1
|
Minogue AM, Lynch AM, Loane DJ, Herron CE, Lynch MA. Modulation of amyloid-beta-induced and age-associated changes in rat hippocampus by eicosapentaenoic acid. J Neurochem 2007; 103:914-26. [PMID: 17711425 DOI: 10.1111/j.1471-4159.2007.04848.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The age-related deficit in long-term potentiation (LTP) in the dentate gyrus is positively correlated with hippocampal concentration of the pro-inflammatory cytokine, interleukin-1beta (IL-1beta). Previous evidence also indicates that the inhibition of LTP induced by intracerebroventricular injection of amyloid-beta(1-40) (Abeta) is accompanied by increased hippocampal IL-1beta concentration and IL-1beta-stimulated signalling, specifically activation of the stress-activated protein kinase, c-jun N-terminal kinase (JNK). We considered that the underlying age-related neuroinflammation may render older rats more susceptible to Abeta administration and, to investigate this, young, middle-aged and aged rats were injected intracerebroventricularly with Abeta or vehicle. Hippocampal IL-1beta concentration, JNK phosphorylation, expression of the putative Abeta receptor, Receptor for advanced glycation end products (RAGE) and the microglial cell surface marker, CD40 were assessed. We report that Abeta inhibited LTP in a concentration-dependent manner in young rats and that this was accompanied by concentration-dependent increases in hippocampal IL-1beta and expression of phosphorylated JNK, RAGE and CD40. While 20 micromol/L Abeta exerted no significant effect on LTP in young rats, it inhibited LTP in middle-aged and aged rats and the increased vulnerability of aged rats was associated with increased IL-1beta concentration. Treatment of rats with eicosapentaenoic acid attenuated the inhibitory effect of 60 micromol/L Abeta on LTP in young rats and the effect of 20 micromol/L Abeta in middle-aged and aged rats. We present evidence which indicates that the effect of eicosapentaenoic acid may be linked with its ability to stimulate activation of peroxisome proliferator-activated receptor gamma.
Collapse
Affiliation(s)
- Aedín M Minogue
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | |
Collapse
|
2
|
Bates KA, Martins RN, Harvey AR. Oxidative stress in a rat model of chronic gliosis. Neurobiol Aging 2007; 28:995-1008. [DOI: 10.1016/j.neurobiolaging.2006.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/18/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
|
3
|
Lynch AM, Loane DJ, Minogue AM, Clarke RM, Kilroy D, Nally RE, Roche OJ, O'Connell F, Lynch MA. Eicosapentaenoic acid confers neuroprotection in the amyloid-beta challenged aged hippocampus. Neurobiol Aging 2006; 28:845-55. [PMID: 16714069 DOI: 10.1016/j.neurobiolaging.2006.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/02/2006] [Accepted: 04/07/2006] [Indexed: 11/26/2022]
Abstract
Among the changes that occur in the hippocampus with age, is a deficit in long-term potentiation (LTP). This impairment is associated with inflammatory changes, which are typified by increased concentration of the pro-inflammatory cytokine interleukin-1beta (IL-1beta). Activated microglia are the most likely cell source of IL-1beta, but data demonstrating an age-related increase in microglial activation is equivocal. Here we demonstrate that the age-related deficit in LTP is accompanied by increased expression of cell surface markers of activated microglia (major histocompatibility complex II and CD40) and increased IL-1beta production, and that these changes may be stimulated by interferon-gamma. Treatment of aged rats with eicosapentaenoic acid (EPA) attenuates these changes and we suggest that IL-4 mediates the action of EPA. We demonstrate that aged rats exhibit an exaggerated response to intracerebroventricular injection of beta-amyloid peptide 1-40 (Abeta). Thus Abeta inhibited LTP in aged, but not young, rats and induced a further increase in hippocampal IL-1beta concentration. Of particular significance is the demonstration that EPA protects the aged brain so that the increased vulnerability to Abeta is ameliorated in EPA-treated rats.
