Erkan M, Sousa M. Fine structural study of the spermatogenic cycle in Pitar rudis and Chamelea gallina (Mollusca, Bivalvia, Veneridae).
Tissue Cell 2002;
34:262-72. [PMID:
12176309 DOI:
10.1016/s0040-8166(02)00016-2]
[Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A comparative ultrastructural study of spermatogenesis was performed in the bivalve molluscs Pitar rudis and Chamelea gallina (Veneridae) from Turkey. Sertoli cells appeared to be rich in glycogen, lipid droplets and germ-cell phagolysosomes. Premeiotic cells exhibited nuage and a flagellum, with the Golgi complex and the rough endoplasmic reticulum originating proacrosomal vesicles during the pachytene stage. In round spermatids, the acrosomal vesicle migrated linked to the plasma membrane. In P. rudis, the acrosomal vesicle base formed a thin expansion that attached to the nuclear apex and was associated with development of the perforatorium. The cap-shaped acrosomal vesicle then differentiated into external and internal regions, and also into a small apical light region, although some cells exhibited an apical extension of the external component. On the contrary, two lateroapical light pouches developed in C. gallina. During spermiogenesis, chromatin became fibrillar and then condensed while the nucleus turned conical shaped in P. rudis or slightly curved in C. gallina. In P. rudis, the midpiece contained glycogen and four mitochondria, although five mitochondria were sometimes observed, whereas in C. gallina the midpiece contained four mitochondria. Comparison with other members of Veneroida shows a common ectaquasperm type, but novel findings in acrosome biogenesis.
Collapse