1
|
Kikuchi R, Okamoto K, Ozawa T, Shibata J, Ishihara S, Tada T. Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms. Digestion 2024; 105:419-435. [PMID: 39068926 DOI: 10.1159/000540251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestinal (GI) endoscopy. In GI endoscopy, computer-aided detection/diagnosis (CAD) systems assist endoscopists in GI neoplasm detection or differentiation of cancerous or noncancerous lesions. Several AI systems for colorectal polyps have already been applied in colonoscopy clinical practices. In esophagogastroduodenoscopy, a few CAD systems for upper GI neoplasms have been launched in Asian countries. The usefulness of these CAD systems in GI endoscopy has been gradually elucidated. SUMMARY In this review, we outline recent articles on several studies of endoscopic AI systems for GI neoplasms, focusing on esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), gastric cancer (GC), and colorectal polyps. In ESCC and EAC, computer-aided detection (CADe) systems were mainly developed, and a recent meta-analysis study showed sensitivities of 91.2% and 93.1% and specificities of 80% and 86.9%, respectively. In GC, a recent meta-analysis study on CADe systems demonstrated that their sensitivity and specificity were as high as 90%. A randomized controlled trial (RCT) also showed that the use of the CADe system reduced the miss rate. Regarding computer-aided diagnosis (CADx) systems for GC, although RCTs have not yet been conducted, most studies have demonstrated expert-level performance. In colorectal polyps, multiple RCTs have shown the usefulness of the CADe system for improving the polyp detection rate, and several CADx systems have been shown to have high accuracy in colorectal polyp differentiation. KEY MESSAGES Most analyses of endoscopic AI systems suggested that their performance was better than that of nonexpert endoscopists and equivalent to that of expert endoscopists. Thus, endoscopic AI systems may be useful for reducing the risk of overlooking lesions and improving the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Okamoto
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ozawa
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| |
Collapse
|
2
|
Horita K, Hida K, Itatani Y, Fujita H, Hidaka Y, Yamamoto G, Ito M, Obama K. Real-time detection of active bleeding in laparoscopic colectomy using artificial intelligence. Surg Endosc 2024; 38:3461-3469. [PMID: 38760565 DOI: 10.1007/s00464-024-10874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Most intraoperative adverse events (iAEs) result from surgeons' errors, and bleeding is the majority of iAEs. Recognizing active bleeding timely is important to ensure safe surgery, and artificial intelligence (AI) has great potential for detecting active bleeding and providing real-time surgical support. This study aimed to develop a real-time AI model to detect active intraoperative bleeding. METHODS We extracted 27 surgical videos from a nationwide multi-institutional surgical video database in Japan and divided them at the patient level into three sets: training (n = 21), validation (n = 3), and testing (n = 3). We subsequently extracted the bleeding scenes and labeled distinctively active bleeding and blood pooling frame by frame. We used pre-trained YOLOv7_6w and developed a model to learn both active bleeding and blood pooling. The Average Precision at an Intersection over Union threshold of 0.5 (AP.50) for active bleeding and frames per second (FPS) were quantified. In addition, we conducted two 5-point Likert scales (5 = Excellent, 4 = Good, 3 = Fair, 2 = Poor, and 1 = Fail) questionnaires about sensitivity (the sensitivity score) and number of overdetection areas (the overdetection score) to investigate the surgeons' assessment. RESULTS We annotated 34,117 images of 254 bleeding events. The AP.50 for active bleeding in the developed model was 0.574 and the FPS was 48.5. Twenty surgeons answered two questionnaires, indicating a sensitivity score of 4.92 and an overdetection score of 4.62 for the model. CONCLUSIONS We developed an AI model to detect active bleeding, achieving real-time processing speed. Our AI model can be used to provide real-time surgical support.
Collapse
Affiliation(s)
- Kenta Horita
- Department of Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Koya Hida
- Department of Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Yoshiro Itatani
- Department of Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Haruku Fujita
- Department of Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yu Hidaka
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Goshiro Yamamoto
- Division of Medical Information Technology and Administration Planning, Kyoto University, Kyoto, Japan
| | - Masaaki Ito
- Surgical Device Innovation Office, National Cancer Center Hospital East, Chiba, Japan
- Department of Colorectal Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
3
|
Xin Y, Zhang Q, Liu X, Li B, Mao T, Li X. Application of artificial intelligence in endoscopic gastrointestinal tumors. Front Oncol 2023; 13:1239788. [PMID: 38144533 PMCID: PMC10747923 DOI: 10.3389/fonc.2023.1239788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
With an increasing number of patients with gastrointestinal cancer, effective and accurate early diagnostic clinical tools are required provide better health care for patients with gastrointestinal cancer. Recent studies have shown that artificial intelligence (AI) plays an important role in the diagnosis and treatment of patients with gastrointestinal tumors, which not only improves the efficiency of early tumor screening, but also significantly improves the survival rate of patients after treatment. With the aid of efficient learning and judgment abilities of AI, endoscopists can improve the accuracy of diagnosis and treatment through endoscopy and avoid incorrect descriptions or judgments of gastrointestinal lesions. The present article provides an overview of the application status of various artificial intelligence in gastric and colorectal cancers in recent years, and the direction of future research and clinical practice is clarified from a clinical perspective to provide a comprehensive theoretical basis for AI as a promising diagnostic and therapeutic tool for gastrointestinal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Arif AA, Jiang SX, Byrne MF. Artificial intelligence in endoscopy: Overview, applications, and future directions. Saudi J Gastroenterol 2023; 29:269-277. [PMID: 37787347 PMCID: PMC10644999 DOI: 10.4103/sjg.sjg_286_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Since the emergence of artificial intelligence (AI) in medicine, endoscopy applications in gastroenterology have been at the forefront of innovations. The ever-increasing number of studies necessitates the need to organize and classify applications in a useful way. Separating AI capabilities by computer aided detection (CADe), diagnosis (CADx), and quality assessment (CADq) allows for a systematic evaluation of each application. CADe studies have shown promise in accurate detection of esophageal, gastric and colonic neoplasia as well as identifying sources of bleeding and Crohn's disease in the small bowel. While more advanced CADx applications employ optical biopsies to give further information to characterize neoplasia and grade inflammatory disease, diverse CADq applications ensure quality and increase the efficiency of procedures. Future applications show promise in advanced therapeutic modalities and integrated systems that provide multimodal capabilities. AI is set to revolutionize clinical decision making and performance of endoscopy.