Collapse
Affiliation(s)
- Aileen M Lynch
- Trinity College Institute of Neuroscience, Physiology Department, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Persichini T, Cantoni O, Suzuki H, Colasanti M. Cross-talk between constitutive and inducible NO synthase: an update. Antioxid Redox Signal 2006; 8:949-54. [PMID: 16771684 DOI: 10.1089/ars.2006.8.949] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is expressed upon exposure of some cell types to bacterial lipopolysaccharides (LPS) and/or a variety of proinflammatory cytokines. The authors present an overview of some of the recent findings further supporting the notion that this response takes place after an early decline in constitutive nitric oxide (NO) levels (i.e., NO released by constitutive NOS, cNOS). This response is indeed critical for allowing activation of the transcription factor NF-kappaB. Thus, generation of NO by cNOS represents a limiting factor for iNOS expression. Some of the physiological and pathological implications of the cross-talk between these two NOS isoforms are discussed. In addition, the results of recent studies are summarized, suggesting possible mechanisms whereby LPS and/or proinflammatory cytokines may cause inhibition of cNOS.
Collapse
|
5
|
Lonergan PE, Martin DSD, Horrobin DF, Lynch MA. Neuroprotective actions of eicosapentaenoic acid on lipopolysaccharide-induced dysfunction in rat hippocampus. J Neurochem 2004; 91:20-9. [PMID: 15379883 DOI: 10.1111/j.1471-4159.2004.02689.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eicosapentaenoic acid (EPA) protects hippocampus from age-related and irradiation-induced changes that lead to impairment in synaptic function; the evidence suggests that this is due to its anti-inflammatory effects, specifically preventing changes induced by the proinflammatory cytokine, interleukin-1beta (IL-1beta). In this study, we have investigated the possibility that EPA may prevent the effects of lipopolysaccharide (LPS) administration, which have been shown to lead to deterioration of synaptic function in rat hippocampus. The data indicate that treatment of hippocampal neurones with EPA abrogated the LPS-induced increases in phosphorylation of the mitogen-activated protein kinase, c-Jun N-terminal kinase (JNK), the transcription factor, c-Jun and the mitochondrial protein, Bcl-2. In parallel, we report that intraperitoneal administration of LPS to adult rats increases phosphorylation of JNK, c-Jun and Bcl-2 in hippocampal tissue and that these changes are coupled with increased IL-1beta concentration. Treatment of rats with EPA abrogates these effects and also blocks the LPS-induced impairment in long-term potentiation in perforant path-granule cell synapses that accompanies these changes. We propose that the neuroprotective effect of EPA may be dependent on its ability to inhibit the downstream consequences of JNK activation.
Collapse
Affiliation(s)
- Peter E Lonergan
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
6
|
Kavanagh T, Lonergan PE, Lynch MA. Eicosapentaenoic acid and gamma-linolenic acid increase hippocampal concentrations of IL-4 and IL-10 and abrogate lipopolysaccharide-induced inhibition of long-term potentiation. Prostaglandins Leukot Essent Fatty Acids 2004; 70:391-7. [PMID: 15041032 DOI: 10.1016/j.plefa.2003.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2003] [Indexed: 01/15/2023]
Abstract
Inflammatory changes in brain exert a negative impact on cognitive function and in animal studies, these changes are associated with impairment in hippocampal-dependent learning paradigms and in long-term potentiation (LTP), which is a putative biological substrate for learning and/or memory. Lipopolysaccharide (LPS), a component of the cell wall of gram negative bacteria, induces inflammatory changes in the brain and leads to impairment of LTP. Since eicosapentaenoic acid (EPA) inhibits LPS-induced changes in vitro, we assessed the possibility that treatment of rats with EPA, alone or in combination with gamma-linolenic acid (GLA) might inhibit LPS-induced changes in vivo. The data presented indicate that the LPS-induced inhibition of LTP and decrease in hippocampal concentration of anti-inflammatory cytokines IL-10 and IL-4 are blocked in rats treated with EPA, GLA or both. The evidence suggests that these effects may be coupled with fatty acid-induced up-regulation of peroxisome proliferator-activated receptor-gamma which possesses known anti-inflammatory effects.
Collapse
Affiliation(s)
- Thady Kavanagh
- Department of Physiology, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
7
|
Puskás LG, Kitajka K, Nyakas C, Barcelo-Coblijn G, Farkas T. Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc Natl Acad Sci U S A 2003; 100:1580-5. [PMID: 12566565 PMCID: PMC149875 DOI: 10.1073/pnas.0337683100] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reduced brain levels of long chain polyunsaturated fatty acids [arachidonic acid and docosahexanoic acid (DHA)] are observed in elderly subjects and patients with Alzheimer's disease. To determine the effects of n-3 fatty acids on aged rat brain, 2-year-old rats were fed fish oil (27% DHA content) for 1 month, and gene expression analysis and fatty acid and molecular species composition of the major phospholipid species were assessed. No significant alteration could be observed in the fatty acid composition of ethanolamine phosphoglycerides and phosphatidylserines with the exception of DHA, which was slightly higher in brains of rats receiving fish oil. However, a drastic reduction in arachidonic acid in phosphatidylinositoles was observed. The expression of 23 genes was altered in response to fish oil feeding in the hippocampus. The transcription of transthyretin (TTR) was induced by 10-fold as evidenced by microarray analysis and confirmed by real-time quantitative RT-PCR. Expression of IL-1 and NO synthase, which has been implicated in the prevention of neurological diseases, was unaltered. TTR is an amyloid beta protein scavenger, so an increase in its expression could prevent amyloid aggregate formation. We believe the beneficial effects of fish oil might be common to other agents, i.e., induce TTR expression, like nicotine and Ginkgo biloba extract.
