1
|
Hagenstein LD, Jenkins J, Adamson C, Dong J, Moore J, Gao J. Ultrasound normalized local variance to assess metabolic dysfunction-associated steatotic liver disease. Clin Imaging 2024; 116:110326. [PMID: 39437703 DOI: 10.1016/j.clinimag.2024.110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Increased prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) highlights a desire for screening with liver ultrasound normalized local variance (NLV). We aimed to assess variations in NLV values measured at different sampling depths and discuss common technical considerations in measuring liver NLV. METHODS We retrospectively measured liver NLVs at variable depths on ultrasound images pre-recorded in 116 participants who underwent liver magnetic resonance imaging-proton density fat fraction (MRI-PDFF) and ultrasound to screen for MASLD. Liver NLVs were measured and differences at variable depths were tested using one-way analysis of variance (ANOVA) and multiple paired comparisons using post hoc Tukey honestly significant difference (HSD), Scheffé, Bonferroni, and Holm multiple comparisons. Diagnostic performance of NLV values were analyzed by area under the receiver operating characteristic (AUROC) curve. RESULTS The NLV measured at a depth of 10 cm significantly differed from those measured near the liver capsule and at depths of 6 cm and 8 cm (p < 0.001) from the skin. There was no significant difference in NLV value in other paired groups (p > 0.05). The difference in the area under AUROCs for NLVs measured at variable depths was not significant (p > 0.05). CONCLUSIONS The best diagnostic performance of liver NLV was measured at depth of 8 cm from the skin, although NLV measured at variable depth showed similar diagnostic performance for assessing ≥ mild hepatic steatosis. The study results provide a reference that can be used in the development of standardized scanning protocols and technical considerations in measuring liver NLV.
Collapse
Affiliation(s)
| | | | | | | | - John Moore
- Rocky Vista University, Billings, MT, USA
| | - Jing Gao
- Rocky Vista University, Ivins, UT, USA; Rocky Vista University, Billings, MT, USA.
| |
Collapse
|
2
|
Chen B, Lu Q, Hu B, Sun D, Ying T. Protocol of quantitative ultrasound techniques for noninvasive assessing of hepatic steatosis after bariatric surgery. Front Surg 2024; 10:1244199. [PMID: 38239667 PMCID: PMC10794322 DOI: 10.3389/fsurg.2023.1244199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Roux-en-Y gastric bypass surgery can effectively improve steatosis, necroinflammatory activity, and hepatic fibrosis in individuals diagnosed with morbid obesity or nonalcoholic steatohepatitis (NASH). Common methods such as body mass index (BMI) to evaluate the postoperative effect of clinical bariatric surgery cannot differentiate subcutaneous fats from visceral fats and muscles. Several Quantitative ultrasound (QUS)-based approaches have been developed to quantify hepatic steatosis. QUS techniques (tissue attenuation imaging (TAI), tissue scatter distribution imaging (TSI)) from radio frequency (RF) data analysis as a means for the detection and grading of hepatic steatosis has been posited as an objective and noninvasive approach. The implementation and standardization of QUS techniques (TAI, TSI) in assessing hepatic steatosis quantitatively after bariatric surgery is of high-priority. Our study is aimed to assess hepatic steatosis with QUS techniques (TAI, TSI) in morbidly obese individuals before and after bariatric surgery, and to compare with anthropometric measurements, laboratory assessments and other imaging methods. Methods and analysis The present investigation, a self-discipline examination of navigational capacity devoid of visual cues, is designed as a single-site, forward-looking evaluation of efficacy with the imprimatur of the institutional review board. The duration of the study has been provisionally determined to span from 1 January 2023 through 31 December 2025. Our cohort shall encompass one hundred participants, who was scheduled to undergo Roux-en-Y gastric bypass (RYGB) at Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. All patients will undergo anthropometric measurements, blood-based biochemical analyses, ultrasonic examination and magnetic resonance imaging proton density fat fraction (MRI-PDFF). The primary endpoint is the analysis of evaluating the efficacy of QUS techniques assessing hepatic steatosis compared to other methods before and after bariatric surgery. Results Prior to the fomal study, we recruited 21 obese Chinese participants who received ultrasonic examination (TAI, TSI) and MRI-PDFF. AC-TAI showed moderate correlations with MRI-PDFF (adjusted r = 0.632; P < 0.05). For MRI-PDFF ≥10%, SC-TSI showed moderate correlations with MRI-PDFF (adjusted r = 0.677; P < 0.05). Conclusion Our pre-experiment results signified that using QUS techniques for postoperative evaluation of bariatric surgery is promising. QUS techniques will be signed a widespread availability, real-time functionality, and low-cost approach for assessing hepatic steatosis before and after bariatric surgery in obese individuals, thus is capable for subsequent scale-up liver fat quantification. Ethics and dissemination The present research endeavor has been bestowed with the imprimatur of the Ethics Committee of the Hospital, as indicated by its Approval Number: 2023-KY-015. In due course, upon completion of the study, we intend to disseminate our findings by publishing them in a suitable academic journal, thereby facilitating their widespread utilization. Registration The trial is duly registered with the Chinese Clinical Trial Registry, and with a unique Trial Registration Number, ChiCTR2300069892, approved on March 28, 2023.
