1
|
Ran X, Li H, Wang Z, Wu F, Deng Z, Zhou Q, Dai C, Peng J, Lu L, Zhou K, Ran P, Zhou Y. Increased plasma interleukin-1β is associated with accelerated lung function decline in non-smokers. Pulmonology 2025; 31:2411811. [PMID: 39883490 DOI: 10.1080/25310429.2024.2411811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/26/2024] [Indexed: 01/31/2025] Open
Abstract
Interleukin-1β is one of the major cytokines involved in the initiation and persistence of airway inflammation in chronic obstructive pulmonary disease (COPD). However, the association between plasma interleukin-1β and lung function decline remains unclear. We aimed to explore the association between plasma interleukin-1β and lung function decline. This longitudinal evaluation of data from the Early COPD study analysed the association between the plasma interleukin-1β concentration, lung function decline, and COPD exacerbation. Overall, 1,328 participants were included in the baseline analysis, and 1,135 (85%) completed the 1-year follow-up. Increased plasma interleukin-1β was associated with accelerated lung function decline in non-smokers (forced expiratory volume in 1 s: per unit natural log-transformed increase, adjusted unstandardised β [95% confidence interval] 101.46 [16.73-186.18] mL/year, p=0.019; forced vital capacity: per unit natural log-transformed increase, adjusted unstandardised β [95% confidence interval] 146.20 [93.65-198.75] mL/year, p<0.001), but not in smokers. In non-smokers, participants with an interleukin-1β concentration in the top 30% (>5.02 pg/mL) had more respiratory symptoms, more severe emphysema and air trapping, and higher levels of inflammation-related biomarkers. In this study, a subgroup with increased plasma interleukin-1β was identified among non-smokers, and increased plasma interleukin-1β was associated with lung function accelerated decline.
Collapse
Affiliation(s)
- Xinru Ran
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International BioIsland, Guangzhou, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaorui Zhou
- The First Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International BioIsland, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Lin SY, Schmidt EN, Takahashi-Yamashiro K, Macauley MS. Roles for Siglec-glycan interactions in regulating immune cells. Semin Immunol 2024; 77:101925. [PMID: 39706106 DOI: 10.1016/j.smim.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Cell surface complex carbohydrates, known as glycans, are positioned to be the first point of contact between two cells. Indeed, interactions between glycans with glycan-binding can modulate cell-cell interactions. This concept is particularly relevant for immune cells, which use an array of glycan-binding proteins to help in the process of differentiating 'self' from 'non-self'. This is exemplified by the sialic acid-binding immunoglobulin-type lectins (Siglecs), which recognize sialic acid. Given that sialic acid is relatively unique to vertebrates, immune cells leverage Siglecs to recognize sialic acid as a marker of 'self'. Siglecs serve many biological roles, with most of these functions regulated through interactions with their sialoglycan ligands. In this review, we provide a comprehensive update on the ligands of Siglecs and how Siglec-sialoglycan interactions help regulate immune cells in the adaptive and innate immune system.
Collapse
Affiliation(s)
- Sung-Yao Lin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Zhang M, Shi X, Zhang B, Zhang Y, Chen Y, You D, Zhao H, Lu Q, Ma Y. Predictive value of cytokines combined with human neutrophil lipocalinin acute ischemic stroke-associated pneumonia. BMC Neurol 2024; 24:30. [PMID: 38233767 PMCID: PMC10792925 DOI: 10.1186/s12883-023-03488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVE To explore the predictive value of interleukin-6 (IL-6) combined with human neutrophil lipocalin (HNL) of stroke-associated pneumonia (SAP) in patients who were diagnosed with acute ischemic stroke (AIS). METHODS 108patients were divided into two groups: pneumonia group (52 cases) and non-pneumonia group (56 cases), according to whether the patients developed SAP within 7 days of admission. General information was compared between the two groups, like age, gender, history of hypertension, diabetes mellitus, cardiovascular disease, dysphagia, smoking and alcoholhistory. Clinical data were recorded and compared, including lipid profile, interleukin-6 (IL-6), homocysteine (Hcy), National Institutes of Health Stroke Scale (NIHSS) score, and HNL. Multivariate Logistic regression analysis was used to screen the risk factors of AIS-AP, and the predictive value of IL-6 and HNL alone and in combination was evaluated by receiver operating characteristic curve (ROC curve). RESULTS Logistic regression analysis showed that dysphagia (OR,0.018; 95% CI, 0.001 ~ 0.427; P = 0.013), increased NIHSS scores(OR,0.012; 95% CI, 0.000 ~ 0.434; P = 0.016), and high levels of IL-6 (OR,0.014; 95% CI, 0.000 ~ 0.695; P = 0.032)and HNL (OR,0.006; 95% CI, 0.000 ~ 0.280; P = 0.009) were independent risk factors for SAP with significant difference (all P < 0.05). According to the ROC curve analysis of IL-6, the area under the curve (AUC) was 0.881 (95% CI: 0.820 ~ 0.942), and the optimal cutoff value was 6.89 pg/mL with the sensitivity of 73.1% and specificity of 85.7%. As for the ROC curve analysis of HNL, the AUC was 0.896 (95% CI: 0.839 ~ 0.954), and the best cutoff value was 99.66ng/mL with the sensitivity of 76.9% and specificity of 89.3%. The AUC of the combination of IL-6 and HNL increased to 0.952 (95% CI: 0.914 ~ 0.989), and the sensitivity and specificity increased to 80.8% and 92.9%, respectively. CONCLUSION In this research, the levels of IL-6 ≥ 6.89 pg/mL and HNL ≥ 99.66ng/mL were considered as risk factors for AIS patients complicated with SAP. The combined detection had higher predictive value for patients with SAP, which may help to identify who were in highrisk.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Emergency, The First Hospital of Hebei Medical Univerisity, Shijiazhuang, China
| | - Xiaoqian Shi
- Department of Clinical Laboratory, The First Hospital of Hebei Medical Univerisity, Shijiazhuang, China
| | - Bin Zhang
- Department of Emergency, The First Hospital of Hebei Medical Univerisity, Shijiazhuang, China
| | - Yingqi Zhang
- Department of Emergency, The First Hospital of Hebei Medical Univerisity, Shijiazhuang, China
| | - Ying Chen
- Department of Emergency, The First Hospital of Hebei Medical Univerisity, Shijiazhuang, China.
- , No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| | - Daofeng You
- Department of Emergency, The First Hospital of Hebei Medical Univerisity, Shijiazhuang, China
| | - Hongmin Zhao
- Department of General Practice, The First Hospital of Hebei Medical Univerisity, Shijiazhuang, China
| | - Qianqian Lu
- Department of Emergency, The First Hospital of Hebei Medical Univerisity, Shijiazhuang, China
| | - Yanrong Ma
- Department of Emergency, The First Hospital of Hebei Medical Univerisity, Shijiazhuang, China
| |
Collapse
|
4
|
Arreola-Ramírez JL, Vargas MH, Carbajal V, Alquicira-Mireles J, Montaño M, Ramos-Abraham C, Ortiz-Quintero B, Torres-Machorro AL, Rodríguez-Velasco A, Esquivel-Campos AL, Vásquez-Vásquez JA, Segura-Medina P. Mesenchymal stem cells attenuate the proinflammatory cytokine pattern in a guinea pig model of chronic cigarette smoke exposure. Cytokine 2023; 162:156104. [PMID: 36493630 DOI: 10.1016/j.cyto.2022.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
AIMS Cigarette smoke often induces pulmonary and systemic inflammation. In animal models, mesenchymal stem cells (MSC) tend to ameliorate these effects. We aimed to explore the local and systemic expression of cytokines in guinea pigs chronically exposed to cigarette smoke, and their modifications by MSC. MAIN METHODS Concentrations of IL-1β, IL-6, IL-8, IL-12, TNF-α, INF-ɣ, TSG-6, MMP-9, TIMP-1, and/or TIMP-2 in serum and bronchoalveolar lavage (BALF) from animals exposed to tobacco smoke (20 cigarettes/day, 5 days/week for 10 weeks) were determined, and mRNA expression of some of them was measured in lung tissue. Intratracheal instillation of allogeneic bone marrow MSC (5x106 cells in 1 ml) was done at week 2. KEY FINDINGS After cigarette smoke, IL-6 and IFN-γ increased in serum and BALF, while IL-1β and IL-12 decreased in serum, and TSG-6 and TIMP-2 increased in BALF. IL-1β had a paradoxical increase in BALF. MSC had an almost null effect in unexposed animals. The intratracheal administration of MSC in guinea pigs exposed to cigarette smoke was associated with a statistically significant decrease of IL-12 and TSG-6 in serum, as well as a decrease of IL-1β and IFN-γ and an increase in TIMP-1 in BALF. Concerning mRNA expression in lung tissue, cigarette smoke did not modify the relative amount of the studied transcripts, but even so, MSC decreased the IL-12 mRNA and increased the TIMP-1 mRNA. SIGNIFICANCE A single intratracheal instillation of MSC reduces the pulmonary and systemic proinflammatory pattern induced by chronic exposure to cigarette smoke in guinea pigs. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- José Luis Arreola-Ramírez
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico.
| | - Mario H Vargas
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Verónica Carbajal
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Jesús Alquicira-Mireles
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Martha Montaño
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Carlos Ramos-Abraham
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Blanca Ortiz-Quintero
- Departamento de Investigación en Bioquímica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Ana Lilia Torres-Machorro
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Alicia Rodríguez-Velasco
- Servicio de Anatomía Patológica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, CP 06720, Mexico City, Mexico
| | - Ana Laura Esquivel-Campos
- Laboratorio de Investigación en Biología Experimental, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | | | - Patricia Segura-Medina
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico; Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| |
Collapse
|
5
|
Schneider S, Merfort I, Idzko M, Zech A. Blocking P2X purinoceptor 4 signalling alleviates cigarette smoke induced pulmonary inflammation. Respir Res 2022; 23:148. [PMID: 35676684 PMCID: PMC9175376 DOI: 10.1186/s12931-022-02072-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/27/2022] [Indexed: 12/31/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is associated with elevated ATP levels in the extracellular space. Once released, ATP serves as danger signal modulating immune responses by activating purinergic receptors. Accordingly, purinergic signalling has been implicated in respiratory inflammation associated with cigarette smoke exposure. However, the role of P2X4-signalling has not been fully elucidated yet.
Methods Here, we analysed the P2X4 mRNA expression in COPD patients as well as cigarette smoke-exposed mice. Furthermore, P2X4-signalling was blocked by either using a specific antagonist or genetic depletion of P2rx4 in mice applied to an acute and prolonged model of cigarette smoke exposure. Finally, we inhibited P2X4-signalling in macrophages derived from THP-1 before stimulation with cigarette smoke extract. Results COPD patients exhibited an increased P2X4 mRNA expression in cells isolated from the bronchoalveolar lavage fluid and peripheral mononuclear cells. Similarly, P2rx4 expression was elevated in lung tissue of mice exposed to cigarette smoke. Blocking P2X4-signalling in mice alleviated cigarette smoke induced airway inflammation as well as lung parenchyma destruction. Additionally, human macrophages derived from THP-1 cells released reduced concentrations of proinflammatory cytokines in response to cigarette smoke extract stimulation when P2X4 was inhibited. Conclusion Taken together, we provide evidence that P2X4-signalling promotes innate immunity in the immunopathologic responses induced by cigarette smoke exposure. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02072-z.
