1
|
Ragunath M, Shen A, Wei L, Peng J, Thiruvengadam M. Ribosome Biogenesis and Cancer: Insights into NOB1 and PNO1 Mechanisms. Curr Pharm Des 2024; 30:2911-2921. [PMID: 39143880 DOI: 10.2174/0113816128301870240730071910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 08/16/2024]
Abstract
Post-transcriptional modifications (PTMs) are pivotal in the regulation of gene expression, and pseudouridylation is emerging as a critical player. This modification, facilitated by enzymes such as NOB1 (PNO1), is integral to ribosome biogenesis. PNO1, in collaboration with the NIN1/RPN12 binding protein 1 homolog (NOB1), is vital for the maturation of ribosomes, transitioning 20S pre-rRNA into functional 18S rRNA. Recent studies have highlighted PNO1's potential involvement in cancer progression; however, its underlying mechanisms remain unclear. Relentless growth characterizing cancer underscores the burgeoning significance of epitranscriptomic modifications, including pseudouridylation, in oncogenesis. Given PNO1's emerging role, it is imperative to delineate its contribution to cancer development to identify novel therapeutic interventions. This review summarizes the current literature regarding the role of PNO1 in cancer progression and its molecular underpinnings in oncogenesis. Overexpression of PNO1 was associated with unfavorable prognosis and increased tumor malignancy. At the molecular level, PNO1 facilitates cancer progression by modulating mRNA stability, alternative splicing, and translation efficiency. Its role in pseudouridylation of oncogenic and tumor-suppressor transcripts further underscores its significance in cancer biology. Although disruption of ribosome biogenesis is known to precipitate oncogenesis, the precise mechanisms by which these alterations contribute to cancer remain unclear. This review elucidates the intricate process of ribosomal small subunit maturation, highlighting the roles of crucial ribosomal proteins (RPs) and RNA-binding proteins (RBPs) as well as the positioning and function of NOB1 and PNO1 within the 40S subunit. The involvement of these components in the maturation of the small subunit (SSU) and their significance in the context of cancer therapeutics has been thoroughly explored. PNO1's burgeoning significance in oncology makes it a potential target for cancer therapies. Strategies aimed at modulating PNO1-mediated pseudouridylation may provide new avenues for cancer treatment. However, further research is essential to unravel the complete spectrum of PNO1 mechanisms in cancer and harness this knowledge for the development of targeted and more efficacious anticancer therapies.
Collapse
Affiliation(s)
- Muthu Ragunath
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Aling Shen
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lin Wei
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Yurttas AG, Okat Z, Elgun T, Cifci KU, Sevim AM, Gul A. Genetic deviation associated with photodynamic therapy in HeLa cell. Photodiagnosis Photodyn Ther 2023; 42:103346. [PMID: 36809810 DOI: 10.1016/j.pdpdt.2023.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Photodynamic therapy (PDT) is a method that is used in cancer treatment. The main therapeutic effect is the production of singlet oxygen (1O2). Phthalocyanines for PDT produce high singlet oxygen with absorbers of about 600-700 nm. AIM It is aimed to analyze cancer cell pathways by flow cytometry analysis and cancer-related genes with q-PCR device by applying phthalocyanine L1ZnPC, which we use as photosensitizer in photodynamic therapy, in HELA cell line. In this study, we investigate the molecular basis of L1ZnPC's anti-cancer activity. MATERIAL METHOD The cytotoxic effects of L1ZnPC, a phthalocyanine obtained from our previous study, in HELA cells were evaluated and it was determined that it led to a high rate of death as a result. The result of photodynamic therapy was analyzed using q-PCR. From the data received at the conclusion of this investigation, gene expression values were calculated, and expression levels were assessed using the 2-∆∆Ct method to examine the relative changes in these values. Cell death pathways were interpreted with the FLOW cytometer device. One-Way Analysis of Variance (ANOVA) and the Tukey-Kramer Multiple Comparison Test with Post-hoc Test were used for the statistical analysis. CONCLUSION In our study, it was observed that HELA cancer cells underwent apoptosis at a rate of 80% with drug application plus photodynamic therapy by flow cytometry method. According to q-PCR results, CT values of eight out of eighty-four genes were found to be significant and their association with cancer was evaluated. L1ZnPC is a new phthalocyanine used in this study and our findings should be supported by further studies. For this reason, different analyses are needed to be performed with this drug in different cancer cell lines. In conclusion, according to our results, this drug looks promising but still needs to be analyzed through new studies. It is necessary to examine in detail which signaling pathways they use and their mechanism of action. For this, additional experiments are required.