Collapse
Affiliation(s)
- László G Puskás
- Laboratory of Functional Genomics, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary.
| | | | | | | | | |
Collapse
|
8
|
Venturini G, Colasanti M, Persichini T, Fioravanti E, Ascenzi P, Palomba L, Cantoni O, Musci G. Beta-amyloid inhibits NOS activity by subtracting NADPH availability. FASEB J 2002; 16:1970-2. [PMID: 12397094 DOI: 10.1096/fj.02-0186fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The amyloid peptides Abeta1-42 and Abeta25-35 strongly inhibited the activity of constitutive neuronal and endothelial nitric oxide synthases (i.e., NOS-I and NOS-III, respectively) in cell-free assays. The molecular mechanism of NOS inhibition by Ab fragments was studied in detail with Abeta25-35. The inhibitory ability was mostly NADPH-dependent and specific for the soluble form of Abeta25-35. Optical, fluorescence, and NMR spectroscopy showed that the soluble, but not aggregated, Abeta25-35 interacted with NADPH, thus suggesting that a direct recruitment of NADPH may result in diminished availability of the redox cofactor for NOS functioning. To assess the physiological relevance of our findings, rat neuronal-like PC12 and glioma C6 cell lines were used as cellular models. After Abeta25-35 internalization into cells was verified, the activity of constitutive NOS was measured using the DAF-2DA detection system and found to be severely impaired upon Abeta25-35 uptake. Consistent with previous results on the molecular cross-talk between NOS isoforms, repression of constitutive NOS by Abeta25-35 resulted in enhanced expression of inducible NOS (NOS-II) mRNA in C6 cells. Our results represent the first evidence that amyloid fragments impair constitutive NOS activity in cell-free and cellular systems, providing a possible molecular mechanism for the onset and/or maintenance of Alzheimer's disease.
Collapse
|
9
|
Martin DSD, Lonergan PE, Boland B, Fogarty MP, Brady M, Horrobin DF, Campbell VA, Lynch MA. Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. J Biol Chem 2002; 277:34239-46. [PMID: 12091394 DOI: 10.1074/jbc.m205289200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Among the several changes that occur in the aged brain is an increase in the concentration of the proinflammatory cytokine interleukin-1beta that is coupled with a deterioration in cell function. This study investigated the possibility that treatment with the polyunsaturated fatty acid eicosapentaenoic acid might prevent interleukin-1beta-induced deterioration in neuronal function. Assessment of four markers of apoptotic cell death, cytochrome c translocation, caspase-3 activation, poly(ADP-ribose) polymerase cleavage, and terminal dUTP nick-end staining, revealed an age-related increase in each of these measures, and the evidence presented indicates that treatment of aged rats with eicosapentaenoate reversed these changes as well as the accompanying increases in interleukin-1beta concentration and p38 activation. The data are consistent with the idea that activation of p38 plays a significant role in inducing the changes described since interleukin-1beta-induced activation of cytochrome c translocation and caspase-3 activation in cortical tissue in vitro were reversed by the p38 inhibitor SB203580. The age-related increases in interleukin-1beta concentration and p38 activation in cortex were mirrored by similar changes in hippocampus. These changes were coupled with an age-related deficit in long term potentiation in perforant path-granule cell synapses, while eicosapentaenoate treatment was associated with reversal of age-related changes in interleukin-1beta and p38 and with restoration of long term potentiation.