Collapse
Affiliation(s)
- Bin Chen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qijie Lu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Sun
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Thomas M, Dighe M, Kolokythas O, Zecevic M, Wilson A, Erpelding T, Dubinsky TJ. Ultrasound Attenuation Imaging vs MRI-PDFF, Echogenicity and Liver Function for Assessing Degree of Steatosis in NAFLD and Non-NAFLD Patients. Ultrasound Q 2023; 39:188-193. [PMID: 37543732 DOI: 10.1097/ruq.0000000000000648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
ABSTRACT Nonalcoholic fatty liver disease (NAFLD) is a primary cause of parenchymal liver disease globally. There are currently several methods available to test the degree of steatosis in NAFLD patients, but all have drawbacks that limit their use.The objective of this study is to determine if a new technique, ultrasound (US) attenuation imaging (ATI), correlates with magnetic resonance proton density fat fraction imaging and hepatic echogenicity as seen on gray scale US imaging.Fifty-four patients were recruited at the University of Washington Medical Center from individuals who had already been scheduled for hepatic US or magnetic resonance imaging (MRI). All participants then underwent both hepatic MRI proton density fat fraction and US. Ultrasound images were then evaluated using ATI with 2 observers who individually determined relative grayscale echogenicity.Analysis showed positive correlation between ATI- and MRI-determined fat percentage in the case group (Spearman correlation: 0.50; P = 0.015). Furthermore, participants with NAFLD tended to have a higher ATI than controls (median: 0.70 vs 0.54 dB/cm/MHz; P < 0.001).This study demonstrates that US ATI combined with grayscale imaging is an effective way of assessing the degree of steatosis in patients with moderate to severe NAFLD.
Collapse
|
4
|
Ozturk A, Kumar V, Pierce TT, Li Q, Baikpour M, Rosado-Mendez I, Wang M, Guo P, Schoen S, Gu Y, Dayavansha S, Grajo JR, Samir AE. The Future Is Beyond Bright: The Evolving Role of Quantitative US for Fatty Liver Disease. Radiology 2023; 309:e223146. [PMID: 37934095 PMCID: PMC10695672 DOI: 10.1148/radiol.223146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common cause of morbidity and mortality. Nonfocal liver biopsy is the historical reference standard for evaluating NAFLD, but it is limited by invasiveness, high cost, and sampling error. Imaging methods are ideally situated to provide quantifiable results and rule out other anatomic diseases of the liver. MRI and US have shown great promise for the noninvasive evaluation of NAFLD. US is particularly well suited to address the population-level problem of NAFLD because it is lower-cost, more available, and more tolerable to a broader range of patients than MRI. Noninvasive US methods to evaluate liver fibrosis are widely available, and US-based tools to evaluate steatosis and inflammation are gaining traction. US techniques including shear-wave elastography, Doppler spectral imaging, attenuation coefficient, hepatorenal index, speed of sound, and backscatter-based estimation have regulatory clearance and are in clinical use. New methods based on channel and radiofrequency data analysis approaches have shown promise but are mostly experimental. This review discusses the advantages and limitations of clinically available and experimental approaches to sonographic liver tissue characterization for NAFLD diagnosis as well as future applications and strategies to overcome current limitations.
Collapse
Affiliation(s)
- Arinc Ozturk
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Viksit Kumar
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Theodore T Pierce
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Qian Li
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Masoud Baikpour
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Ivan Rosado-Mendez
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Michael Wang
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Peng Guo
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Scott Schoen
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Yuyang Gu
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Sunethra Dayavansha
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Joseph R Grajo
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Anthony E Samir
- From the Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G., S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L., A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin, Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| |
Collapse
|
5
|
Zeng KY, Bao WYG, Wang YH, Liao M, Yang J, Huang JY, Lu Q. Non-invasive evaluation of liver steatosis with imaging modalities: New techniques and applications. World J Gastroenterol 2023; 29:2534-2550. [PMID: 37213404 PMCID: PMC10198053 DOI: 10.3748/wjg.v29.i17.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
In the world, nonalcoholic fatty liver disease (NAFLD) accounts for majority of diffuse hepatic diseases. Notably, substantial liver fat accumulation can trigger and accelerate hepatic fibrosis, thus contributing to disease progression. Moreover, the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases. Therefore, early detection and quantified measurement of hepatic fat content are of great importance. Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis. However, liver biopsy has several limitations, namely, its invasiveness, sampling error, high cost and moderate intraobserver and interobserver reproducibility. Recently, various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content, including ultrasound- or magnetic resonance-based methods. These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content, which is useful for longitudinal follow-up. In this review, we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content.
