1
|
Zhang Q, Bai X, Shi J, Wang X, Zhang B, Dai L, Lin T, Gao Y, Zhang Y, Zhao X. DIA proteomics identified the potential targets associated with angiogenesis in the mammary glands of dairy cows with hemorrhagic mastitis. Front Vet Sci 2022; 9:980963. [PMID: 36003411 PMCID: PMC9393364 DOI: 10.3389/fvets.2022.980963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hemorrhagic mastitis (HM) in dairy cows caused great economic losses in the dairy industry due to decreased milk production and increased costs associated with cattle management and treatment. However, the pathological and molecular mechanisms of HM are not well-understood. The present study aimed to investigate differentially expressed proteins (DEPs) associated with HM according to data-independent acquisition (DIA) proteomics. Compared to the mammary glands of healthylactating Holstein cows (Control, C group), the pathology of the HM group displayed massive alveolar infiltration of hemocytes and neutrophils, and the blood vessels, including arteriole, venules and capillaries were incomplete and damaged, with a loss of endothelial cells. DIA proteomics results showed that a total of 3,739 DEPs and 819 biological process terms were screened in the HM group. We focused on the blood, permeability of blood vessel, vascular and angiogenesis of mammary glands, and a total of 99 candidate DEPs, including 60 up- and 39 down-regulated DEPs, were obtained from the Gene Ontology (GO) and Pathway enrichment analyses. Phenotype prediction and function analysis of the DEPs revealed that three DEPs, particularly Caveolin-1(CAV1), were participated in the regulation of angiogenesis. Immunohistochemical and immunofluorescence staining showed that the CAV1 protein was present mainly in the mammary epithelial cells, vascular endothelial cells and vascular smooth muscle cells. The expression level of CAV1 mRNA and protein in the HM group was significantly down-regulated. The results will be helpful to the further understanding of the pathological and molecular mechanisms of HM in dairy cows.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
- *Correspondence: Quanwei Zhang
| | - Xu Bai
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Jun Shi
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Xueying Wang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Bohao Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Lijun Dai
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Ting Lin
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Yuan Gao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
- Xingxu Zhao
| |
Collapse
|
2
|
Almutlaq M, Alamro AA, Alamri HS, Alghamdi AA, Barhoumi T. The Effect of Local Renin Angiotensin System in the Common Types of Cancer. Front Endocrinol (Lausanne) 2021; 12:736361. [PMID: 34539580 PMCID: PMC8446618 DOI: 10.3389/fendo.2021.736361] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The Renin Angiotensin System (RAS) is a hormonal system that is responsible for blood pressure hemostasis and electrolyte balance. It is implicated in cancer hallmarks because it is expressed locally in almost all of the body's tissues. In this review, current knowledge on the effect of local RAS in the common types of cancer such as breast, lung, liver, prostate and skin cancer is summarised. The mechanisms by which RAS components could increase or decrease cancer activity are also discussed. In addition to the former, this review explores how the administration of AT1R blockers and ACE inhibitors drugs intervene with cancer therapy and contribute to the outcomes of cancer.
Collapse
Affiliation(s)
- Moudhi Almutlaq
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Moudhi Almutlaq, ; Tlili Barhoumi,
| | - Abir Abdullah Alamro
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan S. Alamri
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Medical Research Core Facility and Platforms, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Amani Ahmed Alghamdi
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Medical Research Core Facility and Platforms, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- *Correspondence: Moudhi Almutlaq, ; Tlili Barhoumi,
| |
Collapse
|