Collapse
|
6
|
Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts 2022; 13:34-54. [PMID: 35189051 DOI: 10.1515/bmc-2022-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022] Open
Abstract
Atherosclerosis is an important medical and social problem, and the keys to solving this problem are still largely unknown. A common situation in real clinical practice is the comorbid course of atherosclerosis with chronic obstructive pulmonary disease (COPD). Diseases share some common risk factors and may be closely linked pathogenetically. METHODS Bioinformatics analysis of datasets from Gene Expression Omnibus (GEO) was performed to examine the gene ontology (GO) of common differentially expressed genes (DEGs) in COPD and peripheral arterial atherosclerosis. DEGs were identified using the limma R package with the settings p < 0.05, corrected using the Benjamini & Hochberg algorithm and ǀlog 2FCǀ > 1.0. The GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and the protein-protein interaction (PPI) network analysis were performed with the detected DEGs. RESULTS The biological processes and signaling pathways involving common DEGs from airway epithelial datasets in COPD and tissue in peripheral atherosclerosis were identified. A total of 15 DEGs were identified, comprising 12 upregulated and 3 downregulated DEGs. The GO enrichment analysis demonstrated that the upregulated hub genes were mainly involved in the inflammatory response, reactive oxygen species metabolic process, cell adhesion, lipid metabolic process, regulation of angiogenesis, icosanoid biosynthetic process, and cellular response to a chemical stimulus. The KEGG pathway enrichment analysis demonstrated that the common pathways were Toll-like receptor signaling pathway, NF-kappa B signaling pathway, lipid and atherosclerosis, and cytokine-cytokine receptor interaction. CONCLUSIONS Biological processes and signaling pathways associated with the immune response may link the development and progression of COPD and atherosclerosis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026, Ryazan, Russian Federation
| |
Collapse
|
7
|
Fujino N, Sugiura H. ACO (Asthma-COPD Overlap) Is Independent from COPD, a Case in Favor: A Systematic Review. Diagnostics (Basel) 2021; 11:859. [PMID: 34064650 PMCID: PMC8150952 DOI: 10.3390/diagnostics11050859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are now recognized to be able to co-exist as asthma-COPD overlap (ACO). It is clinically relevant to evaluate whether patients with COPD concurrently have components of asthma in primary care. This is because: (i) ACO is a relatively common condition among asthma (over 40 years of age) or COPD irrespective of its diagnosis criteria; (ii) patients with ACO can have higher frequency of exacerbation and more rapid decline in lung function than those with asthma or COPD; and (iii) asthmatic features such as eosinophilic airway inflammation are promising indicators for prediction of inhaled corticosteroid-responsiveness in COPD. The aim of this review to evaluate diagnostic markers for ACO. We searched PubMed for articles related to ACO published until 2020. Articles associated with diagnostic biomarkers were included. We identified a total of 25 studies, some of which have revealed that a combination of biomarkers such as fractional exhaled nitric oxide and serum immunoglobulin E is useful to discern type 2 inflammation in the airways of COPD. Here, we review the current understanding of the clinical characteristics, biomarkers and molecular pathophysiology of ACO in the context of how ACO can be differentiated from COPD.
Collapse
Affiliation(s)
- Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan;
| | | |
Collapse
|
8
|
Kawagoe J, Kono Y, Togashi Y, Ishiwari M, Toriyama K, Yajima C, Nakayama H, Kasagi S, Abe S, Setoguchi Y. Serum Neutrophil Gelatinase-associated Lipocalin (NGAL) Is Elevated in Patients with Asthma and Airway Obstruction. Curr Med Sci 2021; 41:323-328. [PMID: 33877549 DOI: 10.1007/s11596-021-2350-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/03/2020] [Indexed: 10/21/2022]
Abstract
Neutrophilic airway inflammation is one of the features of severe asthma. Neutrophil gelatinase-associated lipocalin (NGAL), or lipocalin-2, is a glycoprotein associated with neutrophilic inflammation and can be detected in blood. Recently, blood NGAL levels have been reported to be elevated in chronic obstructive pulmonary disease. However, the clinical significance of serum NGAL levels in patients with asthma has not been elucidated. The aim of this study was to explore the association between serum NGAL level and clinical parameters in patients with asthma. Sixty-one non-smoking people with stable asthma were enrolled in this study. All patients underwent blood collection and pulmonary function tests. The associations between serum NGAL levels and clinical parameters were analyzed retrospectively. Serum NGAL levels in patients with asthma and obstructive ventilatory defect were higher than those in patients with asthma without obstructive ventilatory defect (76.4±51.4 ng/mL vs. 39.3±27.4 ng/mL, P=0.0019). Serum NGAL levels were correlated with forced expired flow at 50% of vital capacity %predicted and forced expired flow at 75% of vital capacity %predicted (r=-0.3373, P=0.0078 and r=-0.2900, P=0.0234, respectively). Results of a multiple regression analysis demonstrated that serum NGAL level was independently associated with obstructive ventilatory defect. Serum NGAL levels were elevated in patients with asthma and obstructive ventilatory defect. NGAL may be involved in airway remodeling possibly mediated by neutrophilic inflammation in asthma.
Collapse
Affiliation(s)
- Junichiro Kawagoe
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Yuta Kono
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo, 160-0023, Japan.
| | - Yuki Togashi
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Mayuko Ishiwari
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Kazutoshi Toriyama
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Chika Yajima
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Hideaki Nakayama
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Satoshi Kasagi
- Department of Respiratory Medicine, Toranomon Hospital, Tokyo, 105-8470, Japan
| | - Shinji Abe
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Yasuhiro Setoguchi
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| |
Collapse
|
9
|
Mihaylov M, Bilyukov R, Hristova J, Dimitrova D, Youroukova V. Neutrophil gelatinase-associated lipocalin and interleukin-6: Potential biomarker for asthma- COPD overlap, differentiation from asthma and COPD. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2022.2046161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Miroslav Mihaylov
- Department of Pulmonary Diseases, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Radoslav Bilyukov
- Department of Propaedeutics of Internal Diseases, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Julieta Hristova
- Department of Clinical Laboratory and Clinical Immunology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Denitsa Dimitrova
- Department of Pulmonary Diseases, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Vania Youroukova
- Department of Pulmonary Diseases, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
10
|
Ween MP, Moshensky A, Thredgold L, Bastian NA, Hamon R, Badiei A, Nguyen PT, Herewane K, Jersmann H, Bojanowski CM, Shin J, Reynolds PN, Crotty Alexander LE, Hodge SJ. E-cigarettes and health risks: more to the flavor than just the name. Am J Physiol Lung Cell Mol Physiol 2020; 320:L600-L614. [PMID: 33295836 DOI: 10.1152/ajplung.00370.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growing interest in regulating flavored E-liquids must incorporate understanding of the "flavoring profile" of each E-liquid-which flavorings (flavoring chemicals) are present and at what concentrations not just focusing on the flavor on the label. We investigated the flavoring profile of 10 different flavored E-liquids. We assessed bronchial epithelial cell viability and apoptosis, phagocytosis of bacteria and apoptotic cells by macrophages after exposure to E-cigarette vapor extract (EVE). We validated our data in normal human bronchial epithelial cells (NHBE) and alveolar macrophages (AM) from healthy donors. We also assessed cytokine release and validated in the saliva from E-cigarette users. Increased necrosis/apoptosis (16.1-64.5% apoptosis) in 16HBE cells was flavor dependent, and NHBEs showed an increased susceptibility to flavors. In THP-1 differentiated macrophages phagocytosis was also flavor dependent, with AM also showing increased susceptibility to flavors. Further, Banana and Chocolate were shown to reduce surface expression of phagocytic target recognition receptors on alveolar macrophages. Banana and Chocolate increased IL-8 secretion by NHBE, whereas all 4 flavors reduced AM IL-1β secretion, which was also reduced in the saliva of E-cigarette users compared with healthy controls. Flavorant profiles of E-liquids varied from simple 2 compound mixtures to complex mixtures containing over a dozen flavorants. E-liquids with high benzene content, complex flavoring profiles, high chemical concentration had the greatest impacts. The Flavorant profile of E-liquids is key to disruption of the airway status quo by increasing bronchial epithelial cell apoptosis, causing alveolar macrophage phagocytic dysfunction, and altering airway cytokines.
Collapse
Affiliation(s)
- M P Ween
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - A Moshensky
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California
| | - L Thredgold
- Department of Occupational and Environmental Health, School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - N A Bastian
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - R Hamon
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - A Badiei
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - P T Nguyen
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - K Herewane
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - H Jersmann
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - C M Bojanowski
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California
| | - J Shin
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California
| | - P N Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - L E Crotty Alexander
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California
| | - S J Hodge
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Osei ET, Brandsma CA, Timens W, Heijink IH, Hackett TL. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur Respir J 2020; 55:13993003.00563-2019. [PMID: 31727692 DOI: 10.1183/13993003.00563-2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) cause significant morbidity and mortality worldwide. In the context of disease pathogenesis, both asthma and COPD involve chronic inflammation of the lung and are characterised by the abnormal release of inflammatory cytokines, dysregulated immune cell activity and remodelling of the airways. To date, current treatments still only manage symptoms and do not reverse the primary disease processes. In recent work, interleukin (IL)-1α and IL-1β have been suggested to play important roles in both asthma and COPD. In this review, we summarise overwhelming pre-clinical evidence for dysregulated signalling of IL-1α and IL-1β contributing to disease pathogenesis and discuss the paradox of IL-1 therapeutic studies in asthma and COPD. This is particularly important given recent completed and ongoing clinical trials with IL-1 biologics that have had varying degrees of failure and success as therapeutics for disease modification in asthma and COPD.
Collapse
Affiliation(s)
- Emmanuel T Osei
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada .,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wim Timens
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Venge P, Xu S. Diagnosis and Monitoring of Acute Infections with Emphasis on the Novel Biomarker Human Neutrophil Lipocalin. J Appl Lab Med 2019; 3:664-674. [DOI: 10.1373/jalm.2018.026369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
Abstract
Abstract
Background
Acute infections affect all of us at least once or twice a year. Sometimes the infection prompts a visit to our doctor, and the question asked by the patient and the doctor is whether the infection should be treated with antibiotics or not. This is an important question because unnecessary prescription of antibiotics adds to the increasing problem of antibiotics resistance. Objective means to determine whether the infection is caused by bacteria or virus, therefore, are necessary tools for the doctor.
Content
White blood cell counts, C-reactive protein, and other acute-phase reactants in blood are important tools and are commonly used, but unfortunately lack in sensitivity and specificity. In this review we describe some novel biomarkers with increased clinical performance in this regard. The superior biomarker is human neutrophil lipocalin (HNL), a protein released from activated blood neutrophils. HNL may be measured in serum, plasma, or in whole blood after activation with a neutrophil activator. The diagnostic accuracy in the distinction between bacterial and viral acute infections was shown to be in the range of 90%–95% when measured in serum or activated whole blood.