Collapse
Affiliation(s)
- Arif A. Arif
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shirley X. Jiang
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael F. Byrne
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Satisfai Health, Vancouver, BC, Canada
| |
Collapse
|
5
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
6
|
Ochiai K, Ozawa T, Shibata J, Ishihara S, Tada T. Current Status of Artificial Intelligence-Based Computer-Assisted Diagnosis Systems for Gastric Cancer in Endoscopy. Diagnostics (Basel) 2022; 12:diagnostics12123153. [PMID: 36553160 PMCID: PMC9777622 DOI: 10.3390/diagnostics12123153] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is gradually being utilized in various fields as its performance has been improving with the development of deep learning methods, availability of big data, and the progression of computer processing units. In the field of medicine, AI is mainly implemented in image recognition, such as in radiographic and pathologic diagnoses. In the realm of gastrointestinal endoscopy, although AI-based computer-assisted detection/diagnosis (CAD) systems have been applied in some areas, such as colorectal polyp detection and diagnosis, so far, their implementation in real-world clinical settings is limited. The accurate detection or diagnosis of gastric cancer (GC) is one of the challenges in which performance varies greatly depending on the endoscopist's skill. The diagnosis of early GC is especially challenging, partly because early GC mimics atrophic gastritis in the background mucosa. Therefore, several CAD systems for GC are being actively developed. The development of a CAD system for GC is considered challenging because it requires a large number of GC images. In particular, early stage GC images are rarely available, partly because it is difficult to diagnose gastric cancer during the early stages. Additionally, the training image data should be of a sufficiently high quality to conduct proper CAD training. Recently, several AI systems for GC that exhibit a robust performance, owing to being trained on a large number of high-quality images, have been reported. This review outlines the current status and prospects of AI use in esophagogastroduodenoscopy (EGDS), focusing on the diagnosis of GC.
Collapse
Affiliation(s)
- Kentaro Ochiai
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsuyoshi Ozawa
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| |
Collapse
|
7
|
An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer. Cancers (Basel) 2022; 14:cancers14236000. [PMID: 36497481 PMCID: PMC9741000 DOI: 10.3390/cancers14236000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
We previously constructed a VGG-16 based artificial intelligence (AI) model (image classifier [IC]) to predict the invasion depth in early gastric cancer (EGC) using endoscopic static images. However, images cannot capture the spatio-temporal information available during real-time endoscopy-the AI trained on static images could not estimate invasion depth accurately and reliably. Thus, we constructed a video classifier [VC] using videos for real-time depth prediction in EGC. We built a VC by attaching sequential layers to the last convolutional layer of IC v2, using video clips. We computed the standard deviation (SD) of output probabilities for a video clip and the sensitivities in the manner of frame units to observe consistency. The sensitivity, specificity, and accuracy of IC v2 for static images were 82.5%, 82.9%, and 82.7%, respectively. However, for video clips, the sensitivity, specificity, and accuracy of IC v2 were 33.6%, 85.5%, and 56.6%, respectively. The VC performed better analysis of the videos, with a sensitivity of 82.3%, a specificity of 85.8%, and an accuracy of 83.7%. Furthermore, the mean SD was lower for the VC than IC v2 (0.096 vs. 0.289). The AI model developed utilizing videos can predict invasion depth in EGC more precisely and consistently than image-trained models, and is more appropriate for real-world situations.
Collapse
|
8
|
Parkash O, Siddiqui ATS, Jiwani U, Rind F, Padhani ZA, Rizvi A, Hoodbhoy Z, Das JK. Diagnostic accuracy of artificial intelligence for detecting gastrointestinal luminal pathologies: A systematic review and meta-analysis. Front Med (Lausanne) 2022; 9:1018937. [PMID: 36405592 PMCID: PMC9672666 DOI: 10.3389/fmed.2022.1018937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background Artificial Intelligence (AI) holds considerable promise for diagnostics in the field of gastroenterology. This systematic review and meta-analysis aims to assess the diagnostic accuracy of AI models compared with the gold standard of experts and histopathology for the diagnosis of various gastrointestinal (GI) luminal pathologies including polyps, neoplasms, and inflammatory bowel disease. Methods We searched PubMed, CINAHL, Wiley Cochrane Library, and Web of Science electronic databases to identify studies assessing the diagnostic performance of AI models for GI luminal pathologies. We extracted binary diagnostic accuracy data and constructed contingency tables to derive the outcomes of interest: sensitivity and specificity. We performed a meta-analysis and hierarchical summary receiver operating characteristic curves (HSROC). The risk of bias was assessed using Quality Assessment for Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Subgroup analyses were conducted based on the type of GI luminal disease, AI model, reference standard, and type of data used for analysis. This study is registered with PROSPERO (CRD42021288360). Findings We included 73 studies, of which 31 were externally validated and provided sufficient information for inclusion in the meta-analysis. The overall sensitivity of AI for detecting GI luminal pathologies was 91.9% (95% CI: 89.0–94.1) and specificity was 91.7% (95% CI: 87.4–94.7). Deep learning models (sensitivity: 89.8%, specificity: 91.9%) and ensemble methods (sensitivity: 95.4%, specificity: 90.9%) were the most commonly used models in the included studies. Majority of studies (n = 56, 76.7%) had a high risk of selection bias while 74% (n = 54) studies were low risk on reference standard and 67% (n = 49) were low risk for flow and timing bias. Interpretation The review suggests high sensitivity and specificity of AI models for the detection of GI luminal pathologies. There is a need for large, multi-center trials in both high income countries and low- and middle- income countries to assess the performance of these AI models in real clinical settings and its impact on diagnosis and prognosis. Systematic review registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=288360], identifier [CRD42021288360].
Collapse
Affiliation(s)
- Om Parkash
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Uswa Jiwani
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Fahad Rind
- Head and Neck Oncology, The Ohio State University, Columbus, OH, United States
| | - Zahra Ali Padhani
- Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan
| | - Arjumand Rizvi
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Zahra Hoodbhoy
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Jai K. Das
- Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
- *Correspondence: Jai K. Das,
| |
Collapse
|
9
|
Ortiz Zúñiga O, Fernández Esparrach MG, Daca M, Pellisé M. Artificial intelligence in gastrointestinal endoscopy - Evolution to a new era. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2022; 114:605-615. [PMID: 35770604 DOI: 10.17235/reed.2022.8961/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial intelligence (AI) systems based on machine learning have evolved in the last few years with an increasing applicability in gastrointestinal endoscopy. Thanks to AI, an image (input) can be transformed into a clinical decision (output). Although AI systems have been initially studied to improve detection (CADe) and characterization of colorectal lesions (CADx), other indications are being currently investigated as detection of blind spots, scope guidance, or delineation/measurement of lesions. The objective of these review is to summarize the current evidence on applicability of AI systems in gastrointestinal endoscopy, highlight strengths and limitations of the technology and review regulatory and ethical aspects for its general implementation in gastrointestinal endoscopy.
