitor cells in the biliary epithelium, we outline the heterogeneity of bile ducts in human cholangiopathies. After a summary section, we discuss the future perspectives that will further advance the field of the functional heterogeneity of the biliary epithelium.
Collapse
Affiliation(s)
- Yuyan Han
- Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic ducts of the biliary tree. The main physiologic function of cholangiocytes is modification of hepatocyte-derived bile, an intricate process regulated by hormones, peptides, nucleotides, neurotransmitters, and other molecules through intracellular signaling pathways and cascades. The mechanisms and regulation of bile modification are reviewed herein.
Collapse
|
40
|
Carbone M, Campagnolo L, Angelico M, Tisone G, Almerighi C, Telesca C, Lenci I, Moscatelli I, Massoud R, Baiocchi L. Leptin attenuates ischemia-reperfusion injury in the rat liver. Transpl Int 2012; 25:1282-1288. [PMID: 22973948 DOI: 10.1111/j.1432-2277.2012.01555.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leptin is an adipocytokine that reduces ischemic damage in several organs including brain and heart. STAT3 activation is a key step for the attainment of leptin effects in various tissues. We evaluated the possible effect of leptin on liver viability and STAT3 activation, in a rat model of ischemia-reperfusion injury. Rat livers, flushed and stored with Belzer solution (4° C for 24 h), were warmly reperfused (3.5 ml/min/g liver for 1 h at 37° C with O(2) ) with Krebs-Ringer bicarbonate. Treatment group underwent an identical protocol with the adjunct of Leptin (10 ng/ml). Liver effluent was harvested to assess LDH and AST output. Liver tissue was used for pSTAT3 expression (western blot and immunostaining), optical microscopy, TUNEL, and Cell Death Detection assays. The pSTAT3 expression was enhanced by administration of leptin. In parallel, LDH and AST output were reduced (P = 0.04 and P = 0.02 for LDH and AST, respectively). Optical microscopy, TUNEL, and Cell Death Detection assay results demonstrated increased viability in livers treated with leptin in comparison with others (Optical microscopy P = 0.02; TUNEL P = 0.01; Cell death Detection assay P = 0.003). In conclusion, cold storage and reperfusion with leptin reduce liver ischemia-reperfusion injury. This effect is associated with an increased expression of pSTAT-3.
Collapse
Affiliation(s)
- Marco Carbone
- Hepatology Unit, Department of Internal Medicine, University of Tor Vergata, Via Montpellier 1, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Park SM. The crucial role of cholangiocytes in cholangiopathies. Gut Liver 2012; 6:295-304. [PMID: 22844556 PMCID: PMC3404165 DOI: 10.5009/gnl.2012.6.3.295] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/11/2011] [Accepted: 09/10/2011] [Indexed: 12/13/2022] Open
Abstract
Cholangiopathies are diseases involving the intrahepatic biliary tree. They appear to involve, chronic inflammation of the bile ducts, which can lead to the development of bile duct cholestasis, proliferation/ductopenia, biliary fibrosis, and malignant transformation. Sustained stimulatory insults to biliary epithelial cells can induce a ductular reaction, which has a key role in the initiation and progression of cholangiopathies. The epithelial-mesenchymal interaction between reactive cholangiocytes and mesenchymal cells with the inflammatory infiltrates plays a major role in this pathogenesis. Cytokines, chemokines, growth factors and morphogens mediate these interactions in an autocrine or paracrine manner. The main hepatic myofibroblasts (MFs) in cholangiopathies originate from portal fibroblasts. Hepatic stellate cells and fibrocytes also transform into MFs. Whether cholangiocytes or hepatocytes are a source of MFs via the epithelial-mesenchymal transition (EMT) remains a matter of controversy. Although there have been numerous indirect findings supporting the theory of a cholangiocyte EMT in human tissues, recent studies using lineage tracing methods have demonstrated strong evidence against the EMT. Understanding the pathogenic mechanisms involved in cholangiopathies can allow for better-targeted anti-fibrotic therapies in animal models. Before anti-fibrotic therapies can translate into clinical trials, improved monitoring of the fibrotic progression of cholangiopathies and an accurate assessment regarding the effectiveness of the proposed treatments must be achieved.
