1
|
Jung E, Noh J, Kang C, Yoo D, Song C, Lee D. Ultrasound imaging and on-demand therapy of peripheral arterial diseases using H 2O 2-Activated bubble generating anti-inflammatory polymer particles. Biomaterials 2018; 179:175-185. [PMID: 29990676 DOI: 10.1016/j.biomaterials.2018.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/23/2018] [Accepted: 07/01/2018] [Indexed: 12/31/2022]
Abstract
Muscles of peripheral artery disease (PAD) patients are under oxidative stress associated with a significantly elevated level of reactive oxygen species (ROS) including hydrogen peroxide (H2O2). Curcumin is a major active constituent of turmeric and is well known for its highly potent antioxidant, anti-inflammatory and angiogenic effects. We previously reported antioxidant vanillyl alcohol-incorporated copolyoxalate (PVAX) which is designed to rapidly scavenge H2O2 and release bioactive vanillyl alcohol and CO2 in a H2O2-triggered manner. In this work, we developed curcumin-loaded PVAX (CUR-PVAX) nanoparticles as contrast-enhanced ultrasound imaging agents as well as on-demand therapeutic agents for ischemic injuries based on the hypothesis that PVAX nanoparticles generate echogenic CO2 bubbles through H2O2-triggered oxidation of peroxalate esters and the merger of curcumin and PVAX exerts H2O2-activatable synergistic therapeutic actions. CUR-PVAX nanoparticles also displayed the drastic ultrasound signal in ischemic areas by generating CO2 bubbles. CUR-PVAX nanoparticles exhibited significantly higher antioxidant and anti-inflammatory activities than empty PVAX nanoparticles and equivalent curcumin in vascular endothelial cells. A mouse model of ischemic injury was used to evaluate the potential of CUR-PVAX nanoparticles as ultrasound imaging agents and on-demand therapeutic agents. CUR-PVAX nanoparticles significantly suppressed the expression of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). Moreover, CUR-PVAX nanoparticles significantly enhanced the level of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1 (PECAM-1, also known as CD31), leading to blood perfusion into ischemic tissues. We, therefore, believe that CUR-PVAX nanoparticles hold great translational potential as novel theranostic agents for ischemic diseases such as PAD.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of BIN Convergence Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Joungyoun Noh
- Department of Polymer⋅Nano Science and Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Changsun Kang
- Department of BIN Convergence Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Donghyuck Yoo
- Department of BIN Convergence Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Chulgyu Song
- Department of Electronics Engineering, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Dongwon Lee
- Department of BIN Convergence Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea; Department of Polymer⋅Nano Science and Technology, Chonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea.
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW The purpose was to summarize the findings of the proangiogenic clinical trials using protein and gene therapy, with analysis of the problems and an interpretation of the results. RECENT FINDINGS Recent findings include several new large clinical trials, using both gene and protein therapies. There has been development of new basic science concepts, especially with regard to endothelial activation and stabilization of newly formed microvessels. This review provides a critical analysis of the most recent clinical trials, both in efforts to understand the pitfalls of earlier clinical trials, and also to focus on requirements for future studies. SUMMARY This article reviews many of the clinical trials utilizing proangiogenic therapy, assesses the pitfalls seen within the current trials, and discusses the conclusions drawn and the future of angiogenesis therapy.
Collapse
Affiliation(s)
- Dawn M Pedrotty
- Department of Biomedical Engineering, and 2Department of Anesthesiology, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
3
|
Hayase M, Kawase Y, Yoneyama R, Hoshino K, McGregor J, MacNeill BD, Lowe HC, Burkhoff D, Boekstegers P, Hajjar RJ. Catheter-based ventricle-coronary vein bypass. Catheter Cardiovasc Interv 2005; 65:394-404. [PMID: 15822113 DOI: 10.1002/ccd.20312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The goal of this study was to investigate the feasibility of a catheter-based ventricle-to-coronary vein bypass (VPASS) in order to achieve retrograde myocardial perfusion by a conduit (VSTENT) from the left ventricle (LV) to the anterior interventricular vein (AIV). Percutaneous coronary venous arterialization has been proposed as a potential treatment strategy for otherwise untreatable coronary artery disease. In an acute setting, the VSTENT implant was deployed percutaneously using the VPASS procedure in five swine. Coronary venous flow and pressure patterns were measured before and after VSTENT implant deployment with and without AIV and left anterior descending artery (LAD) occlusion. In a separate chronic pilot study, the VPASS procedure was completed on two animals that had a mid-LAD occlusion or LAD stenosis. At day 30 post-VPASS procedure, left ventriculography and magnetic resonance imaging (MRI) were performed to assess the patency and myocardial viability of the VSTENT implants. Pre-VSTENT implantation, the mid-AIV systolic wedge pressure was significantly lower than LV systolic pressure during AIV blockage (46 +/- 19 vs. 90 +/- 16 mm Hg; P < 0.01). The VSTENT implant deployment was performed without complication and achieved equalization of the AIV and LV systolic pressures and creation of retrograde flow in the distal AIV (maximal flow velocity: 37 +/- 7 cm/sec). At day 30 post-VPASS procedure, left ventriculography showed VSTENT implant patency. MRI perfusion images demonstrated myocardial viability even with an LAD occlusion. Coronary retrograde perfusion using the VPASS procedure is feasible and may represent a potential technique for end-stage myocardial ischemia.
Collapse
Affiliation(s)
- Motoya Hayase
- Cardiology Laboratory of Integrative Physiology and Imaging, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Laser literature watch. JOURNAL OF CLINICAL LASER MEDICINE & SURGERY 2002; 20:295-300. [PMID: 12470458 DOI: 10.1089/10445470260420812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|