1
|
Guo S, Jansen-Olesen I, Olesen J, Christensen SL. Role of PACAP in migraine: An alternative to CGRP? Neurobiol Dis 2023; 176:105946. [PMID: 36481434 DOI: 10.1016/j.nbd.2022.105946] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a widespread and debilitating neurological condition affecting more than a billion people worldwide. Thus, more effective migraine therapies are highly needed. In the last decade, two endogenous neuropeptides, calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP), were identified to be implicated in migraine. Recently, introduction of monoclonal antibodies (mAbs) blocking the CGRP is the most important advance in migraine therapy for decades. However, 40% of patients are unresponsive to these new drugs. We believe that PACAP may be involved in these patients. Like CGRP, PACAP is located to sensory nerve fibers, it dilates cranial arteries, it causes migraine when infused into patients and it is a peptide that lends itself to antibody therapy. Also, recent studies suggest that the PACAP pathway is independent of the CGRP pathway. Understanding the signaling pathways of PACAP may therefore lead to identification of novel therapeutic targets of particular interest in patients unresponsive to anti-CGRP therapy. Accordingly, neutralizing mAb to PACAP is currently in clinical phase II development. The aim of the present review is, therefore, to give a thorough account of the existing data on PACAP, its receptors and its relation to migraine.
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
2
|
Ashina H, Guo S, Vollesen ALH, Ashina M. PACAP38 in human models of primary headaches. J Headache Pain 2017; 18:110. [PMID: 29453754 PMCID: PMC5815979 DOI: 10.1186/s10194-017-0821-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023] Open
Abstract
Background To review the role of PACAP38 in human models of primary headaches, discuss possible mechanisms of PACAP38-induced migraine, and outline future directions. Discussion Experimental studies have established PACAP38 as a potent pharmacological “trigger” molecule of migraine-like attacks. These studies have also revealed a heterogeneous PACAP38 migraine response in migraine without aura patients. In addition, findings from brain imaging studies have demonstrated neuronal and vascular changes in migraine patients both ictally and interictally after PACAP38 infusion. Conclusion Human migraine models have shed light on the importance of PACAP38 in the pathophysiology of primary headaches. These studies have also pointed to the PAC1 receptor and the PACAP38 molecule itself as target sites for drug testing. Future research should seek to understand the mechanisms underlying PACAP38-induced migraine. The results from an ongoing proof of concept randomized clinical trial may reveal the therapeutic potential of anti-PAC1 receptor antibodies for migraine prevention.
Collapse
Affiliation(s)
- Håkan Ashina
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Song Guo
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne L H Vollesen
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol 2016; 7:195. [PMID: 27313535 PMCID: PMC4890531 DOI: 10.3389/fphys.2016.00195] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Decreased Na(+), K(+)-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1-4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.
Collapse
Affiliation(s)
- Paula F. Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Jacqueline A. Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Ana Maria M. Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Luis E. M. Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Elisa M. Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| |
Collapse
|
4
|
Godínez-Chaparro B, López-Santillán FJ, Argüelles CF, Villalón CM, Granados-Soto V. Role of 5-HT1B/1D receptors in the reduction of formalin-induced nociception and secondary allodynia/hyperalgesia produced by antimigraine drugs in rats. Life Sci 2013; 92:1046-54. [DOI: 10.1016/j.lfs.2013.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/18/2013] [Accepted: 03/25/2013] [Indexed: 12/21/2022]
|
5
|
Tfelt-Hansen P. Optimal balance of efficacy and tolerability of oral triptans and telcagepant: a review and a clinical comment. J Headache Pain 2011; 12:275-80. [PMID: 21350792 PMCID: PMC3094671 DOI: 10.1007/s10194-011-0309-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 01/28/2011] [Indexed: 11/21/2022] Open
Abstract
Dose–response curves for headaches relief and adverse events (AEs) are presented for five triptans: sumatriptan, zolmitriptan, naratriptan, almotriptan, and frovatriptan, and the CGRP antagonist telcagepant. The upper part of the efficacy curve of the triptans is generally flat, the so-called ceiling effect; and none of the oral triptans, even in high doses, are as effective as subcutaneous sumatriptan, In contrast, AEs increases with increasing dose without a ceiling effect. The optimal dose for the triptans is mainly determined by tolerability. Telcagepant has an excellent tolerability and can be used in migraine patients with cardiovascular co-morbidity. Based on the literature the triptans and telcagepant are rated in a table for efficacy and tolerability.
Collapse
Affiliation(s)
- Peer Tfelt-Hansen
- Department of Neurology, Danish Headache Center, University of Copenhagen, Glostrup Hospital, Glostrup, Denmark.
| |
Collapse
|
6
|
Shevel E. A comment on remarks regarding Schoonman et al. "Migraine headache is not associated with cerebral or meningeal vasodilatation--a 3T magnetic resonance angiography study". Headache 2009; 49:1548-9. [PMID: 19549157 DOI: 10.1111/j.1526-4610.2009.01480.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Bigal ME, Hetherington H, Pan J, Tsang A, Grosberg B, Avdievich N, Friedman B, Lipton RB. Occipital levels of GABA are related to severe headaches in migraine. Neurology 2008; 70:2078-80. [PMID: 18505983 DOI: 10.1212/01.wnl.0000313376.07248.28] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- M E Bigal
- Departments of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
This review focuses on the epidemiology, clinical description, pathophysiology, treatment, and prevention of high altitude cerebral edema (HACE). HACE is an uncommon and sometimes fatal complication of traveling too high, too fast to high altitudes. HACE is distinguished by disturbances of consciousness that may progress to deep coma, psychiatric changes of varying degree, confusion, and ataxia of gait. It is most often a complication of acute mountain sickness or high altitude pulmonary edema. The current leading theory of its pathophysiology is that HACE is a vasogenic edema; that is, a disruption of the blood-brain barrier, and we review possible mechanisms to explain this. Treatment and prevention of HACE are similar to those for the other altitude illnesses, but with greater emphasis on descent and steroids. We conclude the review with several case histories to illustrate key clinical features of the disorder.
Collapse
Affiliation(s)
- Peter H Hackett
- International Society for Mountain Medicine and Colorado Center for Altitude Medicine and Physiology, Ridg-way, Colorado 81432, USA.
| | | |
Collapse
|
9
|
Basnyat B, Wu T, Gertsch JH. Neurological Conditions at Altitude That Fall Outside the Usual Definition of Altitude Sickness. High Alt Med Biol 2004; 5:171-9. [PMID: 15265338 DOI: 10.1089/1527029041352126] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Altitude sickness in its commonly recognized forms consists of acute mountain sickness and the two life-threatening forms, high altitude cerebral and pulmonary edema. Less well known are other conditions, chiefly neurological, that may arise completely outside the usual definition of altitude sickness. These, often focal, neurological conditions are important to recognize so that they do not become categorized as altitude sickness because, besides oxygen and descent, treatment may be vastly different. Transient ischemic attacks, cerebral venous thrombosis, seizures, syncope, double vision, and scotomas are some of the well-documented neurological disturbances at high altitude discussed here in order to enhance their recognition and treatment.
Collapse
Affiliation(s)
- Buddha Basnyat
- Nepal International Clinic and Himalayan Rescue Association, Department of Physiology, Institute of Medicine and Patan Hospital, Kathmandi, Nepa.
| | | | | |
Collapse
|