Collapse
Affiliation(s)
- Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Zehra Okat
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Tugba Elgun
- Medical Biology, Faculty of Medicine, Istanbul Biruni University, Istanbul, Turkey
| | - Kezban Ucar Cifci
- Division of Basic Sciences and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Turkey; Department of Molecular Medicine, Institute of Health Sciences, University of Health Sciences, Turkey
| | - Altug Mert Sevim
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Gul
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Romero S, Unchwaniwala N, Evans EL, Eliceiri KW, Loeb DD, Sherer NM. Live Cell Imaging Reveals HBV Capsid Translocation from the Nucleus To the Cytoplasm Enabled by Cell Division. mBio 2023; 14:e0330322. [PMID: 36809075 PMCID: PMC10127671 DOI: 10.1128/mbio.03303-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
Hepatitis B virus (HBV) capsid assembly is traditionally thought to occur predominantly in the cytoplasm, where the virus gains access to the virion egress pathway. To better define sites of HBV capsid assembly, we carried out single cell imaging of HBV Core protein (Cp) subcellular trafficking over time under conditions supporting genome packaging and reverse transcription in Huh7 hepatocellular carcinoma cells. Time-course analyses including live cell imaging of fluorescently tagged Cp derivatives showed Cp to accumulate in the nucleus at early time points (~24 h), followed by a marked re-distribution to the cytoplasm at 48 to 72 h. Nucleus-associated Cp was confirmed to be capsid and/or high-order assemblages using a novel dual label immunofluorescence strategy. Nuclear-to-cytoplasmic re-localization of Cp occurred predominantly during nuclear envelope breakdown in conjunction with cell division, followed by strong cytoplasmic retention of Cp. Blocking cell division resulted in strong nuclear entrapment of high-order assemblages. A Cp mutant, Cp-V124W, predicted to exhibit enhanced assembly kinetics, also first trafficked to the nucleus to accumulate at nucleoli, consistent with the hypothesis that Cp's transit to the nucleus is a strong and constitutive process. Taken together, these results provide support for the nucleus as an early-stage site of HBV capsid assembly, and provide the first dynamic evidence of cytoplasmic retention after cell division as a mechanism underpinning capsid nucleus-to-cytoplasm relocalization. IMPORTANCE Hepatitis B virus (HBV) is an enveloped, reverse-transcribing DNA virus that is a major cause of liver disease and hepatocellular carcinoma. Subcellular trafficking events underpinning HBV capsid assembly and virion egress remain poorly characterized. Here, we developed a combination of fixed and long-term (>24 h) live cell imaging technologies to study the single cell trafficking dynamics of the HBV Core Protein (Cp). We demonstrate that Cp first accumulates in the nucleus, and forms high-order structures consistent with capsids, with the predominant route of nuclear egress being relocalization to the cytoplasm during cell division in conjunction with nuclear membrane breakdown. Single cell video microscopy demonstrated unequivocally that Cp's localization to the nucleus is constitutive. This study represents a pioneering application of live cell imaging to study HBV subcellular transport, and demonstrates links between HBV Cp and the cell cycle.
Collapse
Affiliation(s)
- Sofia Romero
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nuruddin Unchwaniwala
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Edward L. Evans
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Radhakrishnan S, Martin CA, Rammohan A, Vij M, Chandrasekar M, Rela M. Significance of nucleologenesis, ribogenesis, and nucleolar proteome in the pathogenesis and recurrence of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2023; 17:363-378. [PMID: 36919496 DOI: 10.1080/17474124.2023.2191189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Emerging evidence suggests that enhanced ribosome biogenesis, increased size, and quantitative distribution of nucleoli are associated with dysregulated transcription, which in turn drives a cell into aberrant cellular proliferation and malignancy. Nucleolar alterations have been considered a prognostic histological marker for aggressive tumors. More recently, advancements in the understanding of chromatin network (nucleoplasm viscosity) regulated liquid-liquid phase separation mechanism of nucleolus formation and their multifunctional role shed light on other regulatory processes, apart from ribosomal biogenesis of the nucleolus. AREAS COVERED Using hepatocellular carcinoma as a model to study the role of nucleoli in tumor progression, we review the potential of nucleolus coalescence in the onset and development of tumors through non-ribosomal biogenesis pathways, thereby providing new avenues for early diagnosis and cancer therapy. EXPERT OPINION Molecular-based classifications have failed to identify the nucleolar-based molecular targets that facilitate cell-cycle progression. However, the algorithm-based tumor risk identification with high-resolution medical images suggests prominent nucleoli, karyotheca, and increased nucleus/cytoplasm ratio as largely associated with tumor recurrence. Nonetheless, the role of the non-ribosomal functions of nucleoli in tumorigenesis remains elusive. This clearly indicates the lacunae in the study of the nucleolar proteins pertaining to cancer. [Figure: see text].
Collapse
Affiliation(s)
| | | | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mani Chandrasekar
- Department of Oncology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chennai, India
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| |
Collapse
|
5
|
Penzo M, Montanaro L, Treré D, Derenzini M. The Ribosome Biogenesis-Cancer Connection. Cells 2019; 8:cells8010055. [PMID: 30650663 PMCID: PMC6356843 DOI: 10.3390/cells8010055] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 01/05/2023] Open
Abstract
Multifaceted relations link ribosome biogenesis to cancer. Ribosome biogenesis takes place in the nucleolus. Clarifying the mechanisms involved in this nucleolar function and its relationship with cell proliferation: (1) allowed the understanding of the reasons for the nucleolar changes in cancer cells and their exploitation in tumor pathology, (2) defined the importance of the inhibition of ribosome biogenesis in cancer chemotherapy and (3) focused the attention on alterations of ribosome biogenesis in the pathogenesis of cancer. This review summarizes the research milestones regarding these relevant relationships between ribosome biogenesis and cancer. The structure and function of the nucleolus will also be briefly described.