Summary
A point-of-care assay for the measurement of HNL in whole blood is currently being developed, which will allow the diagnosis of acute infections within 5–10 min. For certain indications, HNL measurement may be complemented by 1 or 2 other biomarkers, which may increase the diagnostic discrimination between bacterial and viral infections even further.
Collapse
Affiliation(s)
- Per Venge
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Shengyuan Xu
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
13
|
Jo YS, Kwon SO, Kim J, Kim WJ. Neutrophil gelatinase-associated lipocalin as a complementary biomarker for the asthma-chronic obstructive pulmonary disease overlap. J Thorac Dis 2018; 10:5047-5056. [PMID: 30233879 DOI: 10.21037/jtd.2018.07.86] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background There is no standardized definition of the asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO). Although the blood eosinophil count is regarded as a biomarker for identifying ACO, it has no distinct value. This study aimed to measure plasma levels of neutrophil gelatinase-associated lipocalin (NGAL), a potential biomarker for distinguishing between ACO and non-ACO COPD. Methods We used the Korean cohort in the COPD in dusty area (CODA) study which included 137 subjects with COPD confirmed by spirometry. We defined ACO by a positive bronchodilator response (forced expiratory volume in 1 s, FEV1 >12% and >200 mL from baseline) or based on a previous history of asthma. Plasma levels of NGAL were determined by enzyme immunoassay. Results Among the 137 subjects, 77 were ACO and 60 were non-ACO COPD. Overall, the plasma NGAL levels were 15.9±7.9 and 15.6±6.6 ng/mL for non-ACO and ACO subjects respectively, and not significantly different. However, NGAL levels were significantly higher in female subjects with ACO (17.0±6.4 vs. 11.1±4.5, P=0.01). In female subjects, NGAL levels showed a good predictive ability to discriminate between ACO and non-ACO COPD [area under the receiver operating characteristic curve (AUROC), 0.77]; the predictive ability was similar to that of the blood eosinophil count (AUROC, 0.79). There was a higher probability of discriminating ACO from non-ACO among subjects in the highest tertile of NGAL levels (odds ratio, 1.72; 95% confidence interval, 0.69-4.28; P for trend =0.01). Conclusions NGAL levels were significantly higher in ACO compared to non-ACO COPD in female subjects. After adjusting for gender as a confounding factor, the ability to distinguish ACO was better at higher levels of NGAL.
Collapse
Affiliation(s)
- Yong Suk Jo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kyung Hee University, Seoul, Korea
| | - Sung Ok Kwon
- Biomedical Research Institute, Kangwon National University, Chuncheon, Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
14
|
Wang J, Lv H, Luo Z, Mou S, Liu J, Liu C, Deng S, Jiang Y, Lin J, Wu C, Liu X, He J, Jiang D. Plasma YKL-40 and NGAL are useful in distinguishing ACO from asthma and COPD. Respir Res 2018; 19:47. [PMID: 29580282 PMCID: PMC5870925 DOI: 10.1186/s12931-018-0755-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Asthma-chronic obstructive pulmonary disorder (COPD) overlap (ACO) is characterized by the coexistence of features of both asthma and COPD and is associated with rapid progress and a poor prognosis. Thus, the early recognition of ACO is crucial. OBJECTIVES We sought to explore the plasma levels of biomarkers associated with asthma (periostin, TSLP and YKL-40), COPD (NGAL) and their possible correlation with lung function, the bronchodilator response and radiographic imaging in patients with asthma, COPD and with features of ACO. METHODS We enrolled 423 subjects from 6 clinical centers. All participants underwent blood collection, lung function measurements, bronchodilator response tests and high-resolution CT. Correlations of the plasma biomarkers with lung function, the bronchodilator response and percentemphysema were calculated by Spearman's rank correlation and multivariate stepwise regressionanalysis. RESULTS 1) Patients with features of ACO had lower plasma YKL-40 than COPD patients and a moderate elevated plasma level of NGAL compared with asthma patients. 2) Patients with features of ACO had an intermediate degree of airflow obstruction, the bronchodilator response and emphysema between patients with COPD and asthma. 3) Plasma YKL-40 was negatively correlated with lung function and with the bronchodilator response, and plasma NGAL was positively correlated with the extent of emphysema. CONCLUSIONS Plasma YKL-40 is a promising candidate for distinguishing between patients with features of ACO and COPD patients, while plasma NGAL may be a valuable biomarker for differentiating between patients with features of ACO and asthma patients. CLINICAL TRIAL REGISTRATION ChiCTR-OOC-16009221.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory Medicine, the Second Clinical Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Huajie Lv
- Department of Respiratory Medicine, the Second Clinical Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Zhuang Luo
- Department of Respiratory Medicine, the First Clinical Hospital of Kunming Medical University, Kunming, 650032 Yunnan Province China
| | - Shan Mou
- Department of Respiratory Medicine, the Second Clinical Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Jing Liu
- Department of Respiratory Medicine, the Second Clinical Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Chang Liu
- Department of Respiratory Medicine, the Second Clinical Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Shiying Deng
- Department of Laboratory Medicine, the Second Clinical Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Youfan Jiang
- Department of Respiratory Medicine, the Second Clinical Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Jiachen Lin
- Department of Respiratory Medicine, Chengdu Second People’s Hospital, Chengdu, 610011 Sichuan Province China
| | - Chengzhou Wu
- Department of Respiratory Medicine, People’s Hospital of Wuxi Country, Chongqing, 405800 China
| | - Xianhong Liu
- Department of Respiratory Medicine, People’s Hospital of Shizhu Country, Chongqing, 409100 China
| | - Jinzhi He
- Department of Respiratory Medicine, People’s Hospital of Fengjie Country, Chongqing, 404600 China
| | - Depeng Jiang
- Department of Respiratory Medicine, the Second Clinical Hospital of Chongqing Medical University, Chongqing, 400010 China
| |
Collapse
|
15
|
Abstract
The early and accurate discrimination between bacterial and viral causes of acute infections is the key to a better use of antibiotics and will help slow down the fast-growing resistance to commonly used antibiotics. This discrimination is in the vast majority of cases possible to achieve by blood assay of the biomarker human neutrophil lipocalin (HNL), which we showed to be uniquely increased in patients suffering from bacterial infections. In serum, sensitivities and specificities of >90% are achieved in both adults and children. In order to eliminate the need to produce serum, a whole-blood assay with an assay time of <10 min was developed in which blood neutrophils are activated to release HNL. The diagnostic accuracy of this assay also showed sensitivities and specificities of >90% in most infectious diseases and was clearly superior to contemporary assays such as blood neutrophil counts, C-reactive protein, procalcitonin, and expression of CD64 on blood neutrophils. This format lends itself to the development of a point-of-care HNL assay and will be a major step forward to accomplish the goal of accurately diagnosing patients with symptoms of acute infections within 10 min at the emergency room or at the doctor's office.
Collapse
Affiliation(s)
- Per Venge
- CONTACT Per Venge Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Kim W, Lim D, Kim J. p-Coumaric Acid, a Major Active Compound of Bambusae Caulis in Taeniam, Suppresses Cigarette Smoke-Induced Pulmonary Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:407-421. [PMID: 29433391 DOI: 10.1142/s0192415x18500209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Formula: see text]-coumaric acid ([Formula: see text]-CA) is a common compound found in medicinal herbs, including Bambusae Caulis in Taeniam (BC). It has been used to treat various diseases in China and Korea. Our previous study demonstrated that BC inhibits pulmonary and intestinal inflammation. In the present study, we used cigarette smoke (CS) to induce lung inflammation in vivo, and investigated the anti-inflammatory effects of [Formula: see text]-CA on CS-induced inflammatory mice model. Mice were treated with BC and [Formula: see text]-CA via oral injection 2[Formula: see text]h before CS exposure. The body weight and the inflammatory cells in the bronchoalveolar lavage fluid were measured. The levels of relative inflammatory factors were confirmed by enzyme-linked immunosorbent assay. The lung histological changes were examined by hematoxylin and eosin staining. Also, the protein level of nuclear factor-[Formula: see text]B (NF-[Formula: see text]B) was evaluated by Western blotting. Our results indicated that BC and [Formula: see text]-CA inhibited CS-induced lung inflammation by regulating pro-inflammatory productions such as cytokines, chemokine, protease and NF-[Formula: see text]B. Consequently, these data demonstrated that [Formula: see text]-CA inhibited pulmonary inflammation by suppressing NF-[Formula: see text]B activity, through which pro-inflammatory mediators were regulated. Therefore, [Formula: see text]-CA, which was shown to be a major component of BC, can be considered as a strong therapeutic candidate for treating pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Woogyeong Kim
- 1 Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dahae Lim
- 1 Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinju Kim
- 1 Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
17
|
Cummins G, Yung DE, Cox BF, Koulaouzidis A, Desmulliez MPY, Cochran S. Luminally expressed gastrointestinal biomarkers. Expert Rev Gastroenterol Hepatol 2017; 11:1119-1134. [PMID: 28849686 DOI: 10.1080/17474124.2017.1373017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A biomarker is a measurable indicator of normal biologic processes, pathogenic processes or pharmacological responses. The identification of a useful biomarker is challenging, with several hurdles to overcome before clinical adoption. This review gives a general overview of a range of biomarkers associated with inflammatory bowel disease or colorectal cancer along the gastrointestinal tract. Areas covered: These markers include those that are already clinically accepted, such as inflammatory markers such as faecal calprotectin, S100A12 (Calgranulin C), Fatty Acid Binding Proteins (FABP), malignancy markers such as Faecal Occult Blood, Mucins, Stool DNA, Faecal microRNA (miRNA), other markers such as Faecal Elastase, Faecal alpha-1-antitrypsin, Alpha2-macroglobulin and possible future markers such as microbiota, volatile organic compounds and pH. Expert commentary: There are currently a few biomarkers that have been sufficiently validated for routine clinical use at present such as FC. However, many of these biomarkers continue to be limited in sensitivity and specificity for various GI diseases. Emerging biomarkers have the potential to improve diagnosis and monitoring but further study is required to determine efficacy and validate clinical utility.
Collapse
Affiliation(s)
- Gerard Cummins
- a Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , UK
| | - Diana E Yung
- b The Royal Infirmary of Edinburgh , Endoscopy Unit , Edinburgh , UK
| | - Ben F Cox
- c School of Medicine , University of Dundee , Dundee , UK
| | | | - Marc P Y Desmulliez
- a Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , UK
| | - Sandy Cochran
- d Medical and Industrial Ultrasonics, School of Engineering , University of Glasgow , Glasgow , UK
| |
Collapse
|
18
|
Increased expression of Siglec-9 in chronic obstructive pulmonary disease. Sci Rep 2017; 7:10116. [PMID: 28860481 PMCID: PMC5579055 DOI: 10.1038/s41598-017-09120-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common inflammatory lung disease. Sialic acid-binding immunoglobulin-type lectins 9 (Siglec-9) is predominantly expressed on innate immune cells and has been shown to exert regulatory effect on immune cells through glycan recognition. Soluble Siglec-9 (sSiglec-9), the extracellular region of Siglec-9, might fulfill its function partly by competitive inhibiting siglec-9 binding to its ligands; however, the role of Siglec-9 and sSiglec-9 in the pathogenesis COPD remain largely unknown. In this study, we showed that Siglec-9 expression in alveolar and peripheral blood neutrophil were increased in COPD patients by immunofluorescence and flow cytometry, respectively. Plasma levels of sSiglelc-9 were elevated in COPD patients by ELISA. In vitro, Siglec-9 expression and/or sSiglelc-9 levels were up-regulated by cigarette smoke extract (CSE), lipopolysaccharide (LPS), some cytokines, and dexamethasone (DEX). Recombinant sSiglce-9 increased oxidative burst in neutrophil and enhanced neutrophil chemotaxis toward IL-8 independent on CXCR1 and CXCR2 expression, but it did not affect neutrophil apoptosis or secretions of inflammatory cytokines. In conclusion, Siglec-9 was complementarily increased to induce a negative feedback loop to limit neutrophil activation in COPD, sSiglce-9 enhanced neutrophil ROS and chemotaxis toward IL-8 likely via competitively inhibiting ligands binding to Siglec-9.
