1
|
Alsaleem MA, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Alrouji M, Yassen ASA, Alexiou A, Papadakis M, Batiha GES. Molecular Signaling Pathways of Quercetin in Alzheimer's Disease: A Promising Arena. Cell Mol Neurobiol 2024; 45:8. [PMID: 39719518 PMCID: PMC11668837 DOI: 10.1007/s10571-024-01526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment and memory deficit. Even with extensive research and studies, presently, there is no effective treatment for the management of AD. Besides, most of drugs used in the treatment of AD did not avert the AD neuropathology, and the disease still in a progressive status. For example, acetyl cholinesterase inhibitors are associated with many adverse effects, such as insomnia and nightmares. As well, acetylcholinesterase inhibitors augment cholinergic neurotransmission leading to the development of adverse effects related to high acetylcholine level, such as salivation, rhinorrhea, vomiting, loss of appetite, and seizure. Furthermore, tacrine has poor bioavailability and causes hepatotoxicity. These commonly used drugs do not manage the original causes of AD. For those reasons, natural products were repurposed for the treatment of AD and neurodegenerative diseases. It has been shown that phytochemicals produce neuroprotective effects against the development and progression of neurodegenerative diseases by different mechanisms, including antioxidant and anti-inflammatory effects. Quercetin (QCN) has been reported to exert an effective neuroprotective effect against AD and other neurodegenerative diseases by lessening oxidative stress. In this review, electronic databases such as PubMed, Scopus, and Web of Science were searched for possible relevant studies and article linking the effect of QCN on AD. Findings from this review highlighted that many studies highlighted different mechanistic signaling pathways regarding the neuroprotective effect of QCN in AD. Nevertheless, the precise molecular mechanism of QCN in AD was not completely clarified. Consequently, this review aims to discuss the molecular mechanism of QCN in AD.
Collapse
Affiliation(s)
- Mansour A Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir Ibn Hayyan Medical University, Kufa, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Asmaa S A Yassen
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43713, Egypt.
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- Department of Research and Development, Funogen, 11741, Athens, Greece
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Frenț OD, Stefan L, Morgovan CM, Duteanu N, Dejeu IL, Marian E, Vicaș L, Manole F. A Systematic Review: Quercetin-Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int J Mol Sci 2024; 25:12091. [PMID: 39596162 PMCID: PMC11594109 DOI: 10.3390/ijms252212091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The main goal of this systematic review on the flavonol class secondary metabolite quercetin is to evaluate and summarize the existing research on quercetin's potential health benefits, therapeutic properties, and effectiveness in disease prevention and treatment. In addition to evaluating quercetin's potential for drug development with fewer side effects and lower toxicity, this type of review attempts to collect scientific evidence addressing quercetin's roles as an antioxidant, anti-inflammatory, antibacterial, and anticancer agent. In the first part, we analyze various flavonoid compounds, focusing on their chemical structure, classification, and natural sources. We highlight their most recent biological activities as reported in the literature. Among these compounds, we pay special attention to quercetin, detailing its chemical structure, physicochemical properties, and process of biosynthesis in plants. We also present natural sources of quercetin and emphasize its health benefits, such as its antioxidant and anti-inflammatory effects. Additionally, we discuss methods to enhance its bioavailability, analyzing the latest and most effective delivery systems based on quercetin.