Collapse
Affiliation(s)
- Seon Mee Park
- Department of Internal Medicine, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Korea
| |
Collapse
|
42
|
Song W, Shen DY, Kang JH, Li SS, Zhan HW, Shi Y, Xiong YX, Liang G, Chen QX. Apoptosis of human cholangiocarcinoma cells induced by ESC-3 from Crocodylus siamensis bile. World J Gastroenterol 2012; 18:704-11. [PMID: 22363144 PMCID: PMC3281230 DOI: 10.3748/wjg.v18.i7.704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/10/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of ESC-3 isolated from crocodile bile on the growth and apoptosis induction of human cholangiocarcinoma cells.
METHODS: ESC-3 was isolated from crocodile bile by Sephadex LH-20 and RP-18 reversed-phase column. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was conducted to determine the effects of ESC-3 on the proliferation of human cholangiocarcinoma cell lines (QBC939, Sk-ChA-1 and MZ-ChA-1). Giemsa staining, Hoechst 33258 and acridine orange/ethidium bromide staining showed the morphological changes of Mz-ChA-1 cells exposed to ESC-3 at different concentrations. Flow cytometry with regular propidium iodide (PI) staining was performed to analyze the cell cycle distribution of Mz-ChA-1 cells and to assess apoptosis by annexin v-fluorescein isothiocyanate (V-FITC)/PI staining. Rh123 staining was used to detect the alteration of mitochondrial membrane potential (ΔΨm). The protein levels of Bax, Bcl-2, Cdk2, cytochrome c and caspase-3 were further confirmed by Western blotting.
RESULTS: ESC-3 significantly inhibited the growth of three human cholangiocarcinoma cell lines and arrested Mz-ChA-1 cell cycle at G0/G1 phase. Mz-ChA-1 cells showed typical apoptotic morphological changes after treated with ESC-3 (10 μg/mL) for 48 h. Cell death assay indicated that Mz-ChA-1 cells underwent apoptosis in a dose-dependent manner induced by ESC-3. In addition, ESC-3 treatment could downregulate the protein level of Bcl-2 and upregulate the Bax, leading to the increase in the ratio of Bax to Bcl-2 in Mz-ChA-1 cells. Meanwhile, cytochrome c was released from the mitochondria into the cytosol, which subsequently initiated the activation of caspase-3. All these events were associated with the collapse of the mitochondrial membrane potential.
CONCLUSION: ESC-3, the active ingredient of crocodile bile, induced apoptosis in Mz-ChA-1 cells through the mitochondria-dependent pathway and may be a potential chemotherapeutic drug for the treatment of cholangiocarcinoma.