Collapse
|
19
|
Karimi R, Tornling G, Forsslund H, Mikko M, Wheelock ÅM, Nyrén S, Sköld CM. Differences in regional air trapping in current smokers with normal spirometry. Eur Respir J 2017; 49:49/1/1600345. [DOI: 10.1183/13993003.00345-2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/13/2016] [Indexed: 12/20/2022]
Abstract
We investigated regional air trapping on computed tomography in current smokers with normal spirometry. It was hypothesised that presence of regional air trapping may indicate a specific manifestation of smoking-related changes.40 current smokers, 40 patients with chronic obstructive pulmonary disease (COPD), and 40 healthy never- smokers underwent computed tomography scans. Regional air trapping was assessed on end-expiratory scans and emphysema, micronodules and bronchial wall thickening on inspiratory scans. The ratio of expiratory and inspiratory mean lung attenuation (E/I) was calculated as a measure of static (fixed) air trapping.Regional air trapping was present in 63% of current smokers, in 45% of never smokers and in 8% of COPD patients (p<0.001). Current smokers with and without regional air trapping had E/I ratio of 0.81 and 0.91, respectively (p<0.001). Forced expiratory volume in 1 s (FEV1) was significantly higher and emphysema less frequent in current smokers with regional air trapping.Current smokers with regional air trapping had higher FEV1 and less emphysema on computed tomography. In contrast, current smokers without regional air trapping resembled COPD. Our results highlight heterogeneity among smokers with normal spirometry and may contribute to early detection of smoking related structural changes in the lungs.
Collapse
|
20
|
Francis A, Bosio E, Stone SF, Fatovich DM, Arendts G, Nagree Y, Macdonald SPJ, Mitenko H, Rajee M, Burrows S, Brown SGA. Neutrophil activation during acute human anaphylaxis: analysis of MPO and sCD62L. Clin Exp Allergy 2017; 47:361-370. [DOI: 10.1111/cea.12868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 12/01/2022]
Affiliation(s)
- A. Francis
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
| | - E. Bosio
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
| | - S. F. Stone
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
| | - D. M. Fatovich
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
| | - G. Arendts
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
- Emergency Department, Fiona Stanley Hospital; Murdoch WA Australia
| | - Y. Nagree
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Emergency Department, Fiona Stanley Hospital; Murdoch WA Australia
- Emergency Department; Fremantle Hospital; Fremantle WA Australia
| | - S. P. J. Macdonald
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
- Emergency Department; Armadale Kelmscott Memorial Hospital; Mount Nasura WA Australia
| | - H. Mitenko
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Emergency Department; South West Health Campus; Bunbury WA Australia
| | - M. Rajee
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Emergency Department; Austin Hospital; Heidelberg VIC Australia
| | - S. Burrows
- School of Medicine & Pharmacology; University of Western Australia; Perth WA Australia
| | - S. G. A. Brown
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
- Emergency Department; Royal Hobart Hospital; Hobart TAS Australia
| |
Collapse
|
21
|
Lock-Johansson S, Vestbo J, Sorensen GL. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease. Respir Res 2014; 15:147. [PMID: 25425298 PMCID: PMC4256818 DOI: 10.1186/s12931-014-0147-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multifaceted condition that cannot be fully described by the severity of airway obstruction. The limitations of spirometry and clinical history have prompted researchers to investigate a multitude of surrogate biomarkers of disease for the assessment of patients, prediction of risk, and guidance of treatment. The aim of this review is to provide a comprehensive summary of observations for a selection of recently investigated pulmonary inflammatory biomarkers (Surfactant protein D (SP-D), Club cell protein 16 (CC-16), and Pulmonary and activation-regulated chemokine (PARC/CCL-18)) and systemic inflammatory biomarkers (C-reactive protein (CRP) and fibrinogen) with COPD. The relevance of these biomarkers for COPD is discussed in terms of their biological plausibility, their independent association to disease and hard clinical outcomes, their modification by interventions, and whether changes in clinical outcomes are reflected by changes in the biomarker.
Collapse
Affiliation(s)
- Sofie Lock-Johansson
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsloews Vej 25.3, Odense, 5000, Denmark.
| | - Jørgen Vestbo
- Department of Respiratory Medicine, Gentofte Hospital, Hellerup, Denmark.
- Respiratory Research Group, Manchester Academic Science Centre University Hospital South Manchester NHS Foundation Trust Manchester, Manchester, UK.
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsloews Vej 25.3, Odense, 5000, Denmark.
| |
Collapse
|
22
|
Eltom S, Belvisi MG, Stevenson CS, Maher SA, Dubuis E, Fitzgerald KA, Birrell MA. Role of the inflammasome-caspase1/11-IL-1/18 axis in cigarette smoke driven airway inflammation: an insight into the pathogenesis of COPD. PLoS One 2014; 9:e112829. [PMID: 25405768 PMCID: PMC4236128 DOI: 10.1371/journal.pone.0112829] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/16/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory airway disease often associated with cigarette smoke (CS) exposure. The disease is increasing in global prevalence and there is no effective therapy. A major step forward would be to understand the disease pathogenesis. The ATP-P2X7 pathway plays a dominant role in murine models of CS induced airway inflammation, and markers of activation of this axis are upregulated in patients with COPD. This strongly suggests that the axis could be important in the pathogenesis of COPD. The aim of this study was to perform a detailed characterisation of the signalling pathway components involved in the CS-driven, P2X7 dependent airway inflammation. METHODS We used a murine model system, bioassays and a range of genetically modified mice to better understand this complex signalling pathway. RESULTS The inflammasome-associated proteins NALP3 and ASC, but not IPAF and AIM2, are required for CS-induced IL-1β/IL-18 release, but not IL-1α. This was associated with a partial decrease in lung tissue caspase 1 activity and BALF neutrophilia. Mice missing caspase 1/11 or caspase 11 had markedly attenuated levels of all three cytokines and neutrophilia. Finally the mechanism by which these inflammatory proteins are involved in the CS-induced neutrophilia appeared to be via the induction of proteins involved in neutrophil transmigration e.g. E-Selectin. CONCLUSION This data indicates a key role for the P2X7-NALP3/ASC-caspase1/11-IL-1β/IL-18 axis in CS induced airway inflammation, highlighting this pathway as a possible therapeutic target for the treatment of COPD.
Collapse
Affiliation(s)
- Suffwan Eltom
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Maria G. Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Christopher S. Stevenson
- Hoffmann-La Roche Inc., pRED, Pharma Research & Early Development, DTA Inflammation, Nutley, New Jersey, United States of America
| | - Sarah A. Maher
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Eric Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kate A. Fitzgerald
- University of Massachusetts, Division of Infectious Diseases & Immunology, Worcester, Massachusetts, United States of America
| | - Mark A. Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Colombo G, Clerici M, Giustarini D, Portinaro NM, Aldini G, Rossi R, Milzani A, Dalle-Donne I. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics. MASS SPECTROMETRY REVIEWS 2014; 33:183-218. [PMID: 24272816 DOI: 10.1002/mas.21392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
First-hand and second-hand tobacco smoke are causally linked to a huge number of deaths and are responsible for a broad spectrum of pathologies such as cancer, cardiovascular, respiratory, and eye diseases as well as adverse effects on female reproductive function. Cigarette smoke is a complex mixture of thousands of different chemical species, which exert their negative effects on macromolecules and biochemical pathways, both directly and indirectly. Many compounds can act as oxidants, pro-inflammatory agents, carcinogens, or a combination of these. The redox behavior of cigarette smoke has many implications for smoke related diseases. Reactive oxygen and nitrogen species (both radicals and non-radicals), reactive carbonyl compounds, and other species may induce oxidative damage in almost all the biological macromolecules, compromising their structure and/or function. Different quantitative and redox proteomic approaches have been applied in vitro and in vivo to evaluate, respectively, changes in protein expression and specific oxidative protein modifications induced by exposure to cigarette smoke and are overviewed in this review. Many gel-based and gel-free proteomic techniques have already been used successfully to obtain clues about smoke effects on different proteins in cell cultures, animal models, and humans. The further implementation with other sensitive screening techniques could be useful to integrate the comprehension of cigarette smoke effects on human health. In particular, the redox proteomic approach may also help identify biomarkers of exposure to tobacco smoke useful for preventing these effects or potentially predictive of the onset and/or progression of smoking-induced diseases as well as potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Di Stefano A, Caramori G, Barczyk A, Vicari C, Brun P, Zanini A, Cappello F, Garofano E, Padovani A, Contoli M, Casolari P, Durham AL, Chung KF, Barnes PJ, Papi A, Adcock I, Balbi B. Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax 2014; 69:516-24. [PMID: 24430176 PMCID: PMC4219154 DOI: 10.1136/thoraxjnl-2012-203062] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background In models of COPD, environmental stressors induce innate immune responses, inflammasome activation and inflammation. However, the interaction between these responses and their role in driving pulmonary inflammation in stable COPD is unknown. Objectives To investigate the activation of innate immunity and inflammasome pathways in the bronchial mucosa and bronchoalveolar lavage (BAL) of patients with stable COPD of different severity and control healthy smokers and non-smokers. Methods Innate immune mediators (interleukin (IL)-6, IL-7, IL-10, IL-27, IL-37, thymic stromal lymphopoietin (TSLP), interferon γ and their receptors, STAT1 and pSTAT1) and inflammasome components (NLRP3, NALP7, caspase 1, IL-1β and its receptors, IL-18, IL-33, ST2) were measured in the bronchial mucosa using immunohistochemistry. IL-6, soluble IL-6R, sgp130, IL-7, IL-27, HMGB1, IL-33, IL-37 and soluble ST2 were measured in BAL using ELISA. Results In bronchial biopsies IL-27+ and pSTAT1+ cells are increased in patients with severe COPD compared with control healthy smokers. IL-7+ cells are increased in patients with COPD and control smokers compared with control non-smokers. In severe stable COPD IL-7R+, IL-27R+ and TSLPR+ cells are increased in comparison with both control groups. The NALP3 inflammasome is not activated in patients with stable COPD compared with control subjects. The inflammasome inhibitory molecules NALP7 and IL-37 are increased in patients with COPD compared with control smokers. IL-6 levels are increased in BAL from patients with stable COPD compared with control smokers with normal lung function whereas IL-1β and IL-18 were similar across all groups. Conclusions Increased expression of IL-27, IL-37 and NALP7 in the bronchial mucosa may be involved in progression of stable COPD.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno (NO) e Tradate, Pavia, Italy
| | - Gaetano Caramori
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Adam Barczyk
- Katedra i Klinika Pneumonologii Slaskiego Uniwersytetu Medycznego w Katowicach, Slaskiego, Poland
| | - Chiara Vicari
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno (NO) e Tradate, Pavia, Italy
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padova, Italy
| | - Andrea Zanini
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno (NO) e Tradate, Pavia, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Sezione di Anatomia Umana, Università di Palermo, Palermo, Italy Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy Istituto Paolo Sotgiu, Libera Università degli Studi di Scienze Umane e Tecnologiche, Lugano, Switzerland
| | - Elvira Garofano
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Anna Padovani
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Marco Contoli
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Paolo Casolari
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Andrew L Durham
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Alberto Papi
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria (formerly Sezione di Malattie dell'Apparato Respiratorio), Università di Ferrara, Ferrara, Italy
| | - Ian Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno (NO) e Tradate, Pavia, Italy
| |
Collapse
|
25
|
Boué S, De León H, Schlage WK, Peck MJ, Weiler H, Berges A, Vuillaume G, Martin F, Friedrichs B, Lebrun S, Meurrens K, Schracke N, Moehring M, Steffen Y, Schueller J, Vanscheeuwijck P, Peitsch MC, Hoeng J. Cigarette smoke induces molecular responses in respiratory tissues of ApoE−/− mice that are progressively deactivated upon cessation. Toxicology 2013; 314:112-24. [DOI: 10.1016/j.tox.2013.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
|
26
|
Dittrich AM, Meyer HA, Hamelmann E. The role of lipocalins in airway disease. Clin Exp Allergy 2013; 43:503-11. [PMID: 23600540 DOI: 10.1111/cea.12025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The pathogenesis of allergic airway inflammation and disease is complex and still not fully understood. Many cells, factors and mediators are involved in the different aspects of induction, maintenance and persistence of airway inflammation. The heterogeneity and redundancy of this system is one of the main reasons why novel therapeutic targets focusing on the pathogenesis of asthma only hesitantly reach the market and clinical application. Thus, it seems mandatory that we proceed in our efforts to better understand this micro cosmos to succeed in the development of safe and effective drugs for the treatment of more severe and refractory forms of asthma and chronic obstructive pulmonary disease. One of the more recently discovered mediators in the context of airway inflammation are the lipocalins (Lcns). They are a family of proteins that share functional and structural similarities and are involved in the transport of small hydrophobic molecules such as steroids and lipids into the cell. Lcns are found in many different cell types from plants and bacteria through invertebrate cells to cells of vertebrate origin. The purpose of this review is to summarize the role of Lcns in airway diseases, focusing on allergic and infectious inflammation. In particular, we will summarize the present knowledge about Lipocalin 1 and Lipocalin 2, where exciting new discoveries in the recent years have highlighted their role in pulmonary disease and infection. This new class of proteins is another putative candidate for the development of novel drugs against airway inflammation.
