1
|
Hadkar VM, Mohanty C, Selvaraj CI. Biopolymeric nanocarriers in cancer therapy: unleashing the potency of bioactive anticancer compounds for enhancing drug delivery. RSC Adv 2024; 14:25149-25173. [PMID: 39139249 PMCID: PMC11317881 DOI: 10.1039/d4ra03911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Effective cancer treatment is becoming a global concern, and recent developments in nanomedicine are essential for its treatment. Cancer is a severe metabolic syndrome that affects the human population and is a significant contributing factor to deaths globally. In science, nanotechnology offers rapidly developing delivery methods for natural bioactive compounds that are becoming increasingly prominent and can be used to treat diseases in a site-specific way. Chemotherapy and radiotherapy are conventional approaches for preventing cancer progression and have adverse effects on the human body. Many chemically synthesized drugs are used as anticancer agents, but they have several side effects; hence, they are less preferred. Medicinal plants and marine microorganisms represent a vast, mostly untapped reservoir of bioactive compounds for cancer treatment. However, they have several limitations, including nonspecific targeting, weak water solubility and limited therapeutic potential. An alternative option is the use of biopolymeric nanocarriers, which can generate effective targeted treatment therapies when conjugated with natural anticancer compounds. The present review focuses on biopolymeric nanocarriers utilizing natural sources as anticancer drugs with improved tumor-targeting efficiency. This review also covers various natural anticancer compounds, the advantages and disadvantages of natural and synthetic anticancer compounds, the problems associated with natural anticancer drugs and the advantages of biopolymeric nanocarriers over synthetic nanocarriers as drug delivery agents. This review also discusses various biopolymeric nanocarriers for enhancing the controlled delivery of anticancer compounds and the future development of nanomedicines for treating cancer.
Collapse
Affiliation(s)
- Vrushali Manoj Hadkar
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chirasmita Mohanty
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Sciences and Advanced Learning (VAIAL), VIT Vellore 632014 Tamil Nadu India
| |
Collapse
|
2
|
Dos Santos GS, de Souza TL, Teixeira TR, Brandão JPC, Santana KA, Barreto LHS, Cunha SDS, Dos Santos DCMB, Caffrey CR, Pereira NS, de Freitas Santos Júnior A. Seaweeds and Corals from the Brazilian Coast: Review on Biotechnological Potential and Environmental Aspects. Molecules 2023; 28:molecules28114285. [PMID: 37298760 DOI: 10.3390/molecules28114285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Brazil has a megadiversity that includes marine species that are distributed along 800 km of shoreline. This biodiversity status holds promising biotechnological potential. Marine organisms are important sources of novel chemical species, with applications in the pharmaceutical, cosmetic, chemical, and nutraceutical fields. However, ecological pressures derived from anthropogenic actions, including the bioaccumulation of potentially toxic elements and microplastics, impact promising species. This review describes the current status of the biotechnological and environmental aspects of seaweeds and corals from the Brazilian coast, including publications from the last 5 years (from January 2018 to December 2022). The search was conducted in the main public databases (PubChem, PubMed, Science Direct, and Google Scholar) and in the Espacenet database (European Patent Office-EPO) and the Brazilian National Property Institute (INPI). Bioprospecting studies were reported for seventy-one seaweed species and fifteen corals, but few targeted the isolation of compounds. The antioxidant potential was the most investigated biological activity. Despite being potential sources of macro- and microelements, there is a literature gap regarding the presence of potentially toxic elements and other emergent contaminants, such as microplastics, in seaweeds and corals from the Brazilian coast.