Collapse
Affiliation(s)
- Olimpia-Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Liana Stefan
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Claudia Mona Morgovan
- Department of Chemistry, Faculty of Informatics and Sciences, University of Oradea, No 1 University Street, 410087 Oradea, Romania
| | - Narcis Duteanu
- Faculty of Chemical Engineering, Biotechnologies, and Environmental Protection, Politehnica University of Timisoara, No. 2 Victoriei Square, 300006 Timişoara, Romania
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania
| | - Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Felicia Manole
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
3
|
Li M, Li H, Lu L, Fu J, Ao H, Han M, Guo Y, Zhang H, Wang Z, Wang X. Simple preparation and greatly improved oral bioavailability: The supersaturated drug delivery system of quercetin based on PVP K30. Drug Deliv Transl Res 2024; 14:3225-3238. [PMID: 38421545 DOI: 10.1007/s13346-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Quercetin, as a representative flavonoid, is widely present in daily diet and has been developed as a dietary supplement due to its beneficial physiological activities. However, the application of quercetin is limited due to its poor water solubility and extensive metabolism. So far, the nano-drug delivery systems designed to improve its bioavailability generally have the shortcomings of low drug loading content and difficulty in industrial production. In order to tackle these problems, quercetin supersaturated drug delivery system (QSDDS) was successfully prepared using solvent method, for which PVP K30 was employed as a crystallization and precipitation inhibitor to maintain the supersaturated state of quercetin in aqueous system. The obtained QSDDS, with a relative high drug loading content of 13%, could quickly disperse in water and form colloidal system with the mean particle size of about 200 nm, meanwhile induce the generation of supersaturated quercetin solution more than 12 h. In vivo pharmacokinetic study proved that QSDDS achieved a high absolute bioavailability of 36.05%, 10 times as that of physical quercetin suspension, which was dose-dependent with higher bioavailability at higher dose. Considering the simple preparation method, QSDDS provided a feasible strategy and a simple way to improve oral absorption of insoluble flavonoids.
Collapse
Affiliation(s)
- Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Haowen Li
- PK-ADME, Pharmaron Beijing, Beijing E-Town, 100176, China
| | - Likang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Hongda Zhang
- Jiangsu Kanion Parmaceutical Co. Ltd, Jiangsu, Lianyungang, 222001, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture and Kanion Pharmaceutical Co. Ltd., Jiangsu, Lianyungang, 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Parmaceutical Co. Ltd, Jiangsu, Lianyungang, 222001, China.
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture and Kanion Pharmaceutical Co. Ltd., Jiangsu, Lianyungang, 222001, China.
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
4
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
5
|
Kuncahyo I, Indrayati A, Choiri S. Rational Design and Development of a Soluble Mesoporous Carrier for the Solidification of a Preconcentrated Self-Nanoemulsion Formulation. ACS OMEGA 2023; 8:38676-38689. [PMID: 37867712 PMCID: PMC10586445 DOI: 10.1021/acsomega.3c05948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
The solidification of self-preconcentrated nanoemulsion without changes in nanodroplet formation gains particular consideration due to the interaction between solidified carriers. This work aimed to develop mannitol mesoporous as a soluble carrier for supersaturated self-nanoemulsion (SSNE) using a design of experiment (DoE) approach. The mesoporous carrier was prepared by a spray-drying technique. The type of templating agent (TA) used to form a porous system, the amount of TA, and solid loading in the spray-drying process were studied. Several characterizations were performed for mannitol mesoporous formation, namely, powder X-ray diffraction, thermal analysis, scanning electron microscopy, and surface area analyzer. Solidification of SSNE incorporated into the mesoporous mannitol was carried out, followed by compaction behavior, flowability, and nanodroplet formation. The results revealed several process parameters for preparing the mesoporous mannitol, notably TA, which gained more significant consideration. Solid loading in the mesoporous preparation system reduced the surface area and pore size and did not affect solid SSNE flowability. The amount of TA increased the pore size and volume dramatically as well as the compactibility and flowability. Ammonium carbonate was the preferable TA for preparing the mesoporous carrier, particularly for the nanodroplet formulation process. In addition, synergistic and antagonistic interactions between factors were also observed. The optimized mesoporous carrier was applied for solidification, and there was no difference between SSNE and solid SSNE in the performance of nanodroplet formation.