Collapse
Affiliation(s)
| | | | - María Daca
- Gastroenterología, Hospital Clínic Barcelona, España
| | - María Pellisé
- Gastroenterología, Hospital Clínic Barcelona, España
| |
Collapse
|
10
|
Luo D, Kuang F, Du J, Zhou M, Liu X, Luo X, Tang Y, Li B, Su S. Artificial Intelligence-Assisted Endoscopic Diagnosis of Early Upper Gastrointestinal Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:855175. [PMID: 35756602 PMCID: PMC9229174 DOI: 10.3389/fonc.2022.855175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The aim of this study was to assess the diagnostic ability of artificial intelligence (AI) in the detection of early upper gastrointestinal cancer (EUGIC) using endoscopic images. Methods Databases were searched for studies on AI-assisted diagnosis of EUGIC using endoscopic images. The pooled area under the curve (AUC), sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) with 95% confidence interval (CI) were calculated. Results Overall, 34 studies were included in our final analysis. Among the 17 image-based studies investigating early esophageal cancer (EEC) detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.98, 0.95 (95% CI, 0.95–0.96), 0.95 (95% CI, 0.94–0.95), 10.76 (95% CI, 7.33–15.79), 0.07 (95% CI, 0.04–0.11), and 173.93 (95% CI, 81.79–369.83), respectively. Among the seven patient-based studies investigating EEC detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.98, 0.94 (95% CI, 0.91–0.96), 0.90 (95% CI, 0.88–0.92), 6.14 (95% CI, 2.06–18.30), 0.07 (95% CI, 0.04–0.11), and 69.13 (95% CI, 14.73–324.45), respectively. Among the 15 image-based studies investigating early gastric cancer (EGC) detection, the pooled AUC, sensitivity, specificity, PLR, NLR, and DOR were 0.94, 0.87 (95% CI, 0.87–0.88), 0.88 (95% CI, 0.87–0.88), 7.20 (95% CI, 4.32–12.00), 0.14 (95% CI, 0.09–0.23), and 48.77 (95% CI, 24.98–95.19), respectively. Conclusions On the basis of our meta-analysis, AI exhibited high accuracy in diagnosis of EUGIC. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier PROSPERO (CRD42021270443).
Collapse
Affiliation(s)
- De Luo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fei Kuang
- Department of General Surgery, Changhai Hospital of The Second Military Medical University, Shanghai, China
| | - Juan Du
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Mengjia Zhou
- Department of Ultrasound, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Liu
- Department of Hepatobiliary Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Xinchen Luo
- Department of Gastroenterology, Zigong Third People's Hospital, Zigong, China
| | - Yong Tang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Chen HY, Ge P, Liu JY, Qu JL, Bao F, Xu CM, Chen HL, Shang D, Zhang GX. Artificial intelligence: Emerging player in the diagnosis and treatment of digestive disease. World J Gastroenterol 2022; 28:2152-2162. [PMID: 35721881 PMCID: PMC9157617 DOI: 10.3748/wjg.v28.i20.2152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/24/2021] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
Given the breakthroughs in key technologies, such as image recognition, deep learning and neural networks, artificial intelligence (AI) continues to be increasingly developed, leading to closer and deeper integration with an increasingly data-, knowledge- and brain labor-intensive medical industry. As society continues to advance and individuals become more aware of their health needs, the problems associated with the aging of the population are receiving increasing attention, and there is an urgent demand for improving medical technology, prolonging human life and enhancing health. Digestive system diseases are the most common clinical diseases and are characterized by complex clinical manifestations and a general lack of obvious symptoms in the early stage. Such diseases are very difficult to diagnose and treat. In recent years, the incidence of diseases of the digestive system has increased. As AI applications in the field of health care continue to be developed, AI has begun playing an important role in the diagnosis and treatment of diseases of the digestive system. In this paper, the application of AI in assisted diagnosis and the application and prospects of AI in malignant and benign digestive system diseases are reviewed.
Collapse
Affiliation(s)
- Hai-Yang Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Jia-Yue Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Jia-Lin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fang Bao
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Cai-Ming Xu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hai-Long Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Gui-Xin Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
12
|
Abstract
Artificial intelligence (AI) is rapidly developing in various medical fields, and there is an increase in research performed in the field of gastrointestinal (GI) endoscopy. In particular, the advent of convolutional neural network, which is a class of deep learning method, has the potential to revolutionize the field of GI endoscopy, including esophagogastroduodenoscopy (EGD), capsule endoscopy (CE), and colonoscopy. A total of 149 original articles pertaining to AI (27 articles in esophagus, 30 articles in stomach, 29 articles in CE, and 63 articles in colon) were identified in this review. The main focuses of AI in EGD are cancer detection, identifying the depth of cancer invasion, prediction of pathological diagnosis, and prediction of Helicobacter pylori infection. In the field of CE, automated detection of bleeding sites, ulcers, tumors, and various small bowel diseases is being investigated. AI in colonoscopy has advanced with several patient-based prospective studies being conducted on the automated detection and classification of colon polyps. Furthermore, research on inflammatory bowel disease has also been recently reported. Most studies of AI in the field of GI endoscopy are still in the preclinical stages because of the retrospective design using still images. Video-based prospective studies are needed to advance the field. However, AI will continue to develop and be used in daily clinical practice in the near future. In this review, we have highlighted the published literature along with providing current status and insights into the future of AI in GI endoscopy.
Collapse
Affiliation(s)
- Yutaka Okagawa
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Gastroenterology, Tonan Hospital, Sapporo, Japan
| | - Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ichiro Oda
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
13
|
Panarese A. Usefulness of artificial intelligence in early gastric cancer. Artif Intell Cancer 2022; 3:17-26. [DOI: 10.35713/aic.v3.i2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a major cancer worldwide, with high mortality and morbidity. Endoscopy, important for the early detection of GC, requires trained skills, high-quality technologies, surveillance and screening programs. Early diagnosis allows a better prognosis, through surgical or curative endoscopic therapy. Magnified endoscopy with virtual chromoendoscopy remarkably improve the detection of early gastric cancer (EGC) when endoscopy is performed by expert endoscopists. Artificial intelligence (AI) has also been introduced to GC diagnostics to increase diagnostic efficiency. AI improves the early detection of gastric lesions because it supports the non-expert and experienced endoscopist in defining the margins of the tumor and the depth of infiltration. AI increases the detection rate of EGC, reduces the rate of missing tumors, and characterizes EGCs, allowing clinicians to make the best therapeutic decision, that is, one that ensures curability. AI has had a remarkable evolution in medicine in recent years, moving from the research phase to clinical practice. In addition, the diagnosis of GC has markedly progressed. We predict that AI will allow great evolution in the diagnosis and treatment of EGC by overcoming the variability in performance that is currently a limitation of chromoendoscopy.