Collapse
Affiliation(s)
| | - Thais Luz de Souza
- Department of Analytical Chemistry, Chemistry Institute, Federal University of Bahia, Salvador 40170-115, BA, Brazil
| | - Thaiz Rodrigues Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Keila Almeida Santana
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | | | - Samantha de Souza Cunha
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | | | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Natan Silva Pereira
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | - Aníbal de Freitas Santos Júnior
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| |
Collapse
|
3
|
Costa-Lotufo LV, Colepicolo P, Pupo MT, Palma MS. Bioprospecting macroalgae, marine and terrestrial invertebrates & their associated microbiota. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The present review aims the discussion of the impact of the bioprospection initiative developed by the projects associated to BIOprospecTA, a subprogram of the program BIOTA, supported by FAPESP. This review brings a summary of the main results produced by the projects investigating natural products (NPs) from non-plants organisms, as examples of the success of this initiative, focusing on the progresses achieved by the projects related to NPs from macroalgae, marine invertebrates, arthropods and associated microorganisms. Macroalgae are one of the most studied groups in Brazil with the isolation of many bioactive compounds including lipids, carotenoids, phycocolloids, lectins, mycosporine-like amino acids and halogenated compounds. Marine invertebrates and associated microorganisms have been more systematically studied in the last thirty years, revealing unique compounds, with potent biological activities. The venoms of Hymenopteran insects were also extensively studied, resulting in the identification of hundreds of peptides, which were used to create a chemical library that contributed for the identification of leader models for the development of antifungal, antiparasitic, and anticancer compounds. The built knowledge of Hymenopteran venoms permitted the development of an equine hyperimmune serum anti honeybee venom. Amongst the microorganisms associated with insects the bioprospecting strategy was to understand the molecular basis of intra- and interspecies interactions (Chemical Ecology), translating this knowledge to possible biotechnological applications. The results discussed here reinforce the importance of BIOprospecTA program on the development of research with highly innovative potential in Brazil.
Collapse
|
4
|
Fagundes TDSF, da Silva LRG, Brito MDF, Schmitz LSS, Rigato DB, Jimenez PC, Soares AR, Costa-Lotufo LV, Muricy G, Vasconcelos TRA, Cass QB, Valverde AL. Metabolomic fingerprinting of Brazilian marine sponges: a case study of Plakinidae species from Fernando de Noronha Archipelago. Anal Bioanal Chem 2021; 413:4301-4310. [PMID: 33963881 DOI: 10.1007/s00216-021-03385-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023]
Abstract
Marine sponges from the Plakinidae family are well known for hosting cytotoxic secondary metabolites and the Brazilian Atlantic coast and its oceanic islands have been considered as a hotspot for the discovery of new Plakinidae species. Herein, we report the chemical profile among cytotoxic extracts obtained from four species of Plakinidae, collected in Fernando de Noronha Archipelago (PE, Northeastern Brazil). Crude organic extracts of Plakinastrella microspiculifera, Plakortis angulospiculatus, Plakortis insularis, and Plakortis petrupaulensis showed strong antiproliferative effects against two different cancer cell lines (HCT-116: 86.7-100%; MCF-7: 74.9-89.5%) at 50 μg/mL, by the MTT assay. However, at a lower concentration (5 μg/mL), high variability in inhibition of cell growth was observed (HCT-116: 17.3-68.7%; MCF-7: 0.00-55.5%), even within two samples of Plakortis insularis which were collected in the west and east sides of the Archipelago. To discriminate the chemical profile, the samples were investigated by UHPLC-HRMS under positive ionization mode. The produced data was uploaded to the Global Natural Products Social Molecular Networking and organized based on spectral similarities for purposes of comparison and annotation. Compounds such as dipeptides, nucleosides and derivatives, polyketides, and thiazine alkaloids were annotated and metabolomic differences were perceived among the species. To the best of our knowledge, this is the first assessment for cytotoxic activity and chemical profiling for Plakinastrella microspiculifera, Plakortis insularis and Plakortis petrupaulensis, revealing other biotechnologically relevant members of the Plakinidae family.
Collapse
Affiliation(s)
- Thayssa da Silva F Fagundes
- Laboratório de Produtos Naturais (LAPROMAR), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-005, Brazil
| | - Larissa Ramos G da Silva
- Laboratório de Produtos Naturais (LAPROMAR), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-005, Brazil.,SEPARARE -Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Mateus de Freitas Brito
- Laboratório de Produtos Naturais (LAPROMAR), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-005, Brazil
| | - Letícia S S Schmitz
- Laboratório de Bioprospecção de Organismos Marinhos, Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, 11070-100, Brazil
| | - Dhiego B Rigato
- Laboratório de Bioprospecção de Organismos Marinhos, Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, 11070-100, Brazil
| | - Paula Christine Jimenez
- Laboratório de Bioprospecção de Organismos Marinhos, Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, 11070-100, Brazil
| | - Angélica Ribeiro Soares
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, 27965-045, Brazil
| | - Letícia V Costa-Lotufo
- Laboratório de Farmacologia Marinha, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Guilherme Muricy
- Laboratório de Porifera, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 20940-040, Brazil
| | - Thatyana Rocha A Vasconcelos
- Laboratório de Produtos Naturais (LAPROMAR), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-005, Brazil
| | - Quezia Bezerra Cass
- SEPARARE -Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alessandra Leda Valverde
- Laboratório de Produtos Naturais (LAPROMAR), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-005, Brazil.
| |
Collapse
|