1
|
Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL. Systematic Analysis of Differential Expression Profile in Rheumatoid Arthritis Chondrocytes Using Next-Generation Sequencing and Bioinformatics Approaches. Int J Med Sci 2018; 15:1129-1142. [PMID: 30123050 PMCID: PMC6097257 DOI: 10.7150/ijms.27056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Cartilage destruction in rheumatoid arthritis (RA) occurs primarily in the pannus-cartilage interface. The close contact of the synovium-cartilage interface implicates crosstalk between synovial fibroblasts and chondrocytes. The aim of this study is to explore the differentially expressed genes and novel microRNA regulations potentially implicated in the dysregulated cartilage homeostasis in joint destruction of RA. Total RNAs were extracted from human primary cultured normal and RA chondrocytes for RNA and small RNA expression profiling using next-generation sequencing. Using systematic bioinformatics analyses, we identified 463 differentially expressed genes in RA chondrocytes were enriched in biological functions related to altered cell cycle process, inflammatory response and hypoxic stimulation. Moreover, fibroblast growth factor 9 (FGF9), kynureninase (KYNU), and regulator of cell cycle (RGCC) were among the top dysregulated genes identified to be potentially affected in the RA joint microenvironment, having similar expression patterns observed in arrays of clinical RA synovial tissues from the Gene Expression Omnibus database. Additionally, among the 31 differentially expressed microRNAs and 10 candidate genes with potential microRNA-mRNA interactions in RA chondrocytes, the novel miR-140-3p-FGF9 interaction was validated in different microRNA prediction databases, and proposed to participate in the pathogenesis of joint destruction through dysregulated cell growth in RA. The findings provide new perspectives for target genes in the management of cartilage destruction in RA.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D'Lima D. Cartilage cell clusters. ACTA ACUST UNITED AC 2010; 62:2206-18. [PMID: 20506158 DOI: 10.1002/art.27528] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Martin K Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Schmal H, Zwingmann J, Fehrenbach M, Finkenzeller G, Stark GB, Südkamp NP, Hartl D, Mehlhorn AT. bFGF influences human articular chondrocyte differentiation. Cytotherapy 2007; 9:184-93. [PMID: 17453970 DOI: 10.1080/14653240601182846] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The possible functional role of basic fibroblast growth factor (bFGF) in regulating the mitotic and metabolic activity of primary human articular chondrocytes was investigated. METHODS [EF1]Chondrocytes were enzymatically isolated from femoral head cartilage, and were cultured in vitro in monolayer. bFGF-dependent cell proliferation, production of collagen type II and aggrecan were monitored 10 days after isolation. Furthermore, effect of bFGF on cell cycle, cell morphology, and mRNA expression of integrins and chondrogenic markers determined by real time PCR were analyzed. RESULTS bFGF concentrations in supernatants of primary human articular chondrocytes peaked immediately after isolation and then declined. In a dose-dependent manner, bFGF enhanced cell amplification and viability. BFGF induced a decrease in the apoptotic cell population, while the number of proliferating cells remained unchanged. Supplementation of cell culture with bFGF reduced collagen type II mRNA by 49%, but increased expression of the integrin alpha(2) by 70%. bFGF did not significantly regulate the integrins alpha(1), alpha(5), alpha(10), alpha(v) and type I collagen. bFGF reduced the amount of collagen type II by 53%, which was correlated with diminished mRNA production. Monolayer cultured chondrocytes secreted significant amounts of aggrecan that decreased over time. Secretion of this cartilage-specific marker was further reduced by the addition of bFGF. DISCUSSION These findings highlight the potential role of bFGF as an endogenous chondrocyte mediator that can enhance cell amplification and regulate cell differentiation.
Collapse
Affiliation(s)
- H Schmal
- Department of Orthopedics and Traumatology, University of Freiburg Medical Center, Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Chen WH, Lai WF, Deng WP, Yang WK, Lo WC, Wu CC, Yang DM, Lai MT, Lin CT, Lin TW, Yang CB. Tissue engineered cartilage using human articular chondrocytes immortalized by HPV-16 E6 and E7 genes. J Biomed Mater Res A 2006; 76:512-20. [PMID: 16278875 DOI: 10.1002/jbm.a.30560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chondrocytes are useful as a cell culture system for studying arthritic degeneration in tissue engineered cartilage. However, primary chondrocytes have short in vitro lifespan and rapid shift of collagen phenotype. In this study, we used a high dosage of retroviral vector LXSN16E6E7 to transduce human primary chondrocytes and obtained an actively proliferating cell line, designated hPi, which expresses HPV-16 E6/E7 mRNA in early passages. Parental primary chondrocytes cease to grow after five passages, whereas hPi could be propagated beyond 100 passages without requiring additional cell elements in defined medium. After 48 passages, hPi can also give many profiles similar to those of parental primary chondrocyte, including type II collagen in mRNA and protein level, aggrecan in mRNA level, lacunae in type I collagen matrices, and morphology with GAG-specific Alcian blue staining. hPi has shown neoplastic transformation, as examined by NOD-SCID mice tumorigenicity assays for 3 months. Our results indicated that human primary chondrocytes could be immortalized by transduction with HPV-16 E6/E7, preserving stable cartilage-specific differentiation markers. The established chondrocyte cell line could provide a novel model to engineer cartilage in vitro and in vivo for cartilage repair research and clinical application.