Collapse
Affiliation(s)
- Alba Panarese
- Department of Gastroenterology and Endoscopy, Central Hospital, Taranto 74123, Italy
| |
Collapse
|
14
|
Wang L, Chen L, Wang X, Liu K, Li T, Yu Y, Han J, Xing S, Xu J, Tian D, Seidler U, Xiao F. Development of a Convolutional Neural Network-Based Colonoscopy Image Assessment Model for Differentiating Crohn’s Disease and Ulcerative Colitis. Front Med (Lausanne) 2022; 9:789862. [PMID: 35463023 PMCID: PMC9024394 DOI: 10.3389/fmed.2022.789862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Evaluation of the endoscopic features of Crohn’s disease (CD) and ulcerative colitis (UC) is the key diagnostic approach in distinguishing these two diseases. However, making diagnostic differentiation of endoscopic images requires precise interpretation by experienced clinicians, which remains a challenge to date. Therefore, this study aimed to establish a convolutional neural network (CNN)-based model to facilitate the diagnostic classification among CD, UC, and healthy controls based on colonoscopy images. Methods A total of 15,330 eligible colonoscopy images from 217 CD patients, 279 UC patients, and 100 healthy subjects recorded in the endoscopic database of Tongji Hospital were retrospectively collected. After selecting the ResNeXt-101 network, it was trained to classify endoscopic images either as CD, UC, or normal. We assessed its performance by comparing the per-image and per-patient parameters of the classification task with that of the six clinicians of different seniority. Results In per-image analysis, ResNeXt-101 achieved an overall accuracy of 92.04% for the three-category classification task, which was higher than that of the six clinicians (90.67, 78.33, 86.08, 73.66, 58.30, and 86.21%, respectively). ResNeXt-101 also showed higher differential diagnosis accuracy compared with the best performing clinician (CD 92.39 vs. 91.70%; UC 93.35 vs. 92.39%; normal 98.35 vs. 97.26%). In per-patient analysis, the overall accuracy of the CNN model was 90.91%, compared with 93.94, 78.79, 83.33, 59.09, 56.06, and 90.91% of the clinicians, respectively. Conclusion The ResNeXt-101 model, established in our study, performed superior to most clinicians in classifying the colonoscopy images as CD, UC, or healthy subjects, suggesting its potential applications in clinical settings.
Collapse
Affiliation(s)
- Lijia Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianyuan Wang
- Wuhan United Imaging Healthcare Surgical Technology Co., Ltd., Wuhan, China
| | - Kaiyuan Liu
- Wuhan United Imaging Healthcare Surgical Technology Co., Ltd., Wuhan, China
| | - Ting Li
- Wuhan United Imaging Healthcare Surgical Technology Co., Ltd., Wuhan, China
| | - Yue Yu
- Wuhan United Imaging Healthcare Surgical Technology Co., Ltd., Wuhan, China
| | - Jian Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Xu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ursula Seidler
- Department of Gastroenterology of Hannover Medical School, Hanover, Germany
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Fang Xiao,
| |
Collapse
|
15
|
Xie F, Zhang K, Li F, Ma G, Ni Y, Zhang W, Wang J, Li Y. Diagnostic accuracy of convolutional neural network-based endoscopic image analysis in diagnosing gastric cancer and predicting its invasion depth: a systematic review and meta-analysis. Gastrointest Endosc 2022; 95:599-609.e7. [PMID: 34979114 DOI: 10.1016/j.gie.2021.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS This study aimed to evaluate the accuracy and effectiveness of the convolutional neural network (CNN) in diagnosing gastric cancer and predicting the invasion depth of gastric cancer and to compare the performance of the CNN with that of endoscopists. METHODS PubMed, Embase, Web of Science, and gray literature were searched until July 23, 2021 for studies that assessed the diagnostic accuracy of CNN-assisted examinations for gastric cancer or the invasion depth of gastric cancer. Studies meeting inclusion criteria were included in the systematic review and meta-analysis. RESULTS Seventeen studies comprising 51,446 images and 174 videos of 5539 patients were included. The pooled sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), and area under the curve (AUC) of the CNN for diagnosing gastric cancer were 89% (95% confidence interval [CI], 85-93), 93% (95% CI, 88-97), 13.4 (95% CI, 7.3-25.5), .11 (95% CI, .07-.17), and .94 (95% CI, .91-.98), respectively. The performance of the CNN in diagnosing gastric cancer was not significantly different from that of expert endoscopists (.95 vs .90, P > .05) and was better than that of overall endoscopists (experts and nonexperts) (.95 vs .87, P < .05). The pooled sensitivity, specificity, LR+, LR-, and AUC of the CNN for predicting the invasion depth of gastric cancer were 82% (95% CI, 78-85), 90% (95% CI, 82-95), 8.4 (95% CI, 4.2-16.8), .20 (95% CI, .16-.26), and .90 (95% CI, .87-.93), respectively. CONCLUSIONS The CNN is highly accurate in diagnosing gastric cancer and predicting the invasion depth of gastric cancer. The performance of the CNN in diagnosing gastric cancer is not significantly different from that of expert endoscopists. Studies of the real-time performance of the CNN for gastric cancer diagnosis are needed to confirm these findings.
Collapse
Affiliation(s)
- Fang Xie
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Keqiang Zhang
- Second Hospital of Jilin University, Changchun, Jilin, China
| | - Feng Li
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Guorong Ma
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanyuan Ni
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Wei Zhang
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Junchao Wang
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Yuewei Li
- School of Nursing, Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Oura H, Matsumura T, Fujie M, Ishikawa T, Nagashima A, Shiratori W, Tokunaga M, Kaneko T, Imai Y, Oike T, Yokoyama Y, Akizue N, Ota Y, Okimoto K, Arai M, Nakagawa Y, Inada M, Yamaguchi K, Kato J, Kato N. Development and evaluation of a double-check support system using artificial intelligence in endoscopic screening for gastric cancer. Gastric Cancer 2022; 25:392-400. [PMID: 34652556 DOI: 10.1007/s10120-021-01256-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study aimed to prevent missing gastric cancer and point out low-quality images by developing a double-check support system (DCSS) for esophagogastroduodenoscopy (EGD) still images using artificial intelligence. METHODS We extracted 12,977 still EGD images from 855 cases with cancer [821 with early gastric carcinoma (EGC) and 34 malignant lymphoma (ML)] and developed a lesion detection system using 10,994 images. The remaining images were used as a test dataset. Additional validation was performed using a new dataset containing 50 EGC and 1,200 non-GC images by comparing the interpretation of ten endoscopists (five trainees and five experts). Furthermore, we developed another system to detect low-quality images, which are not suitable for diagnosis, using 2198 images. RESULTS In the validation of 1983 images from the 124 cancer cases, the DCSS diagnosed cancer with a sensitivity of 89.2%, positive predictive value (PPV) of 93.3%, and an accuracy of 83.3%. EGC was detected in 93.2% and ML in 92.5% of cases. Comparing with the endoscopists, sensitivity was significantly higher in the DCSS, and the average diagnostic time was significantly shorter using the DCSS than that by the trainees. The sensitivity, specificity, PPV, and accuracy in detecting low-quality images were 65.8%, 93.1%, 79.6%, and 85.2% for "Blur" and 57.8%, 91.7%, 82.2%, and 78.1% for "Mucus adhesion," respectively. CONCLUSIONS The DCSS showed excellent capability in detecting lesions and pointing out low-quality images.