Collapse
|
43
|
Francis HL, DeMorrow S, Franchitto A, Venter JK, Mancinelli RA, White MA, Meng F, Ueno Y, Carpino G, Renzi A, Baker KK, Shine HE, Francis TC, Gaudio E, Alpini GD, Onori P. Histamine stimulates the proliferation of small and large cholangiocytes by activation of both IP3/Ca2+ and cAMP-dependent signaling mechanisms. J Transl Med 2012; 92:282-94. [PMID: 22064319 PMCID: PMC3293651 DOI: 10.1038/labinvest.2011.158] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although large cholangiocytes exert their functions by activation of cyclic adenosine 3',5'-monophosphate (cAMP), Ca(2+)-dependent signaling regulates the function of small cholangiocytes. Histamine interacts with four receptors, H1-H4HRs. H1HR acts by Gαq activating IP(3)/Ca(2+), whereas H2HR activates Gα(s) stimulating cAMP. We hypothesize that histamine increases biliary growth by activating H1HR on small and H2HR on large cholangiocytes. The expression of H1-H4HRs was evaluated in liver sections, isolated and cultured (normal rat intrahepatic cholangiocyte culture (NRIC)) cholangiocytes. In vivo, normal rats were treated with histamine or H1-H4HR agonists for 1 week. We evaluated: (1) intrahepatic bile duct mass (IBDM); (2) the effects of histamine, H1HR or H2HR agonists on NRIC proliferation, IP(3) and cAMP levels and PKCα and protein kinase A (PKA) phosphorylation; and (3) PKCα silencing on H1HR-stimulated NRIC proliferation. Small and large cholangiocytes express H1-H4HRs. Histamine and the H1HR agonist increased small IBDM, whereas histamine and the H2HR agonist increased large IBDM. H1HR agonists stimulated IP(3) levels, as well as PKCα phosphorylation and NRIC proliferation, whereas H2HR agonists increased cAMP levels, as well as PKA phosphorylation and NRIC proliferation. The H1HR agonist did not increase proliferation in PKCα siRNA-transfected NRICs. The activation of differential signaling mechanisms targeting small and large cholangiocytes is important for repopulation of the biliary epithelium during pathologies affecting different-sized bile ducts.
Collapse
Affiliation(s)
- Heather L Francis
- Department of Internal Medicine, Scott and White Digestive Disease Research Center, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division of Research and Education, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Sharon DeMorrow
- Department of Internal Medicine, Scott and White Digestive Disease Research Center, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Internal Medicine and Orthopedics Sciences, ‘La Sapienza’, Rome, Italy,Eleonora Lonillard Spencer Cenci Foundation, Rome, Italy
| | - Julie K Venter
- Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Romina A Mancinelli
- Department of Anatomical, Histological, Forensic Internal Medicine and Orthopedics Sciences, ‘La Sapienza’, Rome, Italy
| | - Mellanie A White
- Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Fanyin Meng
- Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division of Research and Education, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Yoshiyuki Ueno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guido Carpino
- Department Health Science, University of Rome‘Foro Italico’, Italy
| | - Anastasia Renzi
- Department of Internal Medicine, Scott and White Digestive Disease Research Center, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Department of Anatomical, Histological, Forensic Internal Medicine and Orthopedics Sciences, ‘La Sapienza’, Rome, Italy
| | - Kimberly K Baker
- Division of Research and Education, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Hannah E Shine
- Division of Research and Education, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Taylor C Francis
- Division of Research and Education, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Internal Medicine and Orthopedics Sciences, ‘La Sapienza’, Rome, Italy
| | - Gianfranco D Alpini
- Department of Internal Medicine, Scott and White Digestive Disease Research Center, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division Research, Central Texas Veterans Health Care System, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Paolo Onori
- Department of Experimental Medicine, State University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
44
|
Larbcharoensub N, Sornmayura P, Sirachainan E, Wilasrusmee C, Wanmoung H, Janvilisri T. Prognostic value of ABCG2 in moderately and poorly differentiated intrahepatic cholangiocarcinoma. Histopathology 2012; 59:235-46. [PMID: 21884202 DOI: 10.1111/j.1365-2559.2011.03935.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Intrahepatic cholangiocarcinoma (ICC) is a primary hepatic malignancy derived from cholangiocytes. The survival rate of ICC patients is very low, and conventional chemotherapy is not effective in prolonging long-term survival. Adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporters mediate the transport of various substances in several cellular processes. The expression of ABCB1, ABCC1 and ABCG2 has been implicated in multidrug resistance and poor prognosis in several types of cancer. The aim of this study was to examine their expression in normal cholangiocytes and ICC tissues. METHODS AND RESULTS Immunohistochemistry was employed to evaluate the expression of these transporters in 60 cases of ICC with respect to clinicopathological features and patient outcome. The proportions of cases with loss of ABCB1, ABCC1 and ABCG2 expression were 93.3%, 68.3% and 50%, respectively. Only the loss of ABCG2 was related to a worse prognosis (P = 0.031), and was associated with lymph node involvement (P = 0.003) and higher tumour grade (P = 0.028). Furthermore, multivariate analysis showed that the loss of ABCG2 expression was an independent prognostic factor in patients with moderately or poorly differentiated ICC (P = 0.02). CONCLUSIONS These results suggest that ABCG2 may be involved in cholangiocarcinogenesis; the loss of its expression may enhance tumour progression and contribute to aggressive growth of ICC.
