1
|
Tang L, Li Q, Xiao F, Gao Y, Zhang P, Cheng G, Wang L, Lu C, Ge M, Hu L, Xiao T, Yin Z, Yan K, Zhou W. Neurosonography: Shaping the future of neuroprotection strategies in extremely preterm infants. Heliyon 2024; 10:e31742. [PMID: 38845994 PMCID: PMC11154624 DOI: 10.1016/j.heliyon.2024.e31742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
This review aims to explore the current application of Cranial Ultrasound Screening (CUS) in the diagnosis and treatment of brain diseases in extremely preterm infants. It also discusses the potential role of emerging ultrasound-derived technologies such as Super Microvascular Structure Imaging (SMI), Shear Wave Elastography (SWE), Ultrafast Doppler Ultrasound (UfD), and 3D ventricular volume assessment and automated segmentation techniques in clinical practice. A systematic search of medical databases was conducted using the keywords "(preterm OR extremely preterm OR extremely low birth weight) AND (ultrasound OR ultrasound imaging) AND (neurodevelopment OR brain development OR brain diseases OR brain injury OR neuro*)" to identify relevant literature. The titles, abstracts, and full texts of the identified articles were carefully reviewed to determine their relevance to the research topic. CUS offers unique advantages in early screening and monitoring of brain diseases in extremely preterm infants, as it can be performed at the bedside without the need for anesthesia or special monitoring. This technique facilitates early detection and intervention of conditions such as intraventricular hemorrhage, white matter injury, hydrocephalus, and hypoxic-ischemic injury in critically ill preterm infants. Continuous refinement of the screening and follow-up processes provides reliable clinical decision-making support for healthcare professionals and parents. Emerging ultrasound technologies, such as SWE, SMI, and UfD, are being explored to provide more accurate and in-depth understanding of brain diseases in extremely preterm infants. SWE has demonstrated its effectiveness in assessing the elasticity of neonatal brain tissue, aiding in the localization and quantification of potential brain injuries. SMI can successfully identify microvascular structures in the brain, offering a new perspective on neurologic diseases. UfD provides a high-sensitivity and quantitative imaging method for the prevention and treatment of neonatal brain diseases by detecting subtle changes in red blood cell movement and accurately assessing the status and progression of brain diseases. CUS and its emerging technologies have significant applications in the diagnosis and treatment of brain diseases in extremely preterm infants. Future research aims to address current technical challenges, optimize and enhance the clinical decision-making capabilities related to brain development, and improve the prevention and treatment outcomes of brain diseases in extremely preterm infants.
Collapse
Affiliation(s)
- Lukun Tang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Kunming Medical University Affiliated Dehong Hospital, Dehong, Yunnan, China
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Qi Li
- Department of Intensive Care Medicine, The Sixth Medical Center of PLA General Hospital, China
| | - Feifan Xiao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Yanyan Gao
- Department of Ultrasound, Children's Hospital of Fudan University, China
| | - Peng Zhang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Guoqiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Laishuan Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Chunmei Lu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Department of Nursing, Children's Hospital of Fudan University, China
| | - Mengmeng Ge
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Liyuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Tiantian Xiao
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhaoqing Yin
- Kunming Medical University Affiliated Dehong Hospital, Dehong, Yunnan, China
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Kai Yan
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatology, National Health Care Commission, Shanghai, China
| |
Collapse
|
2
|
Neonatal neurosonography practices: a survey of active Society for Pediatric Radiology members. Pediatr Radiol 2023; 53:112-120. [PMID: 35879446 DOI: 10.1007/s00247-022-05442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 06/27/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND While neonatal brain US is emerging as an imaging modality with greater portability, widespread availability and relative lower cost compared to MRI, it is unknown whether US is being maximized in infants to increase sensitivity in detecting intracranial pathology related to common indications such as hemorrhage, ischemia and ventriculomegaly. OBJECTIVE To survey active members of the Society for Pediatric Radiology (SPR) regarding their utilization of various cranial US techniques and reporting practices in neonates. MATERIALS AND METHODS We distributed an online 10-question survey to SPR members to assess practice patterns of neonatal cranial US including protocol details, use of additional sonographic views, perceived utility of spectral Doppler evaluation, and germinal matrix hemorrhage and ventricular size reporting preferences. RESULTS Of the 107 institutions represented, 90% of respondents were split evenly between free-standing children's hospitals and pediatric departments attached to a general hospital. We found that most used template reporting (72/107, 67%). The anterior fontanelle approach was standard practice (107/107, 100%). We found that posterior fontanelle views (72% sometimes, rarely or never) and high-frequency linear probes to evaluate far-field structures (52% sometimes, rarely or never) were seldom used. Results revealed a range of ways to report germinal matrix hemorrhage and measure ventricular indices to assess ventricular dilatation. There was substantial intra-institutional protocol and reporting variability as well. CONCLUSION Our results demonstrate high variability in neurosonography practice and reporting among active SPR members, aside from the anterior fontanelle views, template reporting and linear high-resolution near-field evaluation. Standardization of reporting germinal matrix hemorrhage and ventricular size would help ensure a more consistent application of neonatal US in research and clinical practice.
Collapse
|
3
|
Spoto G, Amore G, Vetri L, Quatrosi G, Cafeo A, Gitto E, Nicotera AG, Di Rosa G. Cerebellum and Prematurity: A Complex Interplay Between Disruptive and Dysmaturational Events. Front Syst Neurosci 2021; 15:655164. [PMID: 34177475 PMCID: PMC8222913 DOI: 10.3389/fnsys.2021.655164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
The cerebellum plays a critical regulatory role in motor coordination, cognition, behavior, language, memory, and learning, hence overseeing a multiplicity of functions. Cerebellar development begins during early embryonic development, lasting until the first postnatal years. Particularly, the greatest increase of its volume occurs during the third trimester of pregnancy, which represents a critical period for cerebellar maturation. Preterm birth and all the related prenatal and perinatal contingencies may determine both dysmaturative and lesional events, potentially involving the developing cerebellum, and contributing to the constellation of the neuropsychiatric outcomes with several implications in setting-up clinical follow-up and early intervention.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Luigi Vetri
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Giuseppe Quatrosi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Anna Cafeo
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
4
|
Amore G, Spoto G, Ieni A, Vetri L, Quatrosi G, Di Rosa G, Nicotera AG. A Focus on the Cerebellum: From Embryogenesis to an Age-Related Clinical Perspective. Front Syst Neurosci 2021; 15:646052. [PMID: 33897383 PMCID: PMC8062874 DOI: 10.3389/fnsys.2021.646052] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The cerebellum and its functional multiplicity and heterogeneity have been objects of curiosity and interest since ancient times, giving rise to the urge to reveal its complexity. Since the first hypothesis of cerebellar mere role in motor tuning and coordination, much more has been continuously discovered about the cerebellum’s circuitry and functioning throughout centuries, leading to the currently accepted knowledge of its prominent involvement in cognitive, social, and behavioral areas. Particularly in childhood, the cerebellum may subserve several age-dependent functions, which might be compromised in several Central Nervous System pathologies. Overall, cerebellar damage may produce numerous signs and symptoms and determine a wide variety of neuropsychiatric impairments already during the evolutive age. Therefore, an early assessment in children would be desirable to address a prompt diagnosis and a proper intervention since the first months of life. Here we provide an overview of the cerebellum, retracing its morphology, histogenesis, and physiological functions, and finally outlining its involvement in typical and atypical development and the age-dependent patterns of cerebellar dysfunctions.
Collapse
Affiliation(s)
- Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonio Ieni
- Unit of Pathology, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Luigi Vetri
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Quatrosi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|