Collapse
Affiliation(s)
- Hirotaka Oura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Tomoaki Matsumura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan.
| | - Mai Fujie
- Department of Clinical Engineering Center, Chiba University Hospital, Chiba, Japan
| | - Tsubasa Ishikawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Ariki Nagashima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Wataru Shiratori
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Mamoru Tokunaga
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Tatsuya Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Yushi Imai
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Tsubasa Oike
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Yuya Yokoyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Naoki Akizue
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Yuki Ota
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Kenichiro Okimoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Makoto Arai
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Yuki Nakagawa
- Chiba Foundation for Health Promotion and Disease Prevention, Chiba, Japan
| | - Mari Inada
- Chiba Foundation for Health Promotion and Disease Prevention, Chiba, Japan
| | - Kazuya Yamaguchi
- Chiba Foundation for Health Promotion and Disease Prevention, Chiba, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba, 260-8670, Japan
| |
Collapse
|
17
|
Maulahela H, Annisa NG. Current advancements in application of artificial intelligence in clinical decision-making by gastroenterologists in gastrointestinal bleeding. Artif Intell Gastroenterol 2022; 3:13-20. [DOI: 10.35712/aig.v3.i1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/24/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial Intelligence (AI) is a type of intelligence that comes from machines or computer systems that mimics human cognitive function. Recently, AI has been utilized in medicine and helped clinicians make clinical decisions. In gastroenterology, AI has assisted colon polyp detection, optical biopsy, and diagnosis of Helicobacter pylori infection. AI also has a broad role in the clinical prediction and management of gastrointestinal bleeding. Machine learning can determine the clinical risk of upper and lower gastrointestinal bleeding. AI can assist the management of gastrointestinal bleeding by identifying high-risk patients who might need urgent endoscopic treatment or blood transfusion, determining bleeding stigmata during endoscopy, and predicting recurrence of gastrointestinal bleeding. The present review will discuss the role of AI in the clinical prediction and management of gastrointestinal bleeding, primarily on how it could assist gastroenterologists in their clinical decision-making compared to conventional methods. This review will also discuss challenges in implementing AI in routine practice.
Collapse
Affiliation(s)
- Hasan Maulahela
- Department of Internal Medicine, Gastroenterology Division, Faculty of Medicine University of Indonesia - Cipto Mangunkusumo General Central National Hospital, Jakarta 10430, Indonesia
| | | |
Collapse
|
18
|
Yao Z, Jin T, Mao B, Lu B, Zhang Y, Li S, Chen W. Construction and Multicenter Diagnostic Verification of Intelligent Recognition System for Endoscopic Images From Early Gastric Cancer Based on YOLO-V3 Algorithm. Front Oncol 2022; 12:815951. [PMID: 35145918 PMCID: PMC8822233 DOI: 10.3389/fonc.2022.815951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Endoscopy is an important tool for the diagnosis of early gastric cancer. Therefore, a combination of artificial intelligence and endoscopy has the ability to increase the speed and efficiency of early gastric cancer diagnosis. YOU ONLY LOOK ONCE (YOLO) is an advanced object detection depth neural network algorithm that has not been widely used in gastrointestinal image recognition. Objective We developed an artificial intelligence system herein referred to as “EGC-YOLO” for the rapid and accurate diagnosis of endoscopic images from early gastric cancer. Methods More than 40000 gastroscopic images from 1653 patients in Yixing people’s Hospital were used as the training set for the system, while endoscopic images from the other two hospitals were used as external validation test sets. The sensitivity, specificity, positive predictive value, Youden index and ROC curve were analyzed to evaluate detection efficiencies for EGC-YOLO. Results EGC-YOLO was able to diagnose early gastric cancer in the two test sets with a high superiority and efficiency. The accuracy, sensitivity, specificity and positive predictive value for Test Sets 1 and 2 were 85.15% and 86.02%, 85.36% and 83.02%, 84.41% and 92.21%, and 95.22% and 95.65%, respectively. In Test Sets 1 and 2, the corresponding Threshold-values were 0.02, 0.16 and 0.17 at the maximum of the Youden index. An increase in Threshold-values was associated with a downward trend in sensitivity and accuracy, while specificity remained relatively stable at more than 80%. Conclusions The EGC-YOLO system is superior for the efficient, accurate and rapid detection of early gastric cancer lesions. For different data sets, it is important to select the appropriate threshold-value in advance to achieve the best performance of the EGC-YOLO system.
Collapse
Affiliation(s)
- Zhendong Yao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, Yixing People’s Hospital, Yixing, China
| | - Tao Jin
- Department of Gastroenterology, Yixing People’s Hospital, Yixing, China
| | - Boneng Mao
- Department of Gastroenterology, Yixing People’s Hospital, Yixing, China
| | - Bo Lu
- Microsoft Teams Calling Meeting Device of Sharepoint Onedrive eXperience (Teams CMD SOX), Microsoft Ltd Co., Suzhou, China
| | - Yefei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sisi Li
- Department of Gastroenterology, Civil Aviation Hospital of Shanghai, Shanghai, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Weichang Chen,
| |
Collapse
|
19
|
Zhao PY, Han K, Yao RQ, Ren C, Du XH. Application Status and Prospects of Artificial Intelligence in Peptic Ulcers. Front Surg 2022; 9:894775. [PMID: 35784921 PMCID: PMC9244632 DOI: 10.3389/fsurg.2022.894775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Peptic ulcer (PU) is a common and frequently occurring disease. Although PU seriously threatens the lives and health of global residents, the applications of artificial intelligence (AI) have strongly promoted diversification and modernization in the diagnosis and treatment of PU. This minireview elaborates on the research progress of AI in the field of PU, from PU's pathogenic factor Helicobacter pylori (Hp) infection, diagnosis and differential diagnosis, to its management and complications (bleeding, obstruction, perforation and canceration). Finally, the challenges and prospects of AI application in PU are prospected and expounded. With the in-depth understanding of modern medical technology, AI remains a promising option in the management of PU patients and plays a more indispensable role. How to realize the robustness, versatility and diversity of multifunctional AI systems in PU and conduct multicenter prospective clinical research as soon as possible are the top priorities in the future.