Collapse
Affiliation(s)
- A M Dittrich
- Junior Research Group, Allergic Sensitization, Medical School Hannover, Hannover, Germany
| | | | | |
Collapse
|
27
|
Stockley JA, Walton GM, Lord JM, Sapey E. Aberrant neutrophil functions in stable chronic obstructive pulmonary disease: the neutrophil as an immunotherapeutic target. Int Immunopharmacol 2013; 17:1211-7. [PMID: 23994347 DOI: 10.1016/j.intimp.2013.05.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 05/31/2013] [Indexed: 01/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, progressive and debilitating chronic inflammatory condition affecting the lungs, with significant systemic manifestations and co-morbidities. Smoking cigarettes is the main risk factor, but only a fifth of smokers have clinically significant airflow obstruction and the inflammation persists after smoking cessation. This suggests that smoking (and exposure to other inhaled toxins) may be necessary but not sufficient to cause COPD. Neutrophils are believed central to COPD and their accumulation and degranulation are associated with tissue damage, increased inflammation and disordered tissue repair. It was assumed that neutrophil activity and function were appropriate in COPD, responding to the presence of high levels of inflammation in the lung. However more recent studies of neutrophil function (including migration, reactive oxygen species generation, degranulation, phagocytosis and extracellular trap (NET) production) suggest that there is a general impairment in COPD neutrophil responses that predispose towards increased inflammation and reduced bacterial clearance. This may be amenable to correction and manipulating neutrophil intracellular pathways (such as phosphoinositide-3-kinase signalling) appears to restore some key COPD neutrophil responses. Targeting neutrophil intra-cellular signalling may provide a means to normalise neutrophil behaviour in COPD. This could lead to improvements in disease outcomes by reducing extraneous inflammatory burden. However further studies are needed to determine if these findings are relevant in vivo and whether this would impact positively upon health and disease.
Collapse
Affiliation(s)
- James A Stockley
- Centre for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
28
|
Lee E, Yun N, Jang YP, Kim J. Lilium lancifolium Thunb. extract attenuates pulmonary inflammation and air space enlargement in a cigarette smoke-exposed mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:148-156. [PMID: 23796878 DOI: 10.1016/j.jep.2013.06.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/15/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lilium lancifolium Thunb. (Liliaceae) has long been used as a traditional medicine in Korea and China to treat bronchitis, pneumonia, and other pulmonary ailments. AIM OF THE STUDY Cigarette smoke (CS) is a major risk factor for the development of pulmonary inflammatory response; it also triggers pulmonary alveoli enlargement. In the present study, we investigate the effects of Lilium lancifolium Thunb. root extract on pulmonary inflammatory responses in a CS-exposed mouse model. MATERIALS AND METHODS Water extract of Lilium lancifolium Thunb. root was fed to C57BL/6 mice prior CS exposure every day for 3 weeks. The numbers of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF) were counted. The relative inflammatory factors, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), monocyte chemotactic protein-1 (MCP-1), and matrix metalloproteinase-12 (MMP-12) were measured by real-time PCR, ELISA, or Western blot analysis. The average alveoli size was determined by lung histology. RESULTS Lilium lancifolium Thunb. root extract was found to significantly inhibit the numbers of macrophages and neutrophils in BALF due to CS exposure. Lilium lancifolium Thunb. root extract also reduced the protein secretion levels of TNF-α, IL-6, IL-1β, and MCP-1 in BALF and the RNA expression levels of TNF-α, IL-6, IL-1β, MCP-1, and MMP-12 in lung tissue compared with mice only exposed to CS. Moreover, MMP-12 in serum was down regulated in Lilium lancifolium Thunb. root extract treated mice compared with CS-exposed mice. Finally, a morphometric analysis of the lungs of Lilium lancifolium Thunb. root extract treated mice demonstrated a significant reduction in airspace size compared to mice only exposed to CS. CONCLUSION Our results show that Lilium lancifolium Thunb. root extract reduces lung inflammation and airspace enlargement in a CS-exposed mouse model. These data indicate that Lilium lancifolium Thunb. root extract is a therapeutic candidate for pulmonary inflammation and emphysema caused by CS.
Collapse
Affiliation(s)
- Euijeong Lee
- Department of Oriental Physiology, College of Pharmacy, Kyung Hee University, #1 Hoeki-dong, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | | | | | | |
Collapse
|
29
|
Bozinovski S, Anthony D, Anderson GP, Irving LB, Levy BD, Vlahos R. Treating neutrophilic inflammation in COPD by targeting ALX/FPR2 resolution pathways. Pharmacol Ther 2013; 140:280-9. [PMID: 23880288 DOI: 10.1016/j.pharmthera.2013.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/19/2022]
Abstract
Neutrophilic inflammation persists in COPD despite best current therapies and it is particularly resistant to inhaled glucocorticosteroids. Persistent neutrophil activation not only contributes to matrix breakdown, but can maintain inflammation through the release of endogenous damage associated molecule patterns (DAMPs). Inhibiting excessive neutrophilic inflammation is challenging as many pathogen recognition receptors can initiate migration and the targeting of downstream signaling molecules may compromise essential host defense mechanisms. Here, we discuss new strategies to combat this inflammation in COPD by focusing on the anti-inflammatory role of ALX/FPR2 receptors. ALX/FPR2 is a promiscuous G-protein coupled receptor (GPCR) responding to lipid and peptide agonists that can either switch on acute inflammation or promote resolution of inflammation. We highlight this receptor as an emerging target in the pathogenesis of COPD because known ALX/FPR2 endogenous agonists are enriched in COPD. Serum Amyloid A (SAA) has recently been discovered to be abundantly expressed in COPD and is a potent ALX/FPR2 agonist that unlike almost all other inflammatory chemoattractants, is induced by glucocorticosteroids. SAA not only initiates lung inflammation via ALX/FPR2 but can allosterically modify this receptor so that it no longer transduces pro-resolving signals from endogenous lipoxins that would otherwise promote tissue healing. We propose that there is an imbalance in endogenous and microbial ALX/FPR2 receptor agonists in the inflamed COPD lung environment that oppose protective anti-inflammatory and pro-resolution pathways. These insights open the possibility of targeting ALX/FPR2 receptors using synthetic agonists to resolve persistent neutrophilic inflammation without compromising essential host defense mechanisms.
Collapse
Affiliation(s)
- Steven Bozinovski
- Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Schmekel B, Blomstrand P, Venge P. Serum lysozyme - a surrogate marker of pulmonary microvascular injury in smokers? Clin Physiol Funct Imaging 2013; 33:307-12. [PMID: 23692621 DOI: 10.1111/cpf.12029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/09/2013] [Indexed: 11/29/2022]
Abstract
Progression rate of disease processes in smoke-induced lung injuries varies greatly. Diverse pathophysiological mechanisms may trigger these divergences. The aim of this study was to evaluate whether circulating markers of monocytes/macrophages and/or neutrophil [i.e. lysozyme (LZM) or myeloperoxidase (MPO)] were associated with reduced values of diffusion capacity (DL,CO), which is considered to serve as a mirror of pulmonary microvascular derangement and an early sign of tissue remodelling in smokers. Data obtained from 134 smokers (GOLD stage ≤1) and 24 matched healthy non-smoking volunteers were evaluated in a cross-sectional study design. Lung function tests as well as single breath test of DL,CO were assessed according to ATS/ERS guidelines. Biomarkers were measured in serum by means of sensitive immunoassays. A subgroup of smokers with normal lung function was created to minimize confounding, by excluding datasets showing significant airflow limitation and abnormally high values of carboxy haemoglobin (COHb), the latter indicating recent smoking. The capacity of serum lysozyme to correctly identify abnormally low values of DL,CO (i.e. <1·9SD units), tended to be higher than that of Myeloperoxidase as assessed by analyses of receiver operated curves (ROC; AUC 0·81, 95%CI: 0·69-0·89 versus AUC 0·67, 95%CI: 0·60-0·81). It is concluded that serum levels of lysozyme, reflecting mainly activated monocytes/macrophages but also neutrophils, were significantly associated with isolated decrements of DL,CO in smokers with normal lung function tests. This suggests monocytes/macrophages to have a significant mechanistic role in early phases of the disease process and/or pulmonary microvascular damage.