Collapse
Affiliation(s)
- Ke-Yu Zeng
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wu-Yong-Ga Bao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yun-Han Wang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Min Liao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Yang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yan Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiang Lu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
6
|
Wear KA, Han A, Rubin JM, Gao J, Lavarello R, Cloutier G, Bamber J, Tuthill T. US Backscatter for Liver Fat Quantification: An AIUM-RSNA QIBA Pulse-Echo Quantitative Ultrasound Initiative. Radiology 2022; 305:526-537. [PMID: 36255312 DOI: 10.1148/radiol.220606] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is believed to affect one-third of American adults. Noninvasive methods that enable detection and monitoring of NAFLD have the potential for great public health benefits. Because of its low cost, portability, and noninvasiveness, US is an attractive alternative to both biopsy and MRI in the assessment of liver steatosis. NAFLD is qualitatively associated with enhanced B-mode US echogenicity, but visual measures of B-mode echogenicity are negatively affected by interobserver variability. Alternatively, quantitative backscatter parameters, including the hepatorenal index and backscatter coefficient, are being investigated with the goal of improving US-based characterization of NAFLD. The American Institute of Ultrasound in Medicine and Radiological Society of North America Quantitative Imaging Biomarkers Alliance are working to standardize US acquisition protocols and data analysis methods to improve the diagnostic performance of the backscatter coefficient in liver fat assessment. This review article explains the science and clinical evidence underlying backscatter for liver fat assessment. Recommendations for data collection are discussed, with the aim of minimizing potential confounding effects associated with technical and biologic variables.
Collapse
Affiliation(s)
- Keith A Wear
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Aiguo Han
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Jonathan M Rubin
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Jing Gao
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Roberto Lavarello
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Guy Cloutier
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Jeffrey Bamber
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| | - Theresa Tuthill
- From the Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, WO62, Room 2114, Silver Spring, MD 20993 (K.A.W.); Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill (A.H.); Department of Radiology, University of Michigan, Ann Arbor, Mich (J.M.R.); Ultrasound Research and Education, Rocky Vista University, Ivins, Utah (J.G.); Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Peru (R.L.); Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada (G.C.); Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Division of Radiotherapy and Imaging, Joint Department of Physics, London, UK (J.B.); and Pfizer, Cambridge, Mass (T.T.)
| |
Collapse
|
7
|
Bozic D, Podrug K, Mikolasevic I, Grgurevic I. Ultrasound Methods for the Assessment of Liver Steatosis: A Critical Appraisal. Diagnostics (Basel) 2022; 12:2287. [PMID: 36291976 PMCID: PMC9600709 DOI: 10.3390/diagnostics12102287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 08/10/2023] Open
Abstract
The prevalence of the non-alcoholic fatty liver disease has reached major proportions, being estimated to affect one-quarter of the global population. The reference techniques, which include liver biopsy and the magnetic resonance imaging proton density fat fraction, have objective practical and financial limitations to their routine use in the detection and quantification of liver steatosis. Therefore, there has been a rising necessity for the development of new inexpensive, widely applicable and reliable non-invasive diagnostic tools. The controlled attenuation parameter has been considered the point-of-care technique for the assessment of liver steatosis for a long period of time. Recently, many ultrasound (US) system manufacturers have developed proprietary software solutions for the quantification of liver steatosis. Some of these methods have already been extensively tested with very good performance results reported, while others are still under evaluation. This manuscript reviews the currently available US-based methods for diagnosing and grading liver steatosis, including their classification and performance results, with an appraisal of the importance of this armamentarium in daily clinical practice.