Collapse
Affiliation(s)
- Peng-yue Zhao
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ke Han
- Department of Gastroenterology, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| | - Xiao-hui Du
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| |
Collapse
|
20
|
Yuan XL, Guo LJ, Liu W, Zeng XH, Mou Y, Bai S, Pan ZG, Zhang T, Pu WF, Wen C, Wang J, Zhou ZD, Feng J, Hu B. Artificial intelligence for detecting superficial esophageal squamous cell carcinoma under multiple endoscopic imaging modalities: A multicenter study. J Gastroenterol Hepatol 2022; 37:169-178. [PMID: 34532890 DOI: 10.1111/jgh.15689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Diagnosis of esophageal squamous cell carcinoma (ESCC) is complicated and requires substantial expertise and experience. This study aimed to develop an artificial intelligence (AI) system for detecting superficial ESCC under multiple endoscopic imaging modalities. METHODS Endoscopic images were retrospectively collected from West China Hospital, Sichuan University as a training dataset and an independent internal validation dataset. Images from other four hospitals were used as an external validation dataset. The AI system was compared with 11 experienced endoscopists. Furthermore, videos were collected to assess the performance of the AI system. RESULTS A total of 53 933 images from 2621 patients and 142 videos from 19 patients were used to develop and validate the AI system. In the internal and external validation datasets, the performance of the AI system under all or different endoscopic imaging modalities was satisfactory, with sensitivity of 92.5-99.7%, specificity of 78.5-89.0%, and area under the receiver operating characteristic curves of 0.906-0.989. The AI system achieved comparable performance with experienced endoscopists. Regarding superficial ESCC confined to the epithelium, the AI system was more sensitive than experienced endoscopists on white-light imaging (90.8% vs 82.5%, P = 0.022). Moreover, the AI system exhibited good performance in videos, with sensitivity of 89.5-100% and specificity of 73.7-89.5%. CONCLUSIONS We developed an AI system that showed comparable performance with experienced endoscopists in detecting superficial ESCC under multiple endoscopic imaging modalities and might provide valuable support for inexperienced endoscopists, despite requiring further evaluation.
Collapse
Affiliation(s)
- Xiang-Lei Yuan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin-Jie Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Liu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xian-Hui Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Bai
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Guo Pan
- Department of Gastroenterology, Huai'an First People's Hospital, Huai'an, China
| | - Tao Zhang
- Department of Gastroenterology, Nanchong Central Hospital, Nanchong, China
| | - Wen-Feng Pu
- Department of Gastroenterology, Nanchong Central Hospital, Nanchong, China
| | - Chun Wen
- Department of Gastroenterology, Cangxi People's Hospital, Guangyuan, China
| | - Jun Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zheng-Duan Zhou
- Department of Gastroenterology, Zigong Fourth People's Hospital, Zigong, China
| | - Jing Feng
- Xiamen Innovision Medical Technology Co., Ltd., Xiamen, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
22
|
Yang H, Hu B. Early gastrointestinal cancer: The application of artificial intelligence. Artif Intell Gastrointest Endosc 2021; 2:185-197. [DOI: 10.37126/aige.v2.i4.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Early gastrointestinal (GI) cancer has been the core of clinical endoscopic work. Its early detection and treatment are tightly associated with patients’ prognoses. As a novel technology, artificial intelligence has been improved and applied in the field of endoscopy. Studies on detection, diagnosis, risk, and prognosis evaluation of diseases in the GI tract have been in development, including precancerous lesions, adenoma, early GI cancers, and advanced GI cancers. In this review, research on esophagus, stomach, and colon was concluded, and associated with the process from precancerous lesions to early GI cancer, such as from Barrett’s esophagus to early esophageal cancer, from dysplasia to early gastric cancer, and from adenoma to early colonic cancer. A status quo of research on early GI cancers and artificial intelligence was provided.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
23
|
Zhou J, Hu N, Huang ZY, Song B, Wu CC, Zeng FX, Wu M. Application of artificial intelligence in gastrointestinal disease: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1188. [PMID: 34430629 PMCID: PMC8350704 DOI: 10.21037/atm-21-3001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023]
Abstract
Objective We collected evidence on the application of artificial intelligence (AI) in gastroenterology field. The review was carried out from two aspects of endoscopic types and gastrointestinal diseases, and briefly summarized the challenges and future directions in this field. Background Due to the advancement of computational power and a surge of available data, a solid foundation has been laid for the growth of AI. Specifically, varied machine learning (ML) techniques have been emerging in endoscopic image analysis. To improve the accuracy and efficiency of clinicians, AI has been widely applied to gastrointestinal endoscopy. Methods PubMed electronic database was searched using the keywords containing “AI”, “ML”, “deep learning (DL)”, “convolution neural network”, “endoscopy (such as white light endoscopy (WLE), narrow band imaging (NBI) endoscopy, magnifying endoscopy with narrow band imaging (ME-NBI), chromoendoscopy, endocytoscopy (EC), and capsule endoscopy (CE))”. Search results were assessed for relevance and then used for detailed discussion. Conclusions This review described the basic knowledge of AI, ML, and DL, and summarizes the application of AI in various endoscopes and gastrointestinal diseases. Finally, the challenges and directions of AI in clinical application were discussed. At present, the application of AI has solved some clinical problems, but more still needs to be done.
Collapse
Affiliation(s)
- Jun Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Na Hu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Cheng Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan-Xin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| |
Collapse
|
24
|
Current Status and Future Perspective of Artificial Intelligence in the Management of Peptic Ulcer Bleeding: A Review of Recent Literature. J Clin Med 2021; 10:jcm10163527. [PMID: 34441823 PMCID: PMC8397124 DOI: 10.3390/jcm10163527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
With the decreasing incidence of peptic ulcer bleeding (PUB) over the past two decades, the clinician experience of managing patients with PUB has also declined, especially for young endoscopists. A patient with PUB management requires collaborative care involving the emergency department, gastroenterologist, radiologist, and surgeon, from initial assessment to hospital discharge. The application of artificial intelligence (AI) methods has remarkably improved people's lives. In particular, AI systems have shown great potential in many areas of gastroenterology to increase human performance. Colonoscopy polyp detection or diagnosis by an AI system was recently introduced for commercial use to improve endoscopist performance. Although PUB is a longstanding health problem, these newly introduced AI technologies may soon impact endoscopists' clinical practice by improving the quality of care for these patients. To update the current status of AI application in PUB, we reviewed recent relevant literature and provided future perspectives that are required to integrate such AI tools into real-world practice.