Collapse
Affiliation(s)
- Birgitta Schmekel
- Division of Clinical Physiology, Department of Medicine and Health, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
31
|
The α(1)AT and TIMP-1 Gene Polymorphism in the Development of Asthma. Comp Funct Genomics 2012; 2012:968267. [PMID: 23226977 PMCID: PMC3512250 DOI: 10.1155/2012/968267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/13/2012] [Indexed: 01/23/2023] Open
Abstract
Asthma has been an inflammatory disorder accompanied by tissue remodeling and protease-antiprotease imbalance in lungs. The SNPs of alpha-1 antitrypsin (α(1)AT) and tissue inhibitor of metalloproteinase-1 (TIMP-1) genes were studied for their association with asthma. Genotyping of α(1)AT and TIMP-1 genes was performed in 202 asthmatics and 204 controls. Serum levels of α(1)AT, TIMP-1 and cytokines were estimated to find if the interplay between genotypes and cellular biomarkers determines the pathogenesis of asthma. The analysis of results showed significantly low level of α(1)AT in the serum of asthmatics as compared to controls (P = 0.001), whereas cytokines were elevated in patients. No significant difference was observed in the concentration of TIMP-1 in patients and controls. Genotyping led to the identification of 3 SNPs (Val213Ala, Glu363Lys, and Glu376Asp) in α(1)AT gene. The novel SNP Glu363Lys of α(1)AT was found to be associated with asthma (P = 0.001). The analysis of TIMP-1 gene showed the occurrence of seven SNPs, including a novel intronic SNP at base G3774A. The allele frequency of G3774A and Phe124Phe was significantly higher in asthmatics as compared to controls. Thus, the SNP Glu363Lys of α(1)AT and G3774A and Phe124Phe of TIMP-1 could be important genetic markers for use in better management of the disease.
Collapse
|
32
|
Winkler AR, Nocka KN, Williams CM. Smoke exposure of human macrophages reduces HDAC3 activity, resulting in enhanced inflammatory cytokine production. Pulm Pharmacol Ther 2012; 25:286-92. [DOI: 10.1016/j.pupt.2012.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 04/24/2012] [Accepted: 05/04/2012] [Indexed: 01/16/2023]
|
33
|
Lavoie JP, Lefebvre-Lavoie J, Leclere M, Lavoie-Lamoureux A, Chamberland A, Laprise C, Lussier J. Profiling of differentially expressed genes using suppression subtractive hybridization in an equine model of chronic asthma. PLoS One 2012; 7:e29440. [PMID: 22235296 PMCID: PMC3250435 DOI: 10.1371/journal.pone.0029440] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/28/2011] [Indexed: 12/12/2022] Open
Abstract
Background Gene expression analyses are used to investigate signaling pathways involved in diseases. In asthma, they have been primarily derived from the analysis of bronchial biopsies harvested from mild to moderate asthmatic subjects and controls. Due to ethical considerations, there is currently limited information on the transcriptome profile of the peripheral lung tissues in asthma. Objective To identify genes contributing to chronic inflammation and remodeling in the peripheral lung tissue of horses with heaves, a naturally occurring asthma-like condition. Methods Eleven adult horses (6 heaves-affected and 5 controls) were studied while horses with heaves were in clinical remission (Pasture), and during disease exacerbation induced by a 30-day natural antigen challenge during stabling (Challenge). Large peripheral lung biopsies were obtained by thoracoscopy at both time points. Using suppression subtractive hybridization (SSH), lung cDNAs of controls (Pasture and Challenge) and asymptomatic heaves-affected horses (Pasture) were subtracted from cDNAs of horses with heaves in clinical exacerbation (Challenge). The differential expression of selected genes of interest was confirmed using quantitative PCR assay. Results Horses with heaves, but not controls, developed airway obstruction when challenged. Nine hundred and fifty cDNA clones isolated from the subtracted library were screened by dot blot array and 224 of those showing the most marked expression differences were sequenced. The gene expression pattern was confirmed by quantitative PCR in 15 of 22 selected genes. Novel genes and genes with an already defined function in asthma were identified in the subtracted cDNA library. Genes of particular interest associated with asthmatic airway inflammation and remodeling included those related to PPP3CB/NFAT, RhoA, and LTB4/GPR44 signaling pathways. Conclusions Pathways representing new possible targets for anti-inflammatory and anti-remodeling therapies for asthma were identified. The findings of genes previously associated with asthma validate this equine model for gene expression studies.
Collapse
Affiliation(s)
- Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
34
|
Barbieri SS, Amadio P, Gianellini S, Zacchi E, Weksler BB, Tremoli E. Tobacco smoke regulates the expression and activity of microsomal prostaglandin E synthase-1: role of prostacyclin and NADPH-oxidase. FASEB J 2011; 25:3731-40. [PMID: 21737615 DOI: 10.1096/fj.11-181776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tobacco smoke (TS) interacts with interleukin-1β (IL-1β) to modulate generation of reactive oxygen species (ROS) and expression of cyclooxygenase-2. We explored molecular mechanisms by which TS/IL-1β alters expression and activity of microsomal-prostaglandin E synthase-1 (mPGES-1) and of prostacyclin synthase (PGIS) in mouse cardiac endothelial cells. TS (EC(50) ∼5 puffs/L) interacting with IL-1β (2 μg/L) up-regulates PGE(2) production and mPGES-1 expression, reaching a plateau at 4-6 h, but down-regulates prostacyclin (PGI(2)) release by increasing IL-1β-mediated PGIS tyrosine nitration. Inhibition of NADPH-oxidase, achieved pharmacologically and/or by silencing its catalytic subunit p47phox, or exogenous PGI(2) (carbaprostacyclin; IC(50) ∼5 μM) prevents production of both ROS and PGE(2), and negatively modulates mPGES-1 expression induced by TS/IL-1β. Moreover, inhibiting PGI(2), either using PGIS siRNA and/or CAY10441 (EC(50) ∼20 nM), a PGI(2) receptor antagonist, increases NADPH-oxidase activation, mPGES-1 synthesis, and PGE(2) production. Finally, lower PGI(2) levels associated with higher PGIS tyrosine nitration, p47phox translocation to the membrane (an index of activation of NADPH-oxidase), and mPGES-1 expression and activity were detected in cardiovascular tissues of ApoE(-/-) mice exposed to cigarette smoke compared to control mice. In conclusion, cigarette smoke in association with cytokines alters the balance between PGI(2)/PGE(2), reducing PGI(2) production and increasing synthesis and activity of mPGES-1 via NADPH-oxidase activation, predisposing to development of pathological conditions.
Collapse
Affiliation(s)
- Silvia S Barbieri
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Eltom S, Stevenson CS, Rastrick J, Dale N, Raemdonck K, Wong S, Catley MC, Belvisi MG, Birrell MA. P2X7 receptor and caspase 1 activation are central to airway inflammation observed after exposure to tobacco smoke. PLoS One 2011; 6:e24097. [PMID: 21915284 PMCID: PMC3167831 DOI: 10.1371/journal.pone.0024097] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 07/30/2011] [Indexed: 12/19/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a cigarette smoke (CS)-driven inflammatory airway disease with an increasing global prevalence. Currently there is no effective medication to stop the relentless progression of this disease. It has recently been shown that an activator of the P2X7/inflammasome pathway, ATP, and the resultant products (IL-1β/IL-18) are increased in COPD patients. The aim of this study was to determine whether activation of the P2X7/caspase 1 pathway has a functional role in CS-induced airway inflammation. Mice were exposed to CS twice a day to induce COPD-like inflammation and the role of the P2X7 receptor was investigated. We have demonstrated that CS-induced neutrophilia in a pre-clinical model is temporally associated with markers of inflammasome activation, (increased caspase 1 activity and release of IL-1β/IL-18) in the lungs. A selective P2X7 receptor antagonist and mice genetically modified so that the P2X7 receptors were non-functional attenuated caspase 1 activation, IL-1β release and airway neutrophilia. Furthermore, we demonstrated that the role of this pathway was not restricted to early stages of disease development by showing increased caspase 1 activation in lungs from a more chronic exposure to CS and from patients with COPD. This translational data suggests the P2X7/Inflammasome pathway plays an ongoing role in disease pathogenesis. These results advocate the critical role of the P2X7/caspase 1 axis in CS-induced inflammation, highlighting this as a possible therapeutic target in combating COPD.
Collapse
Affiliation(s)
- Suffwan Eltom
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Integrative Mammalian Physiology and Pharmacology, Imperial College London, London, United Kingdom
| | - Christopher S. Stevenson
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Integrative Mammalian Physiology and Pharmacology, Imperial College London, London, United Kingdom
| | - Joseph Rastrick
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicole Dale
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kristof Raemdonck
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Sissie Wong
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew C. Catley
- Union Chimique Belge Pharma Ltd, Union Chimique Belge Celltech, Slough, Berkshire, Belgium
| | - Maria G. Belvisi
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Integrative Mammalian Physiology and Pharmacology, Imperial College London, London, United Kingdom
| | - Mark A. Birrell
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Integrative Mammalian Physiology and Pharmacology, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Markovics JA, Araya J, Cambier S, Somanath S, Gline S, Jablons D, Hill A, Wolters PJ, Nishimura SL. Interleukin-1beta induces increased transcriptional activation of the transforming growth factor-beta-activating integrin subunit beta8 through altering chromatin architecture. J Biol Chem 2011; 286:36864-74. [PMID: 21878622 DOI: 10.1074/jbc.m111.276790] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The integrin αvβ8 is a cell surface receptor for the latent domain (LAP) of the multifunctional cytokine TGF-β. Through its association with LAP, TGF-β is maintained in a latent form that must be activated to function. Binding to the integrin αvβ8 with subsequent metalloproteolytic cleavage of LAP represents a major mechanism of TGF-β activation in vivo. Altered expression of the integrin β8 subunit (ITGB8) is found in human chronic obstructive pulmonary disease, cancers, and brain vascular malformations. We have previously shown that the proinflammatory cytokine interleukin-1β (IL-1β) increases ITGB8 expression on lung fibroblasts, which increases αvβ8-mediated TGF-β activation in fibrosis and pathologic inflammation. Here we report the mechanism of increased ITGB8 expression by IL-1β. Our data support a model where the chromatin architecture of the ITGB8 core promoter is altered by nucleosomal repositioning that enhances the interaction of an AP1 complex (containing c-Jun and ATF2). This repositioning is caused by the dissociation of HDAC2 with the ITGB8 core promoter, leading to increased histone H4 acetylation and a loosening of nucleosomal-DNA interactions allowing "opening" of the chromatin structure and increased association of c-Jun and ATF-2. These changes are mediated through NFκB- and p38-dependent pathways. Ultimately, these events culminate in increasing ITGB8 transcription, αvβ8 surface expression, and αvβ8-mediated TGFβ activation.