Collapse
Affiliation(s)
- Dorotea Bozic
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Kristian Podrug
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology and Hepatology, University Hospital Center Rijeka, Krešimirova 42, 51 000 Rijeka, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 2, 10 000 Zagreb, Croatia
| |
Collapse
|
8
|
Şendur HN, Özdemir Kalkan D, Cerit MN, Kalkan G, Şendur AB, Özhan Oktar S. Hepatic Fat Quantification With Novel Ultrasound Based Techniques: A Diagnostic Performance Study Using Magnetic Resonance Imaging Proton Density Fat Fraction as Reference Standard. Can Assoc Radiol J 2022; 74:362-369. [PMID: 36113064 DOI: 10.1177/08465371221123696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose: To assess the diagnostic performances of novel Tissue attenuation imaging (TAI) and Tissue scatter distribution imaging (TSI) tools in quantification of liver fat content using magnetic resonance imaging proton density fat fraction (MRI PDFF) as reference standard. Methods: Eighty consecutive patients with known or suspected non-alcoholic fatty liver disease (NAFLD) who volunteered to participate in the study comprised the study cohort. All patients underwent MRI PDFF scan and quantitative ultrasound (QUS) imaging using TAI and TSI tools. The cutoff values of ≥5%, ≥16.3% and ≥21.7% on MRI PDFF were used for mild, moderate and severe steatosis, respectively. Area under the Receiver operating characteristic (AUROC) curves were used to assess the diagnostic performance of TAI and TSI in detecting different grades of hepatic steatosis. Results: The AUROCs of TAI and TSI tools in detecting hepatosteatosis (MRI PDFF ≥5%), were 0.95 [95% Confidence Interval (CI): 0.91–0.99] ( P < 0.001) and 0.96 (95% CI: 0.93–0.99) ( P < 0.001), respectively. In distinguishing between different grades of steatosis, the values of 0.75, 0.86 and 0.96 dB/cm/MHz have 88%, 88% and 100% sensitivity, respectively, for TAI tool; and the values of 92.44, 96.64 and 99.45 have 90%, 92% and 91.7% sensitivity, respectively, for TSI tool. Conclusion: TAI and TSI tools accurately quantify liver fat content and can be used for the assessment and grading of hepatosteatosis in patients with known or suspected NAFLD.
Collapse
Affiliation(s)
- Halit Nahit Şendur
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | | | - Mahi Nur Cerit
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | - Gökalp Kalkan
- Medicana International Ankara Hospital, Radiology Unit, Ankara, Turkey
| | | | - Suna Özhan Oktar
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Alves VPV, Dillman JR, Tkach JA, Bennett PS, Xanthakos SA, Trout AT. Comparison of Quantitative Liver US and MRI in Patients with Liver Disease. Radiology 2022; 304:660-669. [PMID: 35608446 DOI: 10.1148/radiol.212995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Quantitative US techniques can be used to identify changes of liver disease, but data regarding their diagnostic performance and relationship to MRI measures are sparse. Purpose To define associations between quantitative US and MRI measures of the liver in children, adolescents, and young adults with liver disease and to define the predictive ability of quantitative US measures to detect abnormal liver stiffening and steatosis defined with MRI. Materials and Methods In this prospective study, consecutive patients aged 8-21 years and known to have or suspected of having liver disease and body mass index less than 35 kg/m2 underwent 1.5-T MRI and quantitative liver US during the same visit at a pediatric academic medical center between April 2018 and December 2020. Acquired US parameters included shear-wave speed (SWS) and attenuation coefficient, among others. US parameters were compared with liver MR elastography and liver MRI proton density fat fraction (PDFF). Pearson correlation, multiple logistic regression, and receiver operating characteristic curve analyses were performed to assess associations and determine the performance of US relative to that of MRI. Results A total of 44 study participants (mean age, 16 years ± 4 [SD]; age range, 8-21 years; 23 male participants) were evaluated. There was a positive correlation between US SWS and MR elastography stiffness (r = 0.73, P < .001). US attenuation was positively correlated with MRI PDFF (r = 0.45, P = .001). For the prediction of abnormal (>2.8 kPa) liver shear stiffness, SWS (1.56 m/sec [7.3 kPa] cutoff) had an area under the receiver operating characteristic curve (AUC) of 0.95 with 91% sensitivity (95% CI: 71, 99) (20 of 22 participants) and 95% specificity (95% CI: 76, 99) (20 of 21 participants). For the prediction of abnormal (>5%) liver PDFF, US attenuation (0.55 dB/cm/MHz cutoff) had an AUC of 0.75 with a sensitivity of 73% (95% CI: 39, 94) (eight of 11 participants) and a specificity of 73% (95% CI: 55, 86) (24 of 33 participants). Conclusion In children, adolescents, and young adults with known or suspected liver disease, there was moderate to high correlation between US shear-wave speed (SWS) and MR elastography-derived stiffness. US SWS predicted an abnormal liver shear stiffness with high performance. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Khanna and Alazraki in this issue.