Collapse
|
25
|
Hsiao YJ, Wen YC, Lai WY, Lin YY, Yang YP, Chien Y, Yarmishyn AA, Hwang DK, Lin TC, Chang YC, Lin TY, Chang KJ, Chiou SH, Jheng YC. Application of artificial intelligence-driven endoscopic screening and diagnosis of gastric cancer. World J Gastroenterol 2021; 27:2979-2993. [PMID: 34168402 PMCID: PMC8192292 DOI: 10.3748/wjg.v27.i22.2979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
The landscape of gastrointestinal endoscopy continues to evolve as new technologies and techniques become available. The advent of image-enhanced and magnifying endoscopies has highlighted the step toward perfecting endoscopic screening and diagnosis of gastric lesions. Simultaneously, with the development of convolutional neural network, artificial intelligence (AI) has made unprecedented breakthroughs in medical imaging, including the ongoing trials of computer-aided detection of colorectal polyps and gastrointestinal bleeding. In the past demi-decade, applications of AI systems in gastric cancer have also emerged. With AI’s efficient computational power and learning capacities, endoscopists can improve their diagnostic accuracies and avoid the missing or mischaracterization of gastric neoplastic changes. So far, several AI systems that incorporated both traditional and novel endoscopy technologies have been developed for various purposes, with most systems achieving an accuracy of more than 80%. However, their feasibility, effectiveness, and safety in clinical practice remain to be seen as there have been no clinical trials yet. Nonetheless, AI-assisted endoscopies shed light on more accurate and sensitive ways for early detection, treatment guidance and prognosis prediction of gastric lesions. This review summarizes the current status of various AI applications in gastric cancer and pinpoints directions for future research and clinical practice implementation from a clinical perspective.
Collapse
Affiliation(s)
- Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yuan-Chih Wen
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Critical Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | | | - De-Kuang Hwang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Yun-Chia Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Ting-Yi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ying-Chun Jheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Big Data Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| |
Collapse
|
26
|
Yen HH, Wu PY, Su PY, Yang CW, Chen YY, Chen MF, Lin WC, Tsai CL, Lin KP. Performance Comparison of the Deep Learning and the Human Endoscopist for Bleeding Peptic Ulcer Disease. J Med Biol Eng 2021. [DOI: 10.1007/s40846-021-00608-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Purpose
Management of peptic ulcer bleeding is clinically challenging. Accurate characterization of the bleeding during endoscopy is key for endoscopic therapy. This study aimed to assess whether a deep learning model can aid in the classification of bleeding peptic ulcer disease.
Methods
Endoscopic still images of patients (n = 1694) with peptic ulcer bleeding for the last 5 years were retrieved and reviewed. Overall, 2289 images were collected for deep learning model training, and 449 images were validated for the performance test. Two expert endoscopists classified the images into different classes based on their appearance. Four deep learning models, including Mobile Net V2, VGG16, Inception V4, and ResNet50, were proposed and pre-trained by ImageNet with the established convolutional neural network algorithm. A comparison of the endoscopists and trained deep learning model was performed to evaluate the model’s performance on a dataset of 449 testing images.
Results
The results first presented the performance comparisons of four deep learning models. The Mobile Net V2 presented the optimal performance of the proposal models. The Mobile Net V2 was chosen for further comparing the performance with the diagnostic results obtained by one senior and one novice endoscopists. The sensitivity and specificity were acceptable for the prediction of “normal” lesions in both 3-class and 4-class classifications. For the 3-class category, the sensitivity and specificity were 94.83% and 92.36%, respectively. For the 4-class category, the sensitivity and specificity were 95.40% and 92.70%, respectively. The interobserver agreement of the testing dataset of the model was moderate to substantial with the senior endoscopist. The accuracy of the determination of endoscopic therapy required and high-risk endoscopic therapy of the deep learning model was higher than that of the novice endoscopist.
Conclusions
In this study, the deep learning model performed better than inexperienced endoscopists. Further improvement of the model may aid in clinical decision-making during clinical practice, especially for trainee endoscopist.
Collapse
|
27
|
Yang H, Hu B. Application of artificial intelligence to endoscopy on common gastrointestinal benign diseases. Artif Intell Gastrointest Endosc 2021; 2:25-35. [DOI: 10.37126/aige.v2.i2.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) has been widely involved in every aspect of healthcare in the preclinical stage. In the digestive system, AI has been trained to assist auxiliary examinations including histopathology, endoscopy, ultrasonography, computerized tomography, and magnetic resonance imaging in detection, diagnosis, classification, differentiation, prognosis, and quality control. In the field of endoscopy, the application of AI, such as automatic detection, diagnosis, classification, and invasion depth, in early gastrointestinal (GI) cancers has received wide attention. There is a paucity of studies of AI application on common GI benign diseases based on endoscopy. In the review, we provide an overview of AI applications to endoscopy on common GI benign diseases including in the esophagus, stomach, intestine, and colon. It indicates that AI will gradually become an indispensable part of normal endoscopic detection and diagnosis of common GI benign diseases as clinical data, algorithms, and other related work are constantly repeated and improved.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
28
|
Hirasawa T, Ikenoyama Y, Ishioka M, Namikawa K, Horiuchi Y, Nakashima H, Fujisaki J. Current status and future perspective of artificial intelligence applications in endoscopic diagnosis and management of gastric cancer. Dig Endosc 2021; 33:263-272. [PMID: 33159692 DOI: 10.1111/den.13890] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023]
Abstract
Image recognition using artificial intelligence (AI) has progressed significantly due to innovative technologies such as machine learning and deep learning. In the field of gastric cancer (GC) management, research on AI-based diagnosis such as anatomical classification of endoscopic images, diagnosis of Helicobacter pylori infection, and detection and qualitative diagnosis of GC is being conducted, and an accuracy equivalent to that of physicians has been reported. It is expected that AI will soon be introduced in the field of endoscopic diagnosis and management of gastric cancer as a supportive tool for physicians, thus improving the quality of medical care.