Collapse
Affiliation(s)
- Jennifer A Markovics
- Department Pathology, School of Medicine, University of California, San Francisco, California 94110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Combinatorial effect of TIMP-1 and α1AT gene polymorphisms on development of chronic obstructive pulmonary disease. Clin Biochem 2011; 44:1067-1073. [PMID: 21763297 DOI: 10.1016/j.clinbiochem.2011.06.986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/13/2011] [Accepted: 06/19/2011] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To study the role of α(1)AT and TIMP-1 gene polymorphisms in development of COPD. DESIGN AND METHODS Blood samples from total 408 subjects (217 COPD patients and 191 controls) were used for genotyping and estimating biolevels of α(1)AT, TIMP-1 and inflammatory cytokines. Data was analyzed to determine the role of interaction of TIMP-1 and α(1)AT genes; and interplay between various genotypes and biolevels of α(1)AT, TIMP-1 and inflammatory cytokines in development of COPD. RESULTS Significantly low levels of α(1)AT and TIMP-1 were observed in COPD patients as compared to controls (P = 0.001), where as the inflammatory cytokines were found to be increased in patients. PIM3 allele of α(1)AT gene in COPD patients was found to be associated with low levels of α(1)AT (P = 0.001), the effect being more pronounced when PIM3 combined with rs6609533 of TIMP-1 gene (P = 0.0001). Combination of genotypes rs6609533 of TIMP-1 and PIM3 of α(1)AT containing the risk alleles was over-represented in patients (P = 0.005). CONCLUSION The SNP rs6609533 of TIMP-1 gene interacted with PIM3 of α(1)AT to make a possible risk combination for development of COPD.
Collapse
|
38
|
Sputum and nasal lavage lung-specific biomarkers before and after smoking cessation. BMC Pulm Med 2011; 11:35. [PMID: 21635782 PMCID: PMC3121733 DOI: 10.1186/1471-2466-11-35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 06/02/2011] [Indexed: 11/23/2022] Open
Abstract
Background Little is known about the effect of smoking cessation on airway inflammation. Secretory Leukocyte Protease Inhibitor (SLPI), Clara Cell protein 16 (CC16), elafin and human defensin beta-2 (HBD-2) protect human airways against inflammation and oxidative stress. In this longitudinal study we aimed to investigate changes in sputum and nasal lavage SLPI, CC16, elafin and HBD-2 levels in healthy smokers after 6 and 12 months of smoking cessation. Methods Induced sputum and nasal lavage was obtained from healthy current smokers (n = 76) before smoking cessation, after 6 months of smoking cessation (n = 29), after 1 year of smoking cessation (n = 22) and from 10 healthy never smokers. SLPI, CC16, elafin and HBD-2 levels were measured in sputum and nasal lavage supernatants by commercially available ELISA kits. Results Sputum SLPI and CC-16 levels were increased in healthy smokers before smoking cessation versus never-smokers (p = 0.005 and p = 0.08 respectively). SLPI and CC16 levels did not differ before and 6 months after smoking cessation (p = 0.118 and p = 0.543 respectively), neither before and 1 year after smoking cessation (p = 0.363 and p = 0.470 respectively). Nasal lavage SLPI was decreased 12 months after smoking cessation (p = 0.033). Nasal lavage elafin levels were increased in healthy smokers before smoking cessation versus never-smokers (p = 0.007), but there were no changes 6 months and 1 year after smoking cessation. Conclusions Only nasal lavage SLPI decrease after 1 year after smoking cessation. We may speculate that there is an ongoing inflammatory process stimulating the production of counter-regulating proteins in the airways of healthy ex-smokers.
Collapse
|
39
|
Bosnar M, Čužić S, Bošnjak B, Nujić K, Ergović G, Marjanović N, Pašalić I, Hrvačić B, Polančec D, Glojnarić I, Haber VE. Azithromycin inhibits macrophage interleukin-1β production through inhibition of activator protein-1 in lipopolysaccharide-induced murine pulmonary neutrophilia. Int Immunopharmacol 2011; 11:424-34. [DOI: 10.1016/j.intimp.2010.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/30/2010] [Accepted: 12/14/2010] [Indexed: 02/07/2023]
|
40
|
The role of the NLRP3 inflammasome in the pathogenesis of airway disease. Pharmacol Ther 2011; 130:364-70. [PMID: 21421008 DOI: 10.1016/j.pharmthera.2011.03.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 12/17/2022]
Abstract
The incidences of respiratory diseases like asthma and Chronic Obstructive Pulmonary Disease (COPD) are increasing dramatically. Significantly, there are currently no treatments that can slow or prevent the relentless progression of COPD; and a sub-population of asthmatics are resistant to available therapies. What is more, currently prescribed medication has only minimal effect on the symptoms suffered in these patient groups. There is therefore an urgent need to develop effective drugs to treat these diseases. Whilst asthma and COPD are thought to be distinct diseases, it is currently believed that the pathogenesis of both is driven by the chronic inflammation present in the airways of these patients. It is thus hypothesised that if the inflammation could be attenuated, disease development would be slowed and symptoms reduced. It is therefore paramount to determine the pathways driving/propagating the inflammation. Recently there has been a growing body of evidence to suggest that the multimeric protein complex known as the Inflammasome may play key roles in the inflammation observed in respiratory diseases. The aim of this review is to discuss the role of the NLRP3 Inflammasome, and its associated inflammatory mediators (IL-1β and IL-18), in the pathogenesis of asthma and COPD.
Collapse
|
41
|
Abstract
BACKGROUND Examination of Exhaled Breath Condensate has been suggested to give information about inflammatory airway diseases. OBJECTIVES The aim was to compare efficacy and variability in gain of two commercially available exhaled breath condensers, ECoScreen and RTube in an in vitro set up. METHODS Test fluids containing myeloperoxidase (MPO) or human neutrophil lipocalin (HNL) in addition to saline and bovine serum albumin were nebulized and aerosols were transferred by a servo ventilator to either of the two condensers. Analyses of MPO, HNL, or chlorine were done by means of ELISA, RIA, or a modified adsorbed organic halogen technique (AOX), respectively. RESULTS Recoveries of HNL were higher when using ECoScreen than RTube (P<0.05). In contrast, there were no significant differences between the two condensers in recoveries of MPO or chlorine. The spread of data was wide regarding all tested compounds. CONCLUSION Variability in gain was large and ECoScreen was more efficacious then RTube in condensing the tested solutes of HNL, but not those of MPO or chlorine.
Collapse
Affiliation(s)
- A Davidsson
- Division of Cardiovascular Medicine, Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
| | | |
Collapse
|
42
|
Miller M, Cho JY, Pham A, Friedman PJ, Ramsdell J, Broide DH. Persistent airway inflammation and emphysema progression on CT scan in ex-smokers observed for 4 years. Chest 2010; 139:1380-1387. [PMID: 20966041 DOI: 10.1378/chest.10-0705] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Tobacco smoking is a principal cause of COPD-emphysema (COPD-E). Whether discontinuing smoking for at least 4 years halts airway inflammation and progression of COPD-E in prior smokers is unknown. In this study we investigated whether discontinuing smoking for approximately 4 years in ex-smokers with GOLD (Global Initiative for Chronic Lung Disease) stage IIb (moderately severe) COPD-E stopped airway inflammation (ie, sputum biomarkers) and halted the progression of COPD-E on chest CT scan. METHODS Ten ex-smokers with COPD-E who had quit smoking underwent chest CT scans to document the extent of COPD-E, assessment of lung function (FEV(1) and diffusing capacity of lung for carbon monoxide), sputum induction for biomarkers of inflammation (measured by enzyme-linked immunosorbent assay), and blood cotinine levels at baseline and approximately 4 years later. Normal healthy subjects (n = 7) and normal current smokers with no CT scan evidence of COPD-E (n = 8) served as sputum biomarker comparison groups. RESULTS After approximately 4 years of not smoking (documented by cotinine levels), ex-smokers with COPD-E had persistent increased levels of mediators of inflammation in sputum (myeloperoxidase, leukotriene B4, IL-8, monocyte chemoattractant protein-1, matrix metalloprotease-9), which was associated with significant progression of COPD-E on chest CT scan. CONCLUSIONS Cessation of tobacco smoking in heavy smokers with moderately severe COPD-E is associated with evidence of persistent airway inflammation and progression of COPD-E on CT scan 4 years later. Discontinuing smoking may slow the rate of progression of moderate severity COPD-E, but it does not prevent persistent airway inflammation and significant progression of COPD-E on CT scan.
Collapse
Affiliation(s)
- Marina Miller
- Department of Medicine, University of California, San Diego, CA
| | - Jae Youn Cho
- Department of Medicine, University of California, San Diego, CA
| | - Alexa Pham
- Department of Medicine, University of California, San Diego, CA
| | - Paul J Friedman
- Department of Radiology, University of California, San Diego, CA
| | - Joe Ramsdell
- Department of Medicine, University of California, San Diego, CA
| | - David H Broide
- Department of Medicine, University of California, San Diego, CA.
| |
Collapse
|
43
|
Wu KS, Zhou X, Zheng F, Xu XQ, Lin YH, Yang J. Influence of interleukin-1 beta genetic polymorphism, smoking and alcohol drinking on the risk of non-small cell lung cancer. Clin Chim Acta 2010; 411:1441-6. [PMID: 20529668 DOI: 10.1016/j.cca.2010.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/13/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Non-small cell cancer (NSCLC) accounts for approximately 80% of all lung cancers. Reports suggested an association between the interleukin-1beta (IL-1beta) -31 and -511 gene loci and NSCLC, but few studies took into account the effect of smoking and/or alcohol drinking on the association. METHODS Two-hundred thirteen cases of NSCLC (aged 58.2 + or - 10.1) and 213 controls (aged 59.4 + or - 10.3y) were included in this research. Information about the smoking and drinking behaviors, dietary customs, and anamnesis were obtained from all subjects by questionnaires, and genomic DNA was extracted. IL-1beta -31 and -511 gene polymorphisms were detected using PCR-RFLP. The interactions between the genotypes and alcohol drinking/smoking were analyzed using multivariate logistic regression models. RESULTS (The T/T genotype and the T allele of the IL-1beta -31 gene were associated with higher incidence of NSCLC (P<0.05). For the IL-1beta -511 locus, no difference was found in different genotypes between the NSCLC and control groups. After the adjustment of confounding variables, such as age and gender, the binary logistic analysis showed a significant gene-environment interaction (P<0.05). CONCLUSIONS The IL-1beta -31T allele was positively associated with a risk of NSCLC, and the carriers of IL-1beta -31T/T or -511C/C would have a higher risk of suffering from NSCLC if they drank alcohol or smoke heavily.