Collapse
Affiliation(s)
- Vinicius P V Alves
- From the Department of Radiology (V.P.V.A, J.R.D., J.A.T., P.S.B., A.T.T.) and Division of Gastroenterology, Hepatology and Nutrition (S.A.X.), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH 45226; and Departments of Radiology (J.R.D., A.T.T.) and Pediatrics (S.A.X., A.T.T.), University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jonathan R Dillman
- From the Department of Radiology (V.P.V.A, J.R.D., J.A.T., P.S.B., A.T.T.) and Division of Gastroenterology, Hepatology and Nutrition (S.A.X.), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH 45226; and Departments of Radiology (J.R.D., A.T.T.) and Pediatrics (S.A.X., A.T.T.), University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jean A Tkach
- From the Department of Radiology (V.P.V.A, J.R.D., J.A.T., P.S.B., A.T.T.) and Division of Gastroenterology, Hepatology and Nutrition (S.A.X.), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH 45226; and Departments of Radiology (J.R.D., A.T.T.) and Pediatrics (S.A.X., A.T.T.), University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Paula S Bennett
- From the Department of Radiology (V.P.V.A, J.R.D., J.A.T., P.S.B., A.T.T.) and Division of Gastroenterology, Hepatology and Nutrition (S.A.X.), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH 45226; and Departments of Radiology (J.R.D., A.T.T.) and Pediatrics (S.A.X., A.T.T.), University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stavra A Xanthakos
- From the Department of Radiology (V.P.V.A, J.R.D., J.A.T., P.S.B., A.T.T.) and Division of Gastroenterology, Hepatology and Nutrition (S.A.X.), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH 45226; and Departments of Radiology (J.R.D., A.T.T.) and Pediatrics (S.A.X., A.T.T.), University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew T Trout
- From the Department of Radiology (V.P.V.A, J.R.D., J.A.T., P.S.B., A.T.T.) and Division of Gastroenterology, Hepatology and Nutrition (S.A.X.), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH 45226; and Departments of Radiology (J.R.D., A.T.T.) and Pediatrics (S.A.X., A.T.T.), University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
10
|
Piscaglia F, Stefanini B, Cantisani V. Ultrasound, the handyman serving our whole populations in the post COVID-19 pandemic. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2021; 42:576-578. [PMID: 34856626 DOI: 10.1055/a-1652-7805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
| | - Bernardo Stefanini
- Division of Internal Medicina, Hepatobility and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Vito Cantisani
- Ultrasound Unit, Policlinico Umberto I, University La Sapienza, Rome, Italy
| |
Collapse
|
11
|
Cloutier G, Destrempes F, Yu F, Tang A. Quantitative ultrasound imaging of soft biological tissues: a primer for radiologists and medical physicists. Insights Imaging 2021; 12:127. [PMID: 34499249 PMCID: PMC8429541 DOI: 10.1186/s13244-021-01071-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Quantitative ultrasound (QUS) aims at quantifying interactions between ultrasound and biological tissues. QUS techniques extract fundamental physical properties of tissues based on interactions between ultrasound waves and tissue microstructure. These techniques provide quantitative information on sub-resolution properties that are not visible on grayscale (B-mode) imaging. Quantitative data may be represented either as a global measurement or as parametric maps overlaid on B-mode images. Recently, major ultrasound manufacturers have released speed of sound, attenuation, and backscatter packages for tissue characterization and imaging. Established and emerging clinical applications are currently limited and include liver fibrosis staging, liver steatosis grading, and breast cancer characterization. On the other hand, most biological tissues have been studied using experimental QUS methods, and quantitative datasets are available in the literature. This educational review addresses the general topic of biological soft tissue characterization using QUS, with a focus on disseminating technical concepts for clinicians and specialized QUS materials for medical physicists. Advanced but simplified technical descriptions are also provided in separate subsections identified as such. To understand QUS methods, this article reviews types of ultrasound waves, basic concepts of ultrasound wave propagation, ultrasound image formation, point spread function, constructive and destructive wave interferences, radiofrequency data processing, and a summary of different imaging modes. For each major QUS technique, topics include: concept, illustrations, clinical examples, pitfalls, and future directions.
Collapse
Affiliation(s)
- Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis, Montréal, Québec, H2X 0A9, Canada.
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada.
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada.
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis, Montréal, Québec, H2X 0A9, Canada
| | - François Yu
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada
- Microbubble Theranostics Laboratory, CRCHUM, Montréal, Québec, Canada
| | - An Tang
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Laboratory of Medical Image Analysis, Montréal, CRCHUM, Canada
| |
Collapse
|