Collapse
Affiliation(s)
- Noppadol Larbcharoensub
- Department of Pathology Oncology Unit, Faculty of Medicine at Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
45
|
Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin Sci (Lond) 2011; 121:523-44. [PMID: 21854363 DOI: 10.1042/cs20110184] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UDCA (ursodeoxycholic acid) is the therapeutic agent most widely used for the treatment of cholestatic hepatopathies. Its use has expanded to other kinds of hepatic diseases, and even to extrahepatic ones. Such versatility is the result of its multiple mechanisms of action. UDCA stabilizes plasma membranes against cytolysis by tensioactive bile acids accumulated in cholestasis. UDCA also halts apoptosis by preventing the formation of mitochondrial pores, membrane recruitment of death receptors and endoplasmic-reticulum stress. In addition, UDCA induces changes in the expression of metabolizing enzymes and transporters that reduce bile acid cytotoxicity and improve renal excretion. Its capability to positively modulate ductular bile flow helps to preserve the integrity of bile ducts. UDCA also prevents the endocytic internalization of canalicular transporters, a common feature in cholestasis. Finally, UDCA has immunomodulatory properties that limit the exacerbated immunological response occurring in autoimmune cholestatic diseases by counteracting the overexpression of MHC antigens and perhaps by limiting the production of cytokines by immunocompetent cells. Owing to this multi-functionality, it is difficult to envisage a substitute for UDCA that combines as many hepatoprotective effects with such efficacy. We predict a long-lasting use of UDCA as the therapeutic agent of choice in cholestasis.
Collapse
|
46
|
Kim SY, Kwon YW, Jung IL, Sung JH, Park SG. Tauroursodeoxycholate (TUDCA) inhibits neointimal hyperplasia by suppression of ERK via PKCα-mediated MKP-1 induction. Cardiovasc Res 2011; 92:307-16. [PMID: 21840882 DOI: 10.1093/cvr/cvr219] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIMS Hyperplasia of vascular smooth muscle cells (VSMCs) after blood vessel injury is one of the major pathophysiological mechanisms associated with neointima. Tauroursodeoxycholate (TUDCA) is a cytoprotective agent in a variety of cells including hepatocytes as well as an inducer of apoptosis in cancer cells. In this study, we investigated whether TUDCA could prevent neointimal hyperplasia by suppressing the growth and migration of VSMCs. METHODS AND RESULTS Transporters of TUDCA uptake in human VSMCs (hVSMCs) were analysed by RT-PCR and western blot. A knock-down experiment using specific si-RNA revealed that TUDCA was incorporated into hVSMCs via organic anion transporter 2 (OATP2). TUDCA reduced the viability of hVSMCs, which were mediated by inhibition of extracellular signal-regulated kinase (ERK) by induction of mitogen-activated protein kinase phosphatase-1 (MKP-1) via protein kinase Cα (PKCα). The anti-proliferative effect of TUDCA was reversed by treatment with 7-hydroxystaurosporine, an inhibitor of PKC, and by the knock-down of MKP-1. In addition, TUDCA suppressed hVSMC migration, which was mediated by reduced matrix metalloproteinase-9 (MMP-9) expression by ERK inhibition, as well as reduced viability of hVSMCs. Rats with carotid artery balloon injury received oral administration of TUDCA; this reduced the increase in ERK and MMP-9 caused by balloon injury. TUDCA significantly decreased the ratio of intima to media by reducing proliferation and inducing apoptosis of the VSMCs. CONCLUSION TUDCA inhibits neointimal hyperplasia by reducing proliferation and inducing apoptosis of smooth muscle cells by suppression of ERK via PKCα-mediated MKP-1 induction.