Collapse
Affiliation(s)
- Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | - Davide Treré
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | | |
Collapse
|
6
|
Zhang C, Qie Y, Yang T, Wang L, Du E, Liu Y, Xu Y, Qiao B, Zhang Z. Kinase PIM1 promotes prostate cancer cell growth via c-Myc-RPS7-driven ribosomal stress. Carcinogenesis 2018; 40:52-60. [PMID: 30247545 DOI: 10.1093/carcin/bgy126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/26/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Changwen Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yunkai Qie
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Tong Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Li Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - E Du
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yan Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Baomin Qiao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| |
Collapse
|
7
|
Zhu M, Li W, Lu Y, Dong X, Lin B, Chen Y, Zhang X, Guo J, Li M. HBx drives alpha fetoprotein expression to promote initiation of liver cancer stem cells through activating PI3K/AKT signal pathway. Int J Cancer 2017; 140:1346-1355. [PMID: 27925189 DOI: 10.1002/ijc.30553] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/23/2016] [Indexed: 01/02/2023]
Abstract
Hepatitis B virus (HBV)-X protein (HBx) plays critical role in inducing the malignant transformation of liver cells. Alpha fetoprotein (AFP) expression is closely related to hepatocarcinogenesis. We report that Oct4, Klf4, Sox2 and c-myc expression positively associated with AFP(+)/HBV(+) hepatocellular carcinoma(HCC) tissues, and the expression of the stemness markers CD44, CD133 and EpCAM was significantly higher in AFP(+)/HBV(+) HCC tissues compared to normal liver tissues or AFP (-)/HBV(-) HCC tissues. AFP expression turned on prior to expression of Oct4, Klf4, Sox2 and c-myc, and the stemness markers CD44, CD133 and EpCAM in the normal human liver L-02 cell line or CHL cell lines upon transfection with MCV-HBx vectors. Stem-like cells generated more tumour colonies compared to primary cells, and xenografts induced tumourigenesis in nude mice. Expression of reprogramming-related proteins was significantly enhanced in HLE cells while transfected with pcDNA3.1-afp vectors. The specific PI3K inhibitor Ly294002 inhibited the effects of pcDNA3.1-afp vectors. AFP-siRNA vectors were able to inhibit tumour colony formation and reprogramming-related gene expression. Altogether, HBx stimulates AFP expression to induce natural reprogramming of liver cells, and AFP plays a critical role in promoting the initiation of HCC progenitor/stem cells. AFP may be a potential novel biotarget for combating HBV-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan Province, People's Republic of China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, 571199, People's Republic of China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan Province, People's Republic of China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, 571199, People's Republic of China
| | - Yan Lu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan Province, People's Republic of China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, 571199, People's Republic of China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan Province, People's Republic of China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, 571199, People's Republic of China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan Province, People's Republic of China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, 571199, People's Republic of China
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan Province, People's Republic of China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, 571199, People's Republic of China
| | - Xueer Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan Province, People's Republic of China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, 571199, People's Republic of China
| | - Junli Guo
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan Province, People's Republic of China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, 571199, People's Republic of China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan Province, People's Republic of China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, 571199, People's Republic of China.,Hainan Medical College, Institution of Tumour, Haikou, 570102, Hainan Province, People's Republic of China
| |
Collapse
|
8
|
Derenzini M, Montanaro L, Trerè D. Ribosome biogenesis and cancer. Acta Histochem 2017; 119:190-197. [PMID: 28168996 DOI: 10.1016/j.acthis.2017.01.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
Abstract
There is growing evidence indicating that the human pathological conditions characterized by an up-regulated ribosome biogenesis are at an increased risk of cancer onset. At the basis of this relationship is the close interconnection between the ribosome biogenesis and cell proliferation. Cell proliferation-stimulating factors also stimulate ribosome production, while the ribosome biogenesis rate controls the cell cycle progression. The major tumour suppressor, the p53 protein, plays an important balancing role between the ribosome biogenesis rate and the cell progression through the cell cycle phases. The perturbation of ribosome biogenesis stabilizes and activates p53, with a consequent cell cycle arrest and/or apoptotic cell death, whereas an up-regulated ribosome production down-regulates p53 expression and activity, thus facilitating neoplastic transformation. In the present review we describe the interconnection between ribosome biogenesis and cell proliferation, while highlighting the mechanisms by which quantitative changes in ribosome biogenesis may induce cancer.
Collapse
Affiliation(s)
- Massimo Derenzini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy.
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy.
| | - Davide Trerè
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
9
|
Kodiha M, Mahboubi H, Maysinger D, Stochaj U. Gold Nanoparticles Impinge on Nucleoli and the Stress Response in MCF7 Breast Cancer Cells. Nanobiomedicine (Rij) 2016; 3:3. [PMID: 29942378 PMCID: PMC5998265 DOI: 10.5772/62337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/01/2016] [Indexed: 01/15/2023] Open
Abstract
Cancer cells can take up gold nanoparticles of different morphologies. These particles interact with the plasma membrane and often travel to intracellular organelles. Among organelles, the nucleus is especially susceptible to the damage that is inflicted by gold nanoparticles. Located inside the nucleus, nucleoli are specialized compartments that transcribe ribosomal RNA genes, produce ribosomes and function as cellular stress sensors. Nucleoli are particularly prone to gold nanoparticle-induced injury. As such, small spherical gold nanoparticles and gold nanoflowers interfere with the transcription of ribosomal DNA. However, the underlying mechanisms are not fully understood. In this study, we examined the effects of gold nanoparticles on nucleolar proteins that are critical to ribosome biogenesis and other cellular functions. We show that B23/nucleophosmin, a nucleolar protein that is tightly linked to cancer, is significantly affected by gold nanoparticles. Furthermore, gold nanoparticles impinge on the cellular stress response, as they reduce the abundance of the molecular chaperone hsp70 and O-GlcNAc modified proteins in the nucleus and nucleoli. Together, our studies set the stage for the development of nanomedicines that target the nucleolus to eradicate proliferating cancer cells.
Collapse
Affiliation(s)
- Mohamed Kodiha
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
RRP12 is a crucial nucleolar protein that regulates p53 activity in osteosarcoma cells. Tumour Biol 2015; 37:4351-8. [PMID: 26499779 DOI: 10.1007/s13277-015-4062-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 10/22/2022] Open
Abstract
RRP12 (ribosomal RNA processing 12 homolog), a nucleolar protein, plays important roles in cell cycle progression and the response to deoxyribonucleic acid (DNA) damage in yeast cells. However, its role has not been investigated in mammalian cells that possess p53, which has close functional association to nucleolus. We explored the role of RRP12 in nucleolar stress condition using an osteosarcoma cell line, U2OS. To induce DNA damage and nucleolar disruption, two cytotoxic drugs, doxorubicin and actinomycin D were used. Cytotoxic stress resulted nucleolar disruption induced cell cycle arrest and apoptosis in U2OS cells. However, RRP12 overexpression promoted resistance to cytotoxic stress. In contrast, RRP12 silencing enhanced susceptibility to cytotoxic stress. During drug treatment, p53 activity and cell death were suppressed by RRP12 overexpression but promoted by RRP12 silencing. This study demonstrated that RRP12 was crucial for cell survival during cytotoxic stress via the repression of p53 stability. Thus, targeting RRP12 may enhance chemotherapeutic effect in cancers.