Collapse
Affiliation(s)
- Darren S D Martin
- Department of Physiology, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
McCarty MF. Policosanol safely down-regulates HMG-CoA reductase - potential as a component of the Esselstyn regimen. Med Hypotheses 2002; 59:268-79. [PMID: 12208152 DOI: 10.1016/s0306-9877(02)00226-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many of the wide-ranging health benefits conferred by statin therapy are mediated, not by reductions in LDL cholesterol, but rather by inhibition of isoprenylation reactions essential to the activation of Rho family GTPases; this may be the mechanism primarily responsible for the favorable impact of statins on risk for ischemic stroke, senile dementia, and fractures, as well as the anti-hypertensive and platelet-stabilizing actions of these drugs. Indeed, the extent of these benefits is such as to suggest that most adults would be wise to take statins; however, owing to the significant expense of statin therapy, as well as to the potential for dangerous side effects that mandates regular physician follow-up, this strategy appears impractical. However, policosanol, a mixture of long-chain aliphatic alcohols extractable from sugar cane wax, has shown cholesterol-lowering potency comparable to that of statins, and yet appears to be devoid of toxic risk. Recent evidence indicates that policosanol down-regulates cellular expression of HMG-CoA reductase, and thus has the potential to suppress isoprenylation reactions much like statins do. Consistent with this possibility, the results of certain clinical and animal studies demonstrate that policosanol has many effects analogous to those of statins that are not likely explained by reductions of LDL cholesterol. However, unlike statins, policosanol does not directly inhibit HMG-CoA reductase, and even in high concentrations it fails to down-regulate this enzyme by more than 50% - thus likely accounting for the safety of this nutraceutical. In light of the fact that policosanol is quite inexpensive and is becoming available as a non-prescription dietary supplement, it may represent a practical resource that could enable the general public to enjoy health benefits comparable to those conferred by statins. In a long-term clinical study enrolling patients with significant symptomatic coronary disease, Esselstyn has demonstrated that a low-fat, whole-food vegan diet, coupled with sufficient statin therapy to maintain serum cholesterol below 150 mg/dL, can stop the progression of coronary disease and virtually eliminate further risk for heart attack. A comparable regimen, in which policosanol is used in place of statins, may represent a practical strategy whereby nearly everyone willing to commit to health-protective eating can either prevent coronary disease, or prevent pre-existing coronary disease from progressing to a life-threatening event.
Collapse
|
11
|
Ishunina TA, Fisser B, Swaab DF. Sex differences in androgen receptor immunoreactivity in basal forebrain nuclei of elderly and Alzheimer patients. Exp Neurol 2002; 176:122-32. [PMID: 12093089 DOI: 10.1006/exnr.2002.7907] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vertical limb of the diagonal band of Broca (VDB or Ch2) and the nucleus basalis of Meynert (NBM or Ch4) are major cholinergic nuclei of the human basal forebrain, a complex that is affected in Alzheimer's disease (AD). Sex hormones influence the function of these cholinergic neurons in animals and humans and we showed earlier that estrogen and androgen receptors (AR) are present in both the VDB and the NBM of young patients of 20-39 years of age. The aim of the present study was to investigate whether AR expression changes in relation to aging and AD. In both brain areas of male and female patients over the age of 56 nuclear staining had almost disappeared and cytoplasmic AR expression was decreased. This decrease was most pronounced in the VDB of men. In addition, the proportion of neurons showing cytoplasmic AR expression was higher in control aged women than in control aged men in both the VDB and the NBM. Surprisingly, cytoplasmic ARs were significantly decreased in the VDB and the NBM only in AD women and not in AD men. These observations suggest the possible involvement of androgens in the functional changes of the basal forebrain nuclei in aging and AD.
Collapse
|
12
|
Rivero JC, Inoue Y, Murakami N, Horii Y. Age- and sex-related changes in susceptibility of Wistar rats to Strongyloides venezuelensis infection. J Vet Med Sci 2002; 64:519-21. [PMID: 12130838 DOI: 10.1292/jvms.64.519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of host age and sex on susceptibility to Strongyloides venezuelensis in Wistar rats were examined by counting larvae recovered from the lungs of animals 3 days after infection. The susceptibility of female rats to S. venezuelensis rapidly decreased with age and elevated estrogen. Resistance in female rats inoculated at 6 and 10 weeks of age was nine and twenty-fold higher, respectively than that in the youngest group (3 weeks). In contrast, the susceptibility of male animals was lowest in the youngest group, then increased with age and elevated testosterone. Sex differences in susceptibility were not evident in the youngest group, but became apparent with age.