Collapse
Affiliation(s)
- Ilham Kuncahyo
- Faculty
of Pharmacy, Setia Budi University, Mojosongo, Surakarta 57127, Indonesia
| | - Ana Indrayati
- Faculty
of Pharmacy, Setia Budi University, Mojosongo, Surakarta 57127, Indonesia
| | - Syaiful Choiri
- Pharmaceutical
Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta 57126, Indonesia
| |
Collapse
|
6
|
Attar ES, Chaudhari VH, Deokar CG, Dyawanapelly S, Devarajan PV. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 2023; 48:495-514. [PMID: 37523008 DOI: 10.1007/s13318-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Vanashree H Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chaitanya G Deokar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
7
|
Ren X, Ren J, Li Y, Yuan S, Wang G. Preparation of caffeic acid grafted chitosan self-assembled micelles to enhance oral bioavailability and antibacterial activity of quercetin. Front Vet Sci 2023; 10:1218025. [PMID: 37476826 PMCID: PMC10354432 DOI: 10.3389/fvets.2023.1218025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Quercetin (QR) is a naturally occurring flavonoid organic compound that has poor solubility in water and highly unstable in alkaline conditions, resulting in limited absorption in poultry. Consequently, in our experiment, QR was employed as a model compound, encapsulated within the caffeic acid graft chitosan copolymer (CA-g-CS) self-assembled micelles to enhance its solubility, stability and exhibit a synergistic antibacterial effect. The optimization of the formula was carried out using a combination of single-factor experimentation and the response surface method. The in vitro release rate and stability of CA-g-CS-loaded QR micelles (CA-g-CS/QR) in various pH media were studied and the pharmacokinetics in white feather broiler chickens was evaluated in vivo. Additionally, the antibacterial activity was investigated using Escherichia coliCMCC44102 and Escherichia coli of chicken origin as the test strain. The results showed the optimized formula for the self-assembled micelles were 4 mL water, 0.02 mg/mL graft copolymer, and 1 mg QR, stirring at room temperature. The encapsulation efficiency was 72.09%. The resulting CA-g-CS/QR was uniform in size with an average diameter of 375.6 ± 5.9 nm. The release pattern was consistent with the Ritger-Peppas model. CA-g-CS/QR also significantly improved the stability of QR in alkaline condition. The relative bioavailability of CA-g-CS/QR was found to be 1.67-fold that of the reference drug, indicating a substantial increase in the absorption of QR in the broiler. Compared to the original drug, the antibacterial activity of CA-g-CS/QR was significantly enhanced, as evidenced by a reduction of half in the MIC and MBC values. These results suggest that CA-g-CS/QR improves the bioavailability and antibacterial activity of QR, making it a promising candidate for clinical use.
Collapse
Affiliation(s)
- Xin Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Juan Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Yipeng Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Sikun Yuan
- Baoding Institute for Food and Drug Control, Baoding, Hebei, China
| | - Gengnan Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
8
|
Mirzaeei S, Tahmasebi N, Islambulchilar Z. Optimization of a Self-microemulsifying Drug Delivery System for Oral Administration of the Lipophilic Drug, Resveratrol: Enhanced Intestinal Permeability in Rat. Adv Pharm Bull 2023; 13:521-531. [PMID: 37646050 PMCID: PMC10460816 DOI: 10.34172/apb.2023.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/12/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose This study aimed to formulate Resveratrol, a practically water-insoluble antioxidant in a self-microemulsifying drug delivery system (SMEDDS) to improve the solubility, release rate, and intestinal permeability of the drug. Methods The suitable oil, surfactant, and co-surfactant were chosen according to the drug solubility study. Utilizing the design of experiment (DoE) method, the pseudo-ternary phase diagram was plotted based on the droplet size. In vitro dissolution study and the single-pass intestinal perfusion were performed for the investigation of in vitro and in-situ permeability for drugs formulated as SMEDDS in rat intestine using High-Performance Liquid Chromatography. Results Castor oil, Cremophor® RH60, and PEG 1500 were selected as oil, surfactant, and co-surfactant. According to the pseudo-ternary phase diagram, nine formulations developed microemulsions with sizes ranging between 145-967 nm. Formulations passed the centrifuge and freeze-thaw stability tests. The optimum formulation possessed an almost 2.5-fold higher cumulative percentage of in vitro released resveratrol, in comparison to resveratrol aqueous suspension within 120 minutes. The results of the in-situ permeability study suggested a 2.6-fold higher intestinal permeability for optimum formulation than that of the resveratrol suspension. Conclusion SMEDDS can be considered suitable for the oral delivery of resveratrol according to the observed increased intestinal permeability, which could consequently enhance the bioavailability and therapeutic efficacy of the drug.