Collapse
Affiliation(s)
- Wei-Hung Chen
- Graduate Institute of Biomedical Materials, Taipei Medical University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Henrotin Y, Sanchez C, Balligand M. Pharmaceutical and nutraceutical management of canine osteoarthritis: present and future perspectives. Vet J 2005; 170:113-23. [PMID: 15993795 DOI: 10.1016/j.tvjl.2004.08.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2004] [Indexed: 12/01/2022]
Abstract
Osteoarthritis (OA) is one of the most common chronic musculoskeletal diseases and causes of lameness in the dogs. The osteoarthritic disease process involves the entire synovial joint, encompassing the synovium, cartilage and underlying bone. Joint failure results from an abnormal mechanical strain causing damage to normal tissue or failure of pathologically impaired articular cartilage and bone under the influence of normal physiological strain or a combination of both. In both cases, the end point is cartilage loss and joint impairment. Osteoarthritic chondrocytes show an altered phenotype characterised by an excess production of catabolic factors, including metalloproteinases and reactive oxygen species. These factors constitute potential therapeutic targets and some new drugs and nutraceuticals have been proposed to promote the return to homeostasis. Until now, the therapeutic management of OA in dogs has been dominated by nonsteroidal anti-inflammatory drugs, but some new compounds, including diacerhein, with potential structure-modifying effects, are already used to treat OA in humans and could be helpful to manage OA in the dog. In addition, novel nutraceuticals, such as avocado/soybean unsaponifiable substances, have shown symptomatic effects in knee OA in humans, and could offer an alternative to prevent OA progression. This paper provides an overview of recent discoveries in the pathophysiology and in the therapeutic management of osteoarthritis in dogs.
Collapse
Affiliation(s)
- Yves Henrotin
- Bone and Cartilage Research Unit, Institute of Pathology, Level +5, CHU Sart-Tilman, 4000 Liège, Belgium.
| | | | | |
Collapse
|
6
|
Gomez-Camarillo MA, Kouri JB. Ontogeny of rat chondrocyte proliferation: studies in embryo, adult and osteoarthritic (OA) cartilage. Cell Res 2005; 15:99-104. [PMID: 15740638 DOI: 10.1038/sj.cr.7290273] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of this work was to study the ontogeny of chondrocyte cell division using embryo, adult and osteoarthritic (OA) cartilage. We searched for mitosis phases and performed a comparative evaluation of mitotic index, basic fibroblast growth factor b (FGFb), transforming growth factor beta1 (TGF-beta1) receptors, cyclin dependent kinase (CDK1) and Cyclin-B expression in fetal, neonate, 3, 5, 8 weeks old rats and experimental OA. Our results showed that mitosis phases were observed in all normal cartilage studied, although, we found a decrease in mitotic index in relation to tissue development. No mitosis was detected in OA cartilage. We also found a statistical significant reduction in cell number in OA cartilage, compared with the normal tissue. Furthermore, FGFb and TGF-beta1 receptors diminished in relation to tissue development, and were very scarce in experimental OA. Western blot assays showed CDK-1 expression in all cases, including human-OA cartilage. Similar results were observed for Cyclin-B, except for 8 weeks, when it was not expressed. Our results suggest that cell division seems to be scarce, if not absent within the OA cartilage studied. Nevertheless, the existence of factors essential for cell division leaves open the question concerning chondrocyte proliferation in OA cartilage, which is likely to be present in the early stages of the disease.