Collapse
Affiliation(s)
- Seo Yoon Kim
- Department of Biomedical Science, CHA University, 606-16, Yeoksamdong, Kangnamgu, Seoul 135-081, Republic of Korea
| | | | | | | | | |
Collapse
|
47
|
Padilla S, Cowden J, Hinton DE, Yuen B, Law S, Kullman SW, Johnson R, Hardman RC, Flynn K, Au DWT. Use of medaka in toxicity testing. ACTA ACUST UNITED AC 2011; Chapter 1:Unit1.10. [PMID: 20922755 DOI: 10.1002/0471140856.tx0110s39] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Small aquarium fishes are increasingly used as animal models, and one of these, the Japanese Medaka (Oryzias latipes), is frequently utilized for toxicity testing. While these vertebrates have many similarities with their terrestrial counterparts, there are differences that must be considered if these organisms are to be used to their highest potential. Commonly, testing may employ either the developing embryo or adults; both are easy to use and work with. To illustrate the utility and breadth of toxicity testing possible using medaka fish, we present protocols for assessing neurotoxicity in developing embryos, evaluating toxicant effects on sexual phenotype after treatment with endocrine-disrupting chemicals by sexual genotyping, and measuring hepatotoxicity in adult fish after treatment with a model hepatotoxicant. The methods run the gamut from immunohistology through PCR to basic histological techniques.
Collapse
Affiliation(s)
- Stephanie Padilla
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Poupon R. Primary biliary cirrhosis: a 2010 update. J Hepatol 2010; 52:745-58. [PMID: 20347176 DOI: 10.1016/j.jhep.2009.11.027] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 12/14/2022]
Abstract
Primary biliary cirrhosis (PBC) is a chronic inflammatory autoimmune disease that mainly targets the cholangiocytes of the interlobular bile ducts in the liver. The condition primarily affects middle-aged women. Without treatment, PBC generally progresses to cirrhosis and eventually liver failure over a period of 10-20 years. PBC is a rare disease with prevalence of less than 1/2000. PBC is thought to result from a combination of multiple genetic factors and superimposed environmental triggers. The contribution of the genetic predisposition is evidenced by the familial clustering. Several risk factors, including exposure to infectious agents and chemical xenobiotics, have been suggested. Ursodeoxycholic acid (UDCA) is currently the only FDA-approved medical treatment for PBC. When administered at doses of 13-15 mg/kg/day, a majority of patients with PBC have a normal life expectancy without additional therapeutic measures. One out of three patients does not adequately respond to UDCA therapy and may need additional medical therapy and/or liver transplantation. This review summarises current knowledge on the epidemiology, ethiopathogenesis, clinical, and therapeutic aspects of PBC.
Collapse
Affiliation(s)
- Raoul Poupon
- UPMC Univ Paris 06, France; INSERM, UMR_S 938, Paris, France.
| |
Collapse
|
50
|
Clinical implications of novel aspects of biliary pathophysiology. Dig Liver Dis 2010; 42:238-44. [PMID: 20167547 DOI: 10.1016/j.dld.2010.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 12/11/2022]
Abstract
Cholangiocytes are the epithelial cells that line the biliary tree; they are the target of chronic diseases termed cholangiopathies, which represent a daily challenge for clinicians, since definitive medical treatments are not available yet. It is generally accepted that the progression of injury in the course of cholangiopathies, and promotion and progression of cholangiocarcinoma are at least in part due to the failure of the cholangiocytes' mechanisms of adaptation to injury. Recently, several studies on the pathophysiology of the biliary epithelium have shed some light on the mechanisms that govern cholangiocyte response to injury. These studies provide novel information to help interpret some of the clinical aspects of cholangiopathies and cholangiocarcinoma; the purpose of this review is thus to describe some of these novel findings, focusing on their significance from a clinical perspective.
Collapse
|