Collapse
Affiliation(s)
- Juan C Rivero
- Department of Veterinary Teaching Hospital and Internal Medicine, Faculty of Agriculture, Miyazaki University, Japan
| | | | | | | |
Collapse
|
13
|
Abstract
Hallervorden-Spatz syndrome is an autosomal-recessive brain disorder with signs of extrapyramidal dysfunction and mental deterioration, which associate with iron accumulation in globus pallidus and substantia nigra pars reticulata. Studies of oxidant stress in parkinsonian animal models suggest a linkage of iron overload to axonal dystrophy. Redox cycling of iron complexes (i.e., ferrous citrate and hemoglobin) increases hydroxyl radicals, lipid peroxidation, axonal dystrophy, and necrotic or apoptotic cell death. An increase of oxidative stress in the basal ganglia because of redox cycling of iron complexes leads to dopamine overflow and psychomotor dysfunction. Iron overload-induced axonal dystrophy has been demonstrated consistently using in vitro and in vivo models with a prominent feature of lipid peroxidation. This iron-induced oxidative stress is often accentuated by ascorbate and oxidized glutathione, although it is suppressed by the following antioxidants: S-nitrosoglutathione or nitric oxide, MnSOD mimics, manganese, U-78517F, Trolox, and deferoxamine. Preconditioning induction of stress proteins (i.e., hemeoxygenase-1 and neuronal nitric oxide synthase) and hypothermia therapy suppress the generation of toxic reactive oxygen, lipid, and thiol species evoked by bioactive iron complexes in the brain. Finally, combined antioxidative therapeutics and gene induction procedures may prove to be useful for slowing progressive neurodegeneration caused by iron overload in the brain.
Collapse
Affiliation(s)
- C C Chiueh
- Unit on Neurodegeneration and Neuroprotection, Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1264, USA
| |
Collapse
|
14
|
de la Torre JC, Stefano GB. Evidence that Alzheimer's disease is a microvascular disorder: the role of constitutive nitric oxide. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 34:119-36. [PMID: 11113503 DOI: 10.1016/s0165-0173(00)00043-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Evidence is fast accumulating which indicates that Alzheimer's disease is a vascular disorder with neurodegenerative consequences rather than a neurodegenerative disorder with vascular consequences. It is proposed that two factors need to be present for AD to develop: (1) advanced ageing, (2) presence of a condition that lowers cerebral perfusion, such as a vascular-risk factor. The first factor introduces a normal but potentially insidious process that lowers cerebral blood flow in inverse relation to increased ageing; the second factor adds a crucial burden which further lowers brain perfusion and places vulnerable neurons in a state of high energy compromise leading to a cascade of neuronal metabolic turmoil. Convergence of the two factors above will culminate in a critically attained threshold of cerebral hypoperfusion (CATCH). CATCH is a hemodynamic microcirculatory insufficiency that will destabilize neurons, synapses, neurotransmission and cognitive function, creating in its wake a neurodegenerative state characterized by the formation of senile plaques, neurofibrillary tangles, amyloid angiopathy and in some cases, Lewy bodies. Since any of a considerable number of vascular-related conditions must be present in the ageing individual for cognition to be disturbed, CATCH identifies an important aspect of the heterogeneic disease profile assumed to be present in the AD syndrome. It is proposed that CATCH initiates AD by distorting regional brain capillary structure involving endothelial cell shape changes and impairment of nitric oxide (NO) release which affect signaling between the immune, cardiovascular and nervous systems. Evidence is presented that in many tissues there is a basal level of NO being produced and that the actions of several signaling molecules may initiate increases in basal NO levels. Moreover, these temporary increases in basal NO levels exert inhibitory cellular actions, via cellular conformational changes. Findings indicate that (a) constitutive NO is responsible for a basal or 'tonal' level of NO; (b) this NO keeps particular types of cells in a state of inhibition and (c) activation of these cells occurs through disinhibition. Consequently, tissues not maintaining a basal NO level are more prone to excitatory, immune, vascular and neural influences. Under such circumstances, these tissues cannot be down-regulated to normal basal levels, thus prolonging their excitatory state. Thus, the clinical convergence of advanced ageing in the presence of a chronic, pre-morbid vascular risk factor, can, in time, contribute to an endotheliopathy involving basal NO deficit, to the degree where regional metabolic dysfunction leads to cognitive meltdown and to progressive neurodegeneration characteristic of Alzheimer's disease.
Collapse
Affiliation(s)
- J C de la Torre
- Department of Pathology, University of California, San Diego, 1363 Shinly, Suite 100, Escondido, CA 92026, USA.
| | | |
Collapse
|