Collapse
Affiliation(s)
- Madai A Gomez-Camarillo
- Departamento de Patologia Experimental, Centro de Investigacion y de Estudios Avanzados. Instituto Politecnico Nacional (CINVESTAV-IPN), Mexico
| | | |
Collapse
|
7
|
|
8
|
|
9
|
Abstract
cellular level is not completely understood, but both aging and loading-induced stresses have been shown to undermine cell functions related to the maintenance and restoration of the cartilage matrix. Based on precedents set by studies of other age-related degenerative diseases, we have focused our laboratory work on senescence as the cause of age-dependent decline in chondrocytes and on the impact of excessive mechanical stresses in promoting senescence. We hypothesized that senescent chondrocytes accumulate with age in articular cartilage and we propose that excessive mechanical stress plays a role in this process by promoting oxidative damage in chondrocytes that ultimately causes them to senesce. To test this hypothesis, we measured cell senescence markers (beta-galactosidase expression, mitotic activity, and telomere length) in human articular cartilage chondrocytes, and determined the effects of chronic exposure to oxidative stress on chondrocyte growth and senescence. In addition, we measured the effects of abnormally high levels of mechanical shear stress on the release of oxidants in cartilage explants. We found that senescent chondrocytes accumulated with age in articular cartilage. In vitro studies showed that chronic oxidative stress caused by repeated exposure to peroxide, or by growth under superphysiologic oxygen tension caused chondrocyte populations to senesce prematurely, before extensive telomere erosion occurred. Mechanical shear stress applied to cartilage explants considerably increased the production of oxidants. These observations support the hypothesis that senescence accounts for age-related decline in chondrocyte function and indicate that mechanically induced oxidative damage plays a role in this process. This suggests that new efforts to prevent the development and progression of osteoarthritis should include strategies that slow the progression of chondrocyte senescence or replace senescent cells.
Collapse
Affiliation(s)
- James A Martin
- Department of Orthopaedics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
10
|
Aigner T, Rose J, Martin J, Buckwalter J. Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res 2004; 7:134-45. [PMID: 15312300 DOI: 10.1089/1549168041552964] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is the most common disabling condition of humans in the western world. It has been known for a very long time that aging is the most prominent risk factor for the initiation and progression of the disease, but the explanations for this phenomenon have changed over time. The most longstanding theory is that osteoarthritis develops because of continuous mechanical wear and tear. However, osteoarthritis can also be the result of time/age-related modifications to cartilage matrix components. One of the simplest biological explanations for the initiation and progression of osteoarthritic cartilage degeneration is a mere loss of viable cells, due to apoptosis or other mechanisms. Overall, the most likely scenario is that the cells and the matrix of articular cartilage get older over time, and eventually the tissue enters a senescence-like state that makes it more prone to enter the osteoarthritic degeneration pathway. Thus, patients with osteoarthritis might progress more quickly to the senescence phenotype compared to others. Moreover, stressful conditions associated with the osteoarthritic disease process might further promote chondrocyte senescence. Primary osteoarthritis in this model would be a "premature" degeneration of the joint due to a premature chondrocyte senescence. By analogy to neurodegenerative disorders, one could refer to osteoarthritis as the "M. Alzheimer" of articular cartilage. One of the most important implications of this hypothesis is that it points to issues of cellular degeneration as the basis for understanding the initiation and progression of osteoarthritis. Equally important, it emphasizes that whatever treatment we envisage for osteoarthritis, we must take into account that we are dealing with aged/(pre)senescent cells that no longer have the ability of their juvenile counterparts to counteract the many mechanical, inflammatory, and/or other assaults to the tissue.
Collapse
Affiliation(s)
- T Aigner
- Osteoarticular and Arthritis Research Group, Department of Pathology, University of Erlangen-Nürnberg, Germany.
| | | | | | | |
Collapse
|
11
|
Martin JA, Klingelhutz AJ, Moussavi-Harami F, Buckwalter JA. Effects of Oxidative Damage and Telomerase Activity on Human Articular Cartilage Chondrocyte Senescence. J Gerontol A Biol Sci Med Sci 2004; 59:324-37. [PMID: 15071075 DOI: 10.1093/gerona/59.4.b324] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Senescence compromises the ability of chondrocytes to maintain and repair articular cartilage. We hypothesized that oxidative stress and telomere loss contribute to chondrocyte senescence. To test this hypothesis, we compared the growth of human articular cartilage chondrocytes incubated in 5% O2 and 21% O2. Cells grown in 5% O2 reached 60 population doublings (PD) before senescing, but growth in 21% O2 induced DNA damage and premature senescence at less than 40 PD. Human telomerase reverse transcriptase (hTERT)-transduction failed to prevent chondrocyte senescence in 21% O2, but allowed 1 of 3 chondrocyte strains to exceed 90 PD in 5% O2. These results show that oxidative stress causes premature chondrocyte senescence. They may help explain the increased risk of osteoarthritis with age and after joint trauma and inflammation, and suggest that minimizing oxidative damage will help produce optimal results for chondrocyte transplantation.
Collapse
Affiliation(s)
- James A Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|