Collapse
|
11
|
Ahuja R, Kapoor NR, Kumar V. The HBx oncoprotein of hepatitis B virus engages nucleophosmin to promote rDNA transcription and cellular proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1783-95. [PMID: 25918010 DOI: 10.1016/j.bbamcr.2015.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/31/2022]
Abstract
The pleiotropic HBx oncoprotein of hepatitis B virus is well known to promote the expression of ribosomal RNAs and several host proteins that are known to support the development and progression of hepatocellular carcinoma (HCC). While overexpression of the nucleolar phosphoprotein, nucleophosmin (NPM), correlates with HCC progression, its upregulation by viral HBx and the resulting impact on perturbed nucleolar functions remain enigmatic. The present study shows that HBx up-regulates NPM levels and hijacks its functions to promote cellular proliferation. We found that HBx expression stabilizes NPM through post-translational modifications. Enhanced CDK2-mediated phosphorylation of NPM at Thr199 upon HBx expression prevented its proteolytic cleavage and provided resistance to apoptosis. Further, HBx directly interacted with the C-terminal domain of NPM and got translocated into the nucleolus where it facilitated the recruitment of RNA polymerase I transcriptional machinery onto the rDNA promoter. Our results indicate that HBx enhances rDNA transcription via a novel regulatory mechanism involving acetylation of NPM and the subsequent depletion of histones from the rDNA promoter. Enhanced production of ribosomal RNA resulting from co-expression of HBx and NPM promoted ribosome biogenesis, cellular proliferation and transformation. Taken together, our study strongly suggests an important role of NPM in mediating the oncogenic effects of HBx and the corresponding nucleolar perturbations induced by this viral oncoprotein.
Collapse
Affiliation(s)
- Richa Ahuja
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Neetu Rohit Kapoor
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
12
|
Thiele M, Gluud LL, Fialla AD, Dahl EK, Krag A. Large variations in risk of hepatocellular carcinoma and mortality in treatment naïve hepatitis B patients: systematic review with meta-analyses. PLoS One 2014; 9:e107177. [PMID: 25225801 PMCID: PMC4167336 DOI: 10.1371/journal.pone.0107177] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/14/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The complications to chronic hepatitis B (HBV) include incidence of hepatocellular carcinoma (HCC) and mortality. The risk of these complications may vary in different patient groups. AIM To estimate the incidence and predictors of HCC and in untreated HBV patients. METHODS Systematic review with random effects meta-analyses of randomized controlled trials and observational studies. Results are expressed as annual incidence (events per 100 person-years) with 95% confidence intervals. Subgroup and sensitivity analyses of patient and study characteristics were performed to identify common risk factors. RESULTS We included 68 trials and studies with a total of 27,584 patients (264,919 person-years). In total, 1,285 of 26,687 (5%) patients developed HCC and 730 of 12,511 (6%) patients died. The annual incidence was 0.88 (95% CI, 0.76-0.99) for HCC and 1.26 (95% CI, 1.01-1.51) for mortality. Patients with cirrhosis had a higher risk of HCC (incidence 3.16; 95% CI, 2.58-3.74) than patients without cirrhosis (0.10; 95% CI, 0.02-0.18). The risk of dying was also higher for patients with than patients without cirrhosis (4.89; 95% CI, 3.16-6.63; and 0.11; 95% CI, 0.09-0.14). The risk of developing HCC increased with HCV coinfection, older age and inflammatory activity. The country of origin did not clearly predict HCC or mortality estimates. CONCLUSIONS Cirrhosis was the strongest predictor of HCC incidence and mortality. Patients with HBV cirrhosis have a 31-fold increased risk of HCC and a 44-fold increased mortality compared to non-cirrhotic patients. The low incidence rates should be taken into account when considering HCC screening in non-cirrhotic patients. TRIAL REGISTRATION Prospero CRD42013004764.
Collapse
Affiliation(s)
- Maja Thiele
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Lise Lotte Gluud
- Gastrounit, Medical Division, Copenhagen University Hospital, Hvidovre, Denmark
| | - Annette Dam Fialla
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Emilie Kirstine Dahl
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
13
|
Brighenti E, Calabrese C, Liguori G, Giannone FA, Trerè D, Montanaro L, Derenzini M. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer. Oncogene 2014; 33:4396-406. [PMID: 24531714 PMCID: PMC4150990 DOI: 10.1038/onc.2014.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/04/2013] [Accepted: 12/24/2013] [Indexed: 12/16/2022]
Abstract
Chronic inflammation is an established risk factor for the onset of cancer, and the inflammatory cytokine IL-6 has a role in tumorigenesis by enhancing proliferation and hindering apoptosis. As factors stimulating proliferation also downregulate p53 expression by enhancing ribosome biogenesis, we hypothesized that IL-6 may cause similar changes in inflamed tissues, thus activating a mechanism that favors neoplastic transformation. Here, we showed that IL-6 downregulated the expression and activity of p53 in transformed and untransformed human cell lines. This was the consequence of IL-6-dependent stimulation of c-MYC mRNA translation, which was responsible for the upregulation of rRNA transcription. The enhanced rRNA transcription stimulated the MDM2-mediated proteasomal degradation of p53, by reducing the availability of ribosome proteins for MDM2 binding. The p53 downregulation induced the acquisition of cellular phenotypic changes characteristic of epithelial–mesenchymal transition, such as a reduced level of E-cadherin expression, increased cell invasiveness and a decreased response to cytotoxic stresses. We found that these changes also occurred in colon epithelial cells of patients with ulcerative colitis, a very representative example of chronic inflammation at high risk for tumor development. Histochemical and immunohistochemical analysis of colon biopsy samples showed an upregulation of ribosome biogenesis, a reduced expression of p53, together with a focal reduction or absence of E-cadherin expression in chronic colitis in comparison with normal mucosa samples. These changes disappeared after treatment with anti-inflammatory drugs. Taken together, the present results highlight a new mechanism that may link chronic inflammation to cancer, based on p53 downregulation, which is activated by the enhancement of rRNA transcription upon IL-6 exposure.