Collapse
Affiliation(s)
- Toshiaki Hirasawa
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yohei Ikenoyama
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mitsuaki Ishioka
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ken Namikawa
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Horiuchi
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Junko Fujisaki
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
29
|
Suzuki H, Yoshitaka T, Yoshio T, Tada T. Artificial intelligence for cancer detection of the upper gastrointestinal tract. Dig Endosc 2021; 33:254-262. [PMID: 33222330 DOI: 10.1111/den.13897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
In recent years, artificial intelligence (AI) has been found to be useful to physicians in the field of image recognition due to three elements: deep learning (that is, CNN, convolutional neural network), a high-performance computer, and a large amount of digitized data. In the field of gastrointestinal endoscopy, Japanese endoscopists have produced the world's first achievements of CNN-based AI system for detecting gastric and esophageal cancers. This study reviews papers on CNN-based AI for gastrointestinal cancers, and discusses the future of this technology in clinical practice. Employing AI-based endoscopes would enable early cancer detection. The better diagnostic abilities of AI technology may be beneficial in early gastrointestinal cancers in which endoscopists have variable diagnostic abilities and accuracy. AI coupled with the expertise of endoscopists would increase the accuracy of endoscopic diagnosis.
Collapse
Affiliation(s)
- Hideo Suzuki
- Department of Gastroenterology, Graduate School of Institute Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tokai Yoshitaka
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshiyuki Yoshio
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,AI Medical Service Inc., Tokyo, Japan.,Tada Tomohiro Institute of Gastroenterology and Proctology, Saitama, Japan
| |
Collapse
|
30
|
Sinonquel P, Eelbode T, Bossuyt P, Maes F, Bisschops R. Artificial intelligence and its impact on quality improvement in upper and lower gastrointestinal endoscopy. Dig Endosc 2021; 33:242-253. [PMID: 33145847 DOI: 10.1111/den.13888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
Artificial intelligence (AI) and its application in medicine has grown large interest. Within gastrointestinal (GI) endoscopy, the field of colonoscopy and polyp detection is the most investigated, however, upper GI follows the lead. Since endoscopy is performed by humans, it is inherently an imperfect procedure. Computer-aided diagnosis may improve its quality by helping prevent missing lesions and supporting optical diagnosis for those detected. An entire evolution in AI systems has been established in the last decades, resulting in optimization of the diagnostic performance with lower variability and matching or even outperformance of expert endoscopists. This shows a great potential for future quality improvement of endoscopy, given the outstanding diagnostic features of AI. With this narrative review, we highlight the potential benefit of AI to improve overall quality in daily endoscopy and describe the most recent developments for characterization and diagnosis as well as the recent conditions for regulatory approval.
Collapse
Affiliation(s)
- Pieter Sinonquel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium.,Departments of, Department of, Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven, Leuven, Belgium
| | - Tom Eelbode
- Medical Imaging Research Center (MIRC), University Hospitals Leuven, Leuven, Belgium.,Department of Electrical Engineering (ESAT/PSI), KU Leuven, Leuven, Belgium
| | - Peter Bossuyt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, Imelda Hospital, Bonheiden, Belgium
| | - Frederik Maes
- Medical Imaging Research Center (MIRC), University Hospitals Leuven, Leuven, Belgium.,Department of Electrical Engineering (ESAT/PSI), KU Leuven, Leuven, Belgium
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium.,Departments of, Department of, Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Sinonquel P, Bisschops R. Striving for quality improvement: can artificial intelligence help? Best Pract Res Clin Gastroenterol 2020; 52-53:101722. [PMID: 34172249 DOI: 10.1016/j.bpg.2020.101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is of keen interest for global health development as potential support for current human shortcomings. Gastrointestinal (GI) endoscopy is an excellent substrate for AI, since it holds the genuine potential to improve quality in GI endoscopy and overall patient care by improving detection and diagnosis guiding the endoscopists in performing endoscopy to the highest quality standards. The possibility of large data acquisitioning to refine algorithms makes implementation of AI into daily practice a potential reality. With the start of a new era adopting deep learning, large amounts of data can easily be processed, resulting in better diagnostic performances. In the upper gastrointestinal tract, research currently focusses on the detection and characterization of neoplasia, including Barrett's, squamous cell and gastric carcinoma, with an increasing amount of AI studies demonstrating the potential and benefit of AI-augmented endoscopy. Deep learning applied to small bowel video capsule endoscopy also appears to enhance pathology detection and reduce capsule reading time. In the colon, multiple prospective trials including five randomized trials, showed a consistent improvement in polyp and adenoma detection rates, one of the main quality indicators in endoscopy. There are however potential additional roles for AI to assist in quality improvement of endoscopic procedures, training and therapeutic decision making. Further large-scale, multicenter validation trials are required before AI-augmented diagnostic gastrointestinal endoscopy can be integrated into our routine clinical practice.
Collapse
Affiliation(s)
- P Sinonquel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Translational Research in Gastrointestinal Diseases (TARGID), Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - R Bisschops
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Translational Research in Gastrointestinal Diseases (TARGID), Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
32
|
Jin HY, Zhang M, Hu B. Techniques to integrate artificial intelligence systems with medical information in gastroenterology. Artif Intell Gastrointest Endosc 2020; 1:19-27. [DOI: 10.37126/aige.v1.i1.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) endoscopy is the central element in contemporary gastroenterology as it provides direct evidence to guide targeted therapy. To increase the accuracy of GI endoscopy and to reduce human-related errors, artificial intelligence (AI) has been applied in GI endoscopy, which has been proved to be effective in diagnosing and treating numerous diseases. Therefore, we review current research on the efficacy of AI-assisted GI endoscopy in order to assess its functions, advantages and how the design can be improved.
Collapse
Affiliation(s)
- Hong-Yu Jin
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Man Zhang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, Endoscopy Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
33
|
Masuzaki R, Kanda T, Sasaki R, Matsumoto N, Nirei K, Ogawa M, Moriyama M. Application of artificial intelligence in hepatology: Minireview. Artif Intell Gastroenterol 2020; 1:5-11. [DOI: 10.35712/aig.v1.i1.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
With the rapid advancements in computer science, artificial intelligence (AI) has become an intrinsic part of our daily life and clinical practices. The concepts of AI, such as machine learning, deep learning, and big data, are extensively used in clinical and basic research. In this review, we searched for the articles in PubMed and summarized recent developments of AI concerning hepatology while focusing on the diagnosis and risk assessment of liver diseases. Ultrasound is widely conducted for the routine surveillance of hepatocellular carcinoma along with tumor markers. Computer-aided diagnosis is useful in the detection of tumors and characterization of space-occupying lesions. The prognosis of hepatocellular carcinoma can be estimated via AI using large-scale and high-quality training datasets. The prevalence of nonalcoholic fatty liver disease is increasing worldwide and pivotal concern in the field is who will progress and develop hepatocellular carcinoma. Most AI studies require a large dataset, including laboratory or radiological findings and outcome data. AI will be useful in reducing medical errors, supporting clinical decisions, and predicting clinical outcomes. Thus, cooperation between AI and humans is expected to improve healthcare.
Collapse
Affiliation(s)
- Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Reina Sasaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Naoki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Kazushige Nirei
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|