Collapse
Affiliation(s)
- Shahla Mirzaeei
- Nano Drug Delivery Research Centre, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Centre, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Tahmasebi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ziba Islambulchilar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Gausuzzaman SAL, Saha M, Dip SJ, Alam S, Kumar A, Das H, Sharker SM, Rashid MA, Kazi M, Reza HM. A QbD Approach to Design and to Optimize the Self-Emulsifying Resveratrol-Phospholipid Complex to Enhance Drug Bioavailability through Lymphatic Transport. Polymers (Basel) 2022; 14:polym14153220. [PMID: 35956734 PMCID: PMC9371077 DOI: 10.3390/polym14153220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: Despite having profound therapeutic value, the clinical application of resveratrol is restrained due to its <1% bioavailability, arising from the extensive fast-pass effect along with enterohepatic recirculation. This study aimed to develop a self-emulsifying formulation capable of increasing the bioavailability of resveratrol via lymphatic transport. Methods: The resveratrol−phospholipid complex (RPC) was formed by the solvent evaporation method and characterized by FTIR, DSC, and XRD analyses. The RPC-loaded self-emulsifying drug delivery system (SEDDS) was designed, developed, and optimized using the QbD approach with an emphasis on resveratrol transport through the intestinal lymphatic pathway. The in vivo pharmacokinetic study was investigated in male Wister Albino rats. Results: The FTIR, DSC, and XRD analyses confirmed the RPC formation. The obtained design space provided robustness of prediction within the 95% prediction interval to meet the CQA specifications. An optimal formulation (desirability value of 7.24) provided Grade-A self-emulsion and exhibited a 48-fold bioavailability enhancement compared to the pure resveratrol. The cycloheximide-induced chylomicron flow blocking approach demonstrated that 91.14% of the systemically available resveratrol was transported through the intestinal lymphatic route. Conclusions: This study suggests that an optimal self-emulsifying formulation can significantly increase the bioavailability of resveratrol through lymphatic transport to achieve the desired pharmacological effects.
Collapse
Affiliation(s)
| | - Mithun Saha
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shahid Jaman Dip
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shaiful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Arup Kumar
- Materials Science Division, Atomic Energy Centre, 4 Kazi Nazrul Islam Avenue, Shahbagh, Dhaka 1000, Bangladesh
| | - Harinarayan Das
- Materials Science Division, Atomic Energy Centre, 4 Kazi Nazrul Islam Avenue, Shahbagh, Dhaka 1000, Bangladesh
| | - Shazid Md. Sharker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
- Pharmacy Discipline, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (M.K.); (H.M.R.); Tel.: +966-114677372 (M.K.); +880-255668200 (ext. 1954) (H.M.R.); Fax: +966-114676295 (M.K.); +880-255668202 (H.M.R.)
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
- Correspondence: (M.K.); (H.M.R.); Tel.: +966-114677372 (M.K.); +880-255668200 (ext. 1954) (H.M.R.); Fax: +966-114676295 (M.K.); +880-255668202 (H.M.R.)