Collapse
Affiliation(s)
- E Brighenti
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, Bologna, Italy
| | - C Calabrese
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - G Liguori
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - F A Giannone
- 1] Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy [2] Biomedical and Applied Research Center, Azienda Ospedaliero-Universitaria di Bologna, Policlinico S Orsola-Malpighi, Bologna, Italy
| | - D Trerè
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, Bologna, Italy
| | - L Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, Bologna, Italy
| | - M Derenzini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, Bologna, Italy
| |
Collapse
|
14
|
Chen YH, Lan T, Li J, Qiu CH, Wu T, Gou HJ, Lu MQ. Gardenia jasminoides attenuates hepatocellular injury and fibrosis in bile duct-ligated rats and human hepatic stellate cells. World J Gastroenterol 2012; 18:7158-65. [PMID: 23326120 PMCID: PMC3544017 DOI: 10.3748/wjg.v18.i48.7158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/10/2012] [Accepted: 10/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-hepatofibrotic effects of Gardenia jasminoides in liver fibrosis.
METHODS: Male Sprague-Dawley rats underwent common bile duct ligation (BDL) for 14 d and were treated with Gardenia jasminoides by gavage. The effects of Gardenia jasminoides on liver fibrosis and the detailed molecular mechanisms were also assessed in human hepatic stellate cells (LX-2) in vitro.
RESULTS: Treatment with Gardenia jasminoides decreased serum alanine aminotransferase (BDL vs BDL + 100 mg/kg Gardenia jasminoides, 146.6 ± 15 U/L vs 77 ± 6.5 U/L, P = 0.0007) and aspartate aminotransferase (BDL vs BDL + 100 mg/kg Gardenia jasminoides, 188 ± 35.2 U/L vs 128 ± 19 U/L, P = 0.005) as well as hydroxyproline (BDL vs BDL + 100 mg/kg Gardenia jasminoides, 438 ± 40.2 μg/g vs 228 ± 10.3 μg/g liver tissue, P = 0.004) after BDL. Furthermore, Gardenia jasminoides significantly reduced liver mRNA and/or protein expression of transforming growth factor β1 (TGF-β1), collagen type I (Col I) and α-smooth muscle actin (α-SMA). Gardenia jasminoides significantly suppressed the upregulation of TGF-β1, Col I and α-SMA in LX-2 exposed to recombinant TGF-β1. Moreover, Gardenia jasminoides inhibited TGF-β1-induced Smad2 phosphorylation in LX-2 cells.
CONCLUSION: Gardenia jasminoides exerts antifibrotic effects in the liver fibrosis and may represent a novel antifibrotic agent.
Collapse
|
15
|
Montanaro L, Treré D, Derenzini M. Changes in ribosome biogenesis may induce cancer by down-regulating the cell tumor suppressor potential. Biochim Biophys Acta Rev Cancer 2011; 1825:101-10. [PMID: 22079382 DOI: 10.1016/j.bbcan.2011.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 12/15/2022]
Abstract
Many human pathological conditions, not linked to genetic alterations of oncogenes or tumor suppressors, are nevertheless associated with an increased risk of developing cancer, and some of them are characterized by quantitative and/or qualitative changes in ribosome biogenesis. Indeed, there is evidence that both an up-regulation of ribosome biogenesis, such as that occurring during the abnormal stimulation of cell growth, and intrinsic dysfunctions of ribosomes, such as those characterizing a series of inherited disorders, show an increased incidence of tumor onset. Here we discuss some recent insights into the mechanisms by which these alterations in ribosome biogenesis may facilitate tumorigenesis.
Collapse
|
16
|
Shigematsu S, Fukuda S, Nakayama H, Inoue H, Hiasa Y, Onji M, Higashiyama S. ZNF689 suppresses apoptosis of hepatocellular carcinoma cells through the down-regulation of Bcl-2 family members. Exp Cell Res 2011; 317:1851-9. [PMID: 21624362 DOI: 10.1016/j.yexcr.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/19/2011] [Accepted: 05/13/2011] [Indexed: 02/08/2023]
Abstract
ZNF689, a C2H2-type of zinc finger transcription factor, was suggested to play a key role in hepatocarcinogenesis. However, none of the target genes or potential roles of ZNF689 in hepatocellular carcinoma (HCC) have been elucidated. Here, we investigated the role of ZNF689 in HCC cell lines focusing on cell viability and apoptosis.We found that the knockdown of ZNF689 by its specific siRNA decreased cell viability of Huh7. Cell cycle analysis revealed that the ZNF689 knockdown increased the proportion of the sub-G1 population, accompanied by an increase of annexin V- and TUNEL-positive cells.Western blot analysis revealed that ZNF689 knockdown induced the expression of pro-apoptotic factors of Bcl-2 family, Bax, Bak and jBid. There was a correlation between the expression of ZNF689 and an anticancer drug 5-fluorouracil (5-FU) resistance of HCC cells. In vivo, ZNF689 siRNA reduced tumor viability in HepG2-bearing mice with statistical significance. Furthermore, immunohistochemical analysis demonstrated that nuclei of a significant portion of human HCC surgical specimens were positive for ZNF689. Taken together, our results indicate that ZNF689 blocks pro-apoptotic signaling by suppressing the Bak/Bax/Bid pathway, resulting in the progression of liver cancer and resistance to 5-FU. ZNF689 may be a promising chemotherapeutic target against liver cancer.
