de la Rua-Domenech R, Goodchild AT, Vordermeier HM, Hewinson RG, Christiansen KH, Clifton-Hadley RS. Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests, gamma-interferon assay and other ancillary diagnostic techniques.
Res Vet Sci 2006;
81:190-210. [PMID:
16513150 DOI:
10.1016/j.rvsc.2005.11.005]
[Citation(s) in RCA: 498] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/21/2005] [Accepted: 11/22/2005] [Indexed: 11/18/2022]
Abstract
The early, preclinical stages of bovine TB can be detected in live animals by the use of tests of cellular immunity (the skin, gamma-interferon and lymphocyte transformation tests). Tests of humoral (antibody) immunity, Mycobacterium bovis PCR probes on early tissue cultures or live cattle specimens, and tests based on "electronic nose" technology have been developed more recently. The key measure of diagnostic test accuracy is the relationship between sensitivity and specificity, which determines the false-positive and false-negative proportions. None of the tests currently available for the diagnosis of bovine TB allow a perfectly accurate determination of the M. bovis infection status of cattle. Although various factors can reduce the sensitivity and specificity of the skin tests, these remain the primary ante mortem diagnostic tools for TB in cattle, providing a cost-effective and reliable means of screening entire cattle populations. Despite the inescapable limitations of existing diagnostic tests, bovine TB has been effectively eradicated from many developed countries and regions with the implementation of sound programmes of regular tuberculin skin testing and removal of reactors, coupled with slaughterhouse surveillance for undetected infections, repeat testing and culling of infected herds, cattle movement restrictions to prevent introduction of infected animals and occasional slaughter of entire herds with intractable breakdowns. This is likely to remain the mainstay of bovine TB control programmes for the foreseeable future. Additionally, newer ancillary in vitro diagnostic assays are now available to TB control programme managers to supplement the skin tests in defined circumstances according to the specific disease situation in each country or region. The strategic deployment of ancillary in vitro tests alongside the primary skin tests has enhanced the detection of M. bovis-infected cattle and reduced the number of animals slaughtered as false positives.
Collapse