Collapse
Affiliation(s)
- Kai-song Wu
- Department of Respiratory, Zhongnan Hospital, Wuhan University, Donghu Road 169 Wuhan 430071, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Comandini A, Rogliani P, Nunziata A, Cazzola M, Curradi G, Saltini C. Biomarkers of lung damage associated with tobacco smoke in induced sputum. Respir Med 2009; 103:1592-613. [DOI: 10.1016/j.rmed.2009.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 05/23/2009] [Accepted: 06/01/2009] [Indexed: 11/25/2022]
|
45
|
Churg A, Zhou S, Wang X, Wang R, Wright JL. The role of interleukin-1beta in murine cigarette smoke-induced emphysema and small airway remodeling. Am J Respir Cell Mol Biol 2008; 40:482-90. [PMID: 18931327 DOI: 10.1165/rcmb.2008-0038oc] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Interleukin-1beta (IL-1beta), a proinflammatory cytokine, is elevated in cigarette smokers. To determine whether IL-1beta plays a role in the pathogenesis of cigarette smoke-induced emphysema and small airway remodeling, IL-1 receptor knockout (IL1RKO), TNF-alpha receptor knockout (TNFRKO), or C57Bl/6 (control) mice were exposed to cigarette smoke acutely or for up to 6 months. With a single acute exposure, smoke elevated IL-1beta in C57Bl/6 mice. IL1RKO mice were protected against acute smoke-mediated increases in lavage inflammatory cells and matrix breakdown. In C57Bl/6 mice, acute smoke-mediated increases in inflammatory cells, serum IL-1beta, and serum TNF-alpha were blocked by z-VAD-fmk, a pan-caspase inhibitor, or z-WEHD-fmk, a caspase-1 (IL-1-converting enzyme, [ICE]) inhibitor. With 6 months of exposure, IL-1beta was no longer increased, but IL-18 was elevated. After 6 months of exposure, IL1RKO mice were 65% protected against emphysema, whereas TNFRKO mice were 83% protected. Both strains were completely protected against small airway remodeling. Lavage desmosine, hydroxyproline, and hyaluronan, matrix breakdown markers, were elevated in C57 but not IL1RKO mice. We conclude that IL-1beta plays a significant role in induction of murine emphysema and small airway remodeling, and is comparable to TNF-alpha in its effects. The protective effects of caspase inhibitors appear to be related to inhibition of ICE and raise the question of whether models that ameliorate emphysema with caspase inhibitors are really blocking IL-1beta (and IL-18) activation rather than blocking apoptosis.
Collapse
Affiliation(s)
- Andrew Churg
- Department of Pathology, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T2B5, Canada.
| | | | | | | | | |
Collapse
|
46
|
Oliveira SHP, Canetti C, Ribeiro RA, Cunha FQ. Neutrophil migration induced by IL-1beta depends upon LTB4 released by macrophages and upon TNF-alpha and IL-1beta released by mast cells. Inflammation 2008; 31:36-46. [PMID: 17874178 DOI: 10.1007/s10753-007-9047-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we investigate whether mast cells and macrophages are involved in the control of IL-1beta-induced neutrophil migration, as well as the participation of chemotactic mediators. IL-1beta induced a dose-dependent neutrophil migration to the peritoneal cavity of rats which depends on LTB(4), PAF and cytokines, since the animal treatment with inhibitors of these mediators (MK 886, PCA 4248 and dexamethasone respectively) inhibited IL-1beta-induced neutrophil migration. The neutrophil migration induced by IL-1beta is dependent on mast cells and macrophages, since depletion of mast cells reduced the process whereas the increase of macrophage population enhanced the migration. Moreover, mast cells or macrophages stimulated with IL-1beta released a neutrophil chemotactic factor, which mimicked the neutrophil migration induced by IL-1beta. The chemotactic activity of the supernatant of IL-1beta-stimulated macrophages is due to the presence of LTB(4), since MK 886 inhibited its release. Moreover, the chemotactic activity of IL-1beta-stimulated mast cells supernatant is due to the presence of IL-1beta and TNF-alpha, since antibodies against these cytokines inhibited its activity. Furthermore, significant amounts of these cytokines were detected in the supernatant. In conclusion, our results suggest that neutrophil migration induced by IL-1beta depends upon LTB(4) released by macrophages and upon IL-1beta and TNFalpha released by mast cells.
Collapse
Affiliation(s)
- S H P Oliveira
- Department of Basic Science, School of Dentistry, Sao Paulo State University, Araçatuba, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
47
|
Xu M, Scott JE, Liu KZ, Bishop HR, Renaud DE, Palmer RM, Soussi-Gounni A, Scott DA. The influence of nicotine on granulocytic differentiation - inhibition of the oxidative burst and bacterial killing and increased matrix metalloproteinase-9 release. BMC Cell Biol 2008; 9:19. [PMID: 18412948 PMCID: PMC2375863 DOI: 10.1186/1471-2121-9-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 04/15/2008] [Indexed: 12/25/2022] Open
Abstract
Background Neutrophils leave the bone marrow as terminally differentiated cells, yet little is known of the influence of nicotine or other tobacco smoke components on neutrophil differentiation. Therefore, promyelocytic HL-60 cells were differentiated into neutrophils using dimethylsulfoxide in the presence and absence of nicotine (3-(1-methyl-2-pyrrolidinyl) pyridine). Differentiation was evaluated over 5 days by monitoring terminal differentiation markers (CD11b expression and formazan deposition); cell viability, growth phase, kinetics, and apoptosis; assessing cellular morphology and ultrastructure; and conformational changes to major cellular components. Key neutrophil effector functions (oxidative burst, bacterial killing, matrix metalloproteinase release) were also examined. Results Nicotine increased the percentage of cells in late differentiation phases (metamyelocytes, banded neutrophils and segmented neutrophils) compared to DMSO alone (p < 0.05), but did not affect any other marker of neutrophil differentiation examined. However, nicotine exposure during differentiation suppressed the oxidative burst in HL-60 cells (p < 0.001); inhibited bacterial killing (p < 0.01); and increased the LPS-induced release of MMP-9, but not MMP-2 (p < 0.05). These phenomena may be α-7-acetylcholine nicotinic receptor-dependent. Furthermore, smokers exhibited an increased MMP-9 burden compared to non-smokers in vivo (p < 0.05). Conclusion These findings may partially explain the known increase in susceptibility to bacterial infection and neutrophil-associated destructive inflammatory diseases in individuals chronically exposed to nicotine.
Collapse
Affiliation(s)
- Minqi Xu
- Department of Oral Biology, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Stratelis G, Fransson SG, Schmekel B, Jakobsson P, Mölstad S. High prevalence of emphysema and its association with BMI: a study of smokers with normal spirometry. Scand J Prim Health Care 2008; 26:241-7. [PMID: 18846446 PMCID: PMC3406642 DOI: 10.1080/02813430802452732] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES To evaluate to what extent emphysema was evident, as identified by High Resolution Computed Tomography (HRCT), in smokers with normal lung function and to relate age, gender, smoking history, and body mass index (BMI) to the HRCT results. A secondary aim was to study to what extent emphysema was present in smokers with lower normal values of lung function defined as FEV(1)/FVC ratio percentage of predicted value (89-93% of predicted value for males and 90-93% for females) or FEF(50) < or = 60% of predicted compared with smokers without this definition. METHODS Fifty-nine smokers, with a mean age of 53 years and with normal lung function, were examined with HRCT. RESULTS Emphysema evidenced visually by HRCT was present in 43% of the subjects. Using a 0-5 grade scale (0=normal finding; 5=emphysema in most slices), the degree of emphysema was almost exclusively 3-4. The type of emphysema was distributed as centrilobular emphysema predominant in 43.5%, paraseptal emphysema predominant in 43.5%, and as an equal mixture of these types in 13%. The presence of emphysema did not differ between the group of smokers with lower normal values of lung function and the rest of the smokers. Smokers with emphysema had significantly lower BMI than those devoid of emphysema, 24 and 27 respectively (p<0.0011). CONCLUSION There was a high occurrence of visual emphysema in middle-aged smokers with normal lung function. The densitometric quantitative analysis method is inadequate for detecting mild emphysema. High prevalence of emphysema was associated with low BMI.
Collapse
|
49
|
Braido F, Riccio AM, Guerra L, Gamalero C, Zolezzi A, Tarantini F, De Giovanni B, Folli C, Descalzi D, Canonica GW. Clara cell 16 protein in COPD sputum: A marker of small airways damage? Respir Med 2007; 101:2119-24. [PMID: 17624750 DOI: 10.1016/j.rmed.2007.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 05/18/2007] [Accepted: 05/20/2007] [Indexed: 12/14/2022]
Abstract
RATIONALE The development of chronic obstructive pulmonary disease (COPD) in smokers and their susceptibility to infections is not fully understood. Recent evidences suggest that Clara cells play a part in host defense, immunomodulatory response and airways remodelling through the production of specific factors such as Clara cell 16 (CC-16). This protein has never been related to patients' lung function tests, blood gases parameters and diseases severity. OBJECTIVES To evaluate a possible correlation between CC-16 expression in sputum, measured by a new methodological approach, and the degree of severity in patients with moderate and severe COPD. We also analyzed possible correlations between CC-16 and cytological sputum population, arterial blood gases and lung function. MAIN FINDINGS We analyzed 20 patients, mean age 72.95, classified on the basis of the global initiative for chronic obstructive lung disease guidelines (GOLD 2006). The samples were processed for cytological analysis and CC-16 levels were assessed by Western blot. We found lower levels of CC-16 in severe COPD compared to moderate ones (p<0.027). No statistically significant differences were found between CC-16 expression and sputum cellularity (except for macrophages), arterial blood gases, and spirometric parameters. Multiple linear regression analysis of CC-16 versus functional and cytological parameters showed no significance. CONCLUSIONS We found a significantly different expression of CC-16 in COPD patients, according to their stage of severity, as defined by the GOLD 2006 guidelines. Considering CC-16 properties in innate immunity, a possible link between protein expression, innate immune system, and COPD infectious exacerbations may be hypothesized but further investigation are needed.
Collapse
Affiliation(s)
- Fulvio Braido
- Allergy and Respiratory Diseases, Department of Internal Medicine, University of Genoa, Pad. Maragliano, Largo R. Benzi, 10 16132 Genova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tomaki M, Sugiura H, Koarai A, Komaki Y, Akita T, Matsumoto T, Nakanishi A, Ogawa H, Hattori T, Ichinose M. Decreased expression of antioxidant enzymes and increased expression of chemokines in COPD lung. Pulm Pharmacol Ther 2007; 20:596-605. [PMID: 16919984 DOI: 10.1016/j.pupt.2006.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 06/26/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
The involvement of inflammation in the pathogenesis of chronic obstructive pulmonary disease (COPD) has been investigated using samples from relatively central airways such as airway biopsies, but there have been fewer studies in the peripheral lung, which is thought to be the main site of the disease process. To determine the molecules that relate to the mechanisms underlying the pathogenesis of COPD, we evaluated the mRNA expression of inflammatory cytokines, chemokines, oxidant enzymes, antioxidant enzymes, proteinases and antiproteinases in peripheral lung tissues from 33 COPD and non-COPD subjects who were undergoing lung resection for lung cancer using an RT-PCR technique. Among the 42 studied candidate genes, the expressions of mRNA for catalase, glutathion S-transferase P1 (GSTP1), glutathion S-transferase M1 (GSTM1), microsomal epoxide hydrolase (mEPHX) and tissue inhibitor of metalloproteinase 2 (TIMP2) were significantly decreased in COPD lung tissues compared with those in non-COPD tissues, and most of these decreases were significantly correlated with the degree of airflow limitation. On the other hand, the expressions of mRNA for interleukin 1beta (IL-1beta), interleukin 8 (IL-8), growth-related oncogene-alpha (Gro-alpha) and monocyte chemotactic protein-1 (MCP-1) were significantly increased in COPD lungs. Most of these changes were also associated with cigarette smoking. These data suggest that an impairment of protective mechanisms against oxidants and xenobiotics, in addition to the upregulation of CXC- and CC-chemokines, may be associated with cigarette smoking and involved in the inflammatory process of COPD.
Collapse
Affiliation(s)
- Masafumi Tomaki
- Division of Respiratory and Infectious Diseases, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|