Collapse
Affiliation(s)
- Shuichiro Shigematsu
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Montanaro L, Treré D, Derenzini M. Nucleolus, ribosomes, and cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:301-10. [PMID: 18583314 DOI: 10.2353/ajpath.2008.070752] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The complex aspects linking the nucleolus and ribosome biogenesis to cancer are reviewed here. The available evidence indicates that the morphological and functional changes in the nucleolus, widely observed in cancer tissues, are a consequence of both the increased demand for ribosome biogenesis, which characterizes proliferating cells, and the changes in the mechanisms controlling cell proliferation. In fact, the loss or functional changes in the two major tumor suppressor proteins pRB and p53 cause an up-regulation of ribosome biogenesis in cancer tissues. In this context, the association in human carcinomas of nucleolar hypertrophy with bad prognoses is worthy of note. Further, an increasing amount of data coming from studies on both hepatitis virus-induced chronic liver diseases and a subset of rare inherited disorders, including X-linked dyskeratosis congenita, suggests an active role of the nucleolus in tumorigenesis. Both an up-regulation of ribosome production and changes in the ribosome structure might causally contribute to neoplastic transformation, by affecting the balance of protein translation, thus altering the synthesis of proteins that play an important role in the genesis of cancer.
Collapse
Affiliation(s)
- Lorenzo Montanaro
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
18
|
Montanaro L, Brigotti M, Clohessy J, Barbieri S, Ceccarelli C, Santini D, Taffurelli M, Calienni M, Teruya-Feldstein J, Trerè D, Pandolfi PP, Derenzini M. Dyskerin expression influences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer. J Pathol 2006; 210:10-8. [PMID: 16841302 DOI: 10.1002/path.2023] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dyskerin is a nucleolar protein, altered in dyskeratosis congenita, which carries out two separate functions, both fundamental for proliferating cells. One function is the pseudo-uridylation of ribosomal RNA (rRNA) molecules, necessary for their processing, and the other is the stabilization of the telomerase RNA component, necessary for telomerase activity. A significant feature of dyskeratosis congenita is an increased susceptibility to cancer; so far, however, no data have been reported on dyskerin changes in human tumours. Therefore, in this study, the distribution of dyskerin in a large series of human tumours from the lung, breast, and colon, as well as from B-cell lymphomas, was analysed by immunohistochemistry. Dyskerin proved never to be lost or delocalized outside the nucleolus. A quantitative analysis of dyskerin mRNA expression was then performed in 70 breast carcinomas together with the evaluation of telomerase RNA component levels and rRNA pseudo-uridylation. Dyskerin mRNA levels were highly variable and directly associated with both telomerase RNA component levels and rRNA pseudo-uridylation. Dyskerin gene silencing in the MCF-7 human breast carcinoma cell line reduced telomerase activity and rRNA pseudo-uridylation. Significantly, patients with low dyskerin expression were characterized by a better clinical outcome than those with a high dyskerin level. These data indicate that dyskerin is not lost in human cancers and that the levels of its expression and function are associated with tumour progression.
Collapse
Affiliation(s)
- L Montanaro
- Dipartimento di Patologia Sperimentale, Università di Bologna, via S. Giacomo 14, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Hepatitis B virus (HBV) consists of a circular, partially double-stranded DNA molecule of 3.2 kb in length, which contains four overlapping reading frames that code for surface proteins (HBsAg), core proteins (HBcAg/HBeAg), the viral polymerase and the transcriptional transactivator X protein. HBV infection can lead to chronic carriage of the virus and progressive liver diseases, such as hepatitis, liver cirrhosis and hepatocellular carcinoma (HCC). HBV and hepatitis C virus or HIV coinfections can increase the HCC risk. A great amount of evidence demonstrates that HBV plays an important role in the development of liver diseases. Chronic hepatitis appears to be due to a suboptimal cellular immune response that destroys some of the infected hepatocytes and does not purge the virus from the remaining infected hepatocytes, thereby permitting the persisting virus to trigger a chronic indolent necroinflammatory liver disease that sets the stage for the development of HCC. However, the pathogenesis of HBV-related HCC is incompletely clarified. Hepatitis B virus X protein (HBx), an important transforming inducer, plays a crucial role in HCC occurrence, invasion and metastasis. Monitoring of the HBV genotypes and antibody to hepatitis B x antigen (anti-HBx) are significant for predicting the outcome of antiviral therapy or early diagnosis of liver cirrhosis and HCC. Some molecular approaches, such as antisense, oligonucleotides, ribozymes, RNA interference targeting HBV mRNA, are available in antiviral therapies. The intracellular antibody technique and immune therapy by dendritic cells could potentially be used in future antiviral therapies.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Cancer Research, Tianjin Key Laboratory of Microbial Functional Genomics, Institute for Molecular Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Weiying Zhang
- Department of Cancer Research, Tianjin Key Laboratory of Microbial Functional Genomics, Institute for Molecular Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Lihong Ye
- Department of Biochemistry, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, P.R. China
| |
Collapse
|
20
|
Azzaroli F, Colecchia A, Colecchi A, Lodato F, Trerè D, Bacchi Reggiani ML, Festi D, Prati GM, Accogli E, Casanova S, Derenzini M, Roda E, Mazzella G. A statistical model predicting high hepatocyte proliferation index and the risk of developing hepatocellular carcinoma in patients with hepatitis C virus-related cirrhosis. Aliment Pharmacol Ther 2006; 24:129-36. [PMID: 16803611 DOI: 10.1111/j.1365-2036.2006.02955.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Incidence of hepatocellular carcinoma in hepatitis C virus-related cirrhosis is 4% per year. Although cost-effective, current screening could be improved. AIM To develop a statistical model including non-invasive parameters able to identify patients at high risk of developing hepatocellular carcinoma. METHODS One hundred and fifty-eight patients (73F:85M) with compensated chronic hepatitis C virus liver disease underwent evaluation, including argyrophilic nucleolar organizer regions proliferation index, and were followed up for 56.18 +/- 1.44 months. RESULTS Fifty-six patients had chronic hepatitis without cirrhosis and low argyrophilic nucleolar organizer regions proliferation index (< or =25%), 65 had hepatitis C virus-related cirrhosis and low argyrophilic nucleolar organizer regions proliferation index and 37 had hepatitis C virus-related cirrhosis and high argyrophilic nucleolar organizer regions proliferation index (>25%). Groups were similar for gender and viral genotype distribution. None of the patients with chronic hepatitis without cirrhosis developed hepatocellular carcinoma, compared with 6.1% of low argyrophilic nucleolar organizer regions proliferation index and 30.6% of high argyrophilic nucleolar organizer regions proliferation index (P = 0.002). By multivariable logistic regression analysis, the following parameters were independently associated with hepatocellular carcinoma development and used for the development of the statistical model: platelets (OR 0.98), gamma-globulins (OR 0.111), alanine aminotransferase/aspartate aminotransferase ratio (OR 0.07), serum ferritin (OR 1.0) and ultrasonographic pattern (coarse OR 2.9, coarse nodular OR 10.12). The statistical model properly allocated 95.9% of patients with low argyrophilic nucleolar organizer regions proliferation index and 72.2% of patients with high argyrophilic nucleolar organizer regions proliferation index. CONCLUSIONS The model, to be validated in large prospective studies, may help tailoring screening according to the risk of hepatocellular carcinoma development.
Collapse
Affiliation(s)
- F Azzaroli
- Department of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Seitz HK, Stickel F. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem 2006; 387:349-60. [PMID: 16606331 DOI: 10.1515/bc.2006.047] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular cancer is the fifth most frequent cancer in men and the eighth in women worldwide. Established risk factors are chronic hepatitis B and C infection, chronic heavy alcohol consumption, obesity and type 2 diabetes, tobacco use, use of oral contraceptives, and aflatoxin-contaminated food. Almost 90% of all hepatocellular carcinomas develop in cirrhotic livers. In Western countries, attributable risks are highest for cirrhosis due to chronic alcohol abuse and viral hepatitis B and C infection. Among those with alcoholic cirrhosis, the annual incidence of hepatocellular cancer is 1-2%. An important mechanism implicated in alcohol-related hepatocarcinogenesis is oxidative stress from alcohol metabolism, inflammation, and increased iron storage. Ethanol-induced cytochrome P-450 2E1 produces various reactive oxygen species, leading to the formation of lipid peroxides such as 4-hydroxy-nonenal. Furthermore, alcohol impairs the antioxidant defense system, resulting in mitochondrial damage and apoptosis. Chronic alcohol exposure elicits hepatocyte hyperregeneration due to the activation of survival factors and interference with retinoid metabolism. Direct DNA damage results from acetaldehyde, which can bind to DNA, inhibit DNA repair systems, and lead to the formation of carcinogenic exocyclic DNA etheno adducts. Finally, chronic alcohol abuse interferes with methyl group transfer and may thereby alter gene expression.
Collapse
Affiliation(s)
- Helmut K Seitz
- Department of Medicine and Laboratory of Alcohol Research, Liver Disease and Nutrition, Salem Medical Center, D-69121 Heidelberg, Germany.
| | | |
Collapse
|
22
|
Abstract
The increasing incidence of hepatocellular carcinoma (HCC) is becoming a considerable problem in Europe. While no national surveillance programme exists, there is increasing evidence that surveillance programmes are efficacious and may be cost-effective. The prognosis of large, symptomatic HCC is poor and only palliative treatment is available. In contrast small tumours are now amenable to several modes of treatment including liver transplantation, surgical resection and loco-regional ablation with acceptable 5 year survival rates. Therefore, the identification of small lesions through screening should prolong survival. Consequently, the European Association for the Study of the Liver (EASL) has recommended surveillance with ultrasound scans and tests for alpha fetoprotein every 6 months. Screening is now routine clinical practice in many parts of the developed world.
Collapse
Affiliation(s)
- Mark Danta
- Centre for Hepatology, Royal Free and University College London, UK
| | | | | |
Collapse
|
23
|
Abstract
Emerging data indicate that the mortality rate of hepatocellular carcinoma (HCC) associated with cirrhosis is rising in some developed countries, whereas mortality from non-HCC complications of cirrhosis is decreasing or is stable. Cohort studies indicate that HCC is currently the major cause of liver-related death in patients with compensated cirrhosis. Hepatitis C virus (HCV) infection is associated with the highest HCC incidence in persons with cirrhosis, occurring twice as commonly in Japan than in the West (5-year cumulative incidence, 30% and 17%, respectively), followed by hereditary hemochromatosis (5-year cumulative incidence, 21%). In hepatitis B virus (HBV)-related cirrhosis, the 5-year cumulative HCC risk is 15% in high endemic areas and 10% in the West. In the absence of HCV and HBV infection, the HCC incidence is lower in alcoholic cirrhotics (5-year cumulative risk, 8%) and subjects with advanced biliary cirrhosis (5-year cumulative risk, 4%). There are limited data on HCC risk in cirrhosis of other causes. Older age, male sex, severity of compensated cirrhosis at presentation, and sustained activity of liver disease are important predictors of HCC, independent of etiology of cirrhosis. In viral-related cirrhosis, HBV/HCV and HBV/HDV coinfections increase the HCC risk (2- to 6-fold relative to each infection alone) as does alcohol abuse (2- to 4-fold relative to alcohol abstinence). Sustained reduction of HBV replication lowers the risk of HCC in HBV-related cirrhosis. Further studies are needed to investigate other viral factors (eg, HBV genotype/mutant, occult HBV, HIV coinfection) and preventable or treatable comorbidities (eg, obesity, diabetes) in the HCC risk in cirrhosis.
Collapse
|
24
|
Azzaroli F, Accogli E, Nigro G, Trere D, Giovanelli S, Miracolo A, Lodato F, Montagnani M, Tamé M, Colecchia A, Mwangemi C, Festi D, Roda E, Derenzini M, Mazzella G. Interferon plus ribavirin and interferon alone in preventing hepatocellular carcinoma: A prospective study on patients with HCV related cirrhosis. World J Gastroenterol 2004; 10:3099-102. [PMID: 15457551 PMCID: PMC4611249 DOI: 10.3748/wjg.v10.i21.3099] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To determine the role of interferon (IFN) with or without ribavirin in preventing or delaying hepatocellular carcinoma (HCC) development in patients with hepatitis C virus (HCV) related cirrhosis. Data on the preventive effect of IFN plus ribavirin treatment are lacking.
METHODS: A total of 101 patients (62 males and 39 females, mean age 55.1 ± 1.4 years) with histologically proven HCV related liver cirrhosis plus compatible biochemistry and ultrasonography were enrolled in the study. Biochemistry and ultrasonography were performed every 6 mo. Ultrasound guided liver biopsy was performed on all detected focal lesions. Follow-up lasted for 5 years. Cellular proliferation, evaluated by measuring Ag-NOR proteins in hepatocytes nuclei, was expressed as AgNOR-Proliferative index (AgNOR-PI) (cut-off = 2.5). Forty-one patients (27 males, 14 females) were only followed up after the end of an yearly treatment with IFN-alpha2b (old treatment control group = OTCG). Sixty naive patients were stratified according to sex and AgNOR-PI and then randomized in two groups: 30 were treated with IFN-alpha2b + ribavirin (treatment group = TG), the remaining were not treated (control group = CG). Nonresponders (NR) or relapsers in the TG received further IFN/ribavirin treatments after a 6 mo of withdrawal.
RESULTS: AgNOR-PI was significantly lowered by IFN (P < 0.001). HCC incidence was higher in patients with AgNOR-PI > 2.5 (26% vs 3%, P < 0.01). Two NR in the OTCG, none in the TG and 9 patients in the CG developed HCC during follow-up. The Kaplan-Mayer survival curves showed statistically significant differences both between OTCG and CG (P < 0.004) and between TG and CG (P < 0.003).
CONCLUSION: IFN/ribavirin treatment associated with re-treatment courses of NR seems to produce the best results in terms of HCC prevention. AgNOR-PI is a useful marker of possible HCC development.
Collapse
Affiliation(s)
- Francesco Azzaroli
- Department of Internal Medicine, University of Bologna, Via Massarenti 9, 40138 Bologna.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ohata K, Hamasaki K, Toriyama K, Ishikawa H, Nakao K, Eguchi K. High viral load is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis B virus infection. J Gastroenterol Hepatol 2004; 19:670-5. [PMID: 15151623 DOI: 10.1111/j.1440-1746.2004.03360.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) is considered a major risk factor for the progression to liver cirrhosis and hepatocellular carcinoma (HCC). The serum level of HBV-DNA is correlated with progression of the disease. The aim of the present study was to determine the relationship between the level of HBV-DNA and hepatocarcinogenesis in patients with chronic HBV infection. METHODS The authors studied 73 patients who were diagnosed with chronic HBV infection at Nagasaki University Hospital (Nagasaki, Japan) between January 1980 and December 1999. The significance of age, sex, habitual drinking, serum alanine aminotransferase level, HBV viral load, interferon treatment, hepatic fibrosis and hepatic inflammation on the development of HCC were examined using univariate and multivariate analyses. RESULTS The cumulative incidence rates of HCC were 14%, 29% and 48% at 5, 10 and 15 years after liver biopsy, respectively. Multivariate analysis identified high viral load, together with age and severe fibrosis, as independent and significant risk factors (P = 0.045, 0.047 and 0.013, respectively) for HCC. CONCLUSIONS The present findings indicate that high viral load is a risk factor for HCC in patients with chronic HBV infection. Patients with a high HBV viral load should be carefully monitored for HCC.
Collapse
Affiliation(s)
- Kazuyuki Ohata
- First Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Blanc JF, Bioulac-Sage P, Trillaud H, Zucman-Rossi J, Balabaud C. Les lésions précancéreuses sur foie cirrhotique et non cirrhotique. ACTA ACUST UNITED AC 2004; 28:D158-70. [PMID: 15213676 DOI: 10.1016/s0399-8320(04)95000-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jean-Frédéric Blanc
- Hépato-Gastroentérologie, Hôpital Saint-André, 1, rue Jean Burguet, 33076 Bordeaux Cedex
| | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Luigi Bolondi
- Department of Internal Medicine and Gastroenterology, University of Bologna, Policlinico S. Orsola Malpighi, Via Albertoni 15, 40138 Bologna, Italy.
| |
Collapse
|
28
|
Hong Y, Liu Y, Cheng J, Yang Q, Wang JJ. Genes trans-regulated by C-terminally truncated middle surface protein of hepatitis B virus with microarray assay. Shijie Huaren Xiaohua Zazhi 2003; 11:943-946. [DOI: 10.11569/wcjd.v11.i7.943] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To study of genes trans-regulated by C-terminally truncated middle surface protein of hepatitis B virus by microarray.
METHODS The recombined expression plasmid pcDNA3.1(-)-MHBst was constructed, and HepG2 cells were transfected. Total mRNA was isolated from the HepG2 cells transfected with pcDNA3.1(-) and pcDNA3-MHBst, respectively. Microarray was employed for detecting and analyzing of both mRNA from the HepG2 cells.
RESULTS After transfecting HepG2 cells, it was found 14 genes had been up-regulated, and 23 genes down-regulated. Their encoding proteins were involved in cell signal transduction, cell proliferation and differentiation.
CONCLUSION Microarray technology is successfully used to screen the genes trans-regulated by C-terminally truncated middle surface protein of hepatitis B virus, which brings some new clues for studying the trans-regulated and immune regulation mechanism of MHBst.
Collapse
Affiliation(s)
- Yuan Hong
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of PLA, Beijing 100039, China
| | - Yan Liu
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of PLA, Beijing 100039, China
| | - Jun Cheng
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of PLA, Beijing 100039, China
| | - Qian Yang
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of PLA, Beijing 100039, China
| | - Jian-Jun Wang
- Gene Therapy Research Center, Institute of Infectious Diseases, 302 Hospital of PLA, Beijing 100039, China
| |
Collapse
|