| |
Collapse
|
10
|
Jiang Y, Zang K, Sun J, Zeng XA, Li H, Brennan C, Huang M, Xu L. Preparation of modified Jiuzao glutelin isolate with carboxymethyl chitosan by ultrasound-stirring assisted Maillard reaction and its protective effect of loading resveratrol/quercetin in nano-emulsion. ULTRASONICS SONOCHEMISTRY 2022; 88:106094. [PMID: 35868209 PMCID: PMC9305625 DOI: 10.1016/j.ultsonch.2022.106094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 05/21/2023]
Abstract
Jiuzao glutelin isolate (JGI) was reported to possess interface and functional properties. To enhance the stability and properties of JGI, conjugation between JGI and carboxymethyl chitosan (CTS) through ultrasound-stirring assisted Maillard reaction (UTSA-MR) was investigated and optimized. The changes of molecular distribution, secondary structure, morphology, and amino acid composition of JGI were detected after conjugation with CTS. The solubility, foaming property and stability, viscosity, and thermal stability of four conjugates (CTS-JGI, with weight ratios of 0.5:1, 1:1, 2:1, and 4:1) were significantly increased compared to native JGI. Under the optimal glycation, the conjugate (CTS/JGI, 2:1, w/w; CTS-JGI-2) exhibited the best emulsifying ability and stability against NaCl solution, in vitro antioxidant activity, and cholesterol-lowering ability. CTS-JGI-2 stabilized oil-in-water nano-emulsion improved resveratrol (RES) and quercetin (QUE) encapsulation efficiency (80.96% for RES and 93.13% for QUE) and stability during the simulated digestion process (73.23% for RES and 77.94% for QUE) due to the connection through hydrogen bonds, pi-anion, pi-sigma, and donors between CTS-JGI and RES/QUE. Taken together, the modification of JGI by conjugating with CTS through UTSA-MR could be an excellent method to improve the functional properties of JGI. CTS-JGI-2 is a potential conjugate with functions that can be used to encapsulate functional substances in the stabilized nano-emulsion.
Collapse
Affiliation(s)
- Yunsong Jiang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China; School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Kai Zang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Jinyuan Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | | | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Ling Xu
- Technology Center of Bandaojing Co. Ltd., Zibo, Shandong 256300, People's Republic of China
| |
Collapse
|
11
|
de Oliveira MC, Bruschi ML. Self-Emulsifying Systems for Delivery of Bioactive Compounds from Natural Origin. AAPS PharmSciTech 2022; 23:134. [PMID: 35534702 DOI: 10.1208/s12249-022-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
Nature has been used as therapeutic resources in the treatment of diseases for many years. However, some natural compounds have poor water solubility. Therefore, physicochemical strategies and technologies are necessary for development of systems for carrying these substances. The self-emulsifying drug delivery systems (SEDDS) have been used as carriers of hydrophobic compounds in order to increase the solubility and absorption, improving their bioavailability. SEDDS are constituted with a mixture of oils and surfactants which, when come into contact with an aqueous medium under mild agitation, can form emulsions. In the last years, a wide variety of self-emulsifying formulations containing bioactive compounds from natural origin has been developed. This review provides a comprehensive overview of the main excipients and natural bioactive compounds composing SEDDS. In addition, applications, new technologies and innovation are reviewed as well. Examples of self-emulsifying formulations administered in different sites are also considered for a better understanding of the use of this strategy to modify the delivery of compounds from natural origin.
Collapse
|
12
|
Fabrication and In Vitro/Vivo Evaluation of Drug Nanocrystals Self-Stabilized Pickering Emulsion for Oral Delivery of Quercetin. Pharmaceutics 2022; 14:pharmaceutics14050897. [PMID: 35631483 PMCID: PMC9145886 DOI: 10.3390/pharmaceutics14050897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to develop a new drug nanocrystals self-stabilized Pickering emulsion (NSSPE) for improving oral bioavailability of quercetin (QT). Quercetin nanocrystal (QT–NC) was fabricated by high pressure homogenization method, and QT–NSSPE was then prepared by ultrasound method with QT–NC as solid particle stabilizer and optimized by Box-Behnken design. The optimized QT–NSSPE was characterized by fluorescence microscope (FM), scanning electron micrograph (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The stability, in vitro release, and in vivo oral bioavailability of QT–NSSPE were also investigated. Results showed that the droplets of QT–NSSPE with the size of 10.29 ± 0.44 μm exhibited a core-shell structure consisting of a core of oil and a shell of QT–NC. QT–NSSPE has shown a great stability in droplets shape, size, creaming index, zeta potential, and QT content during 30 days storage at 4, 25, and 40 °C. In vitro release studies showed that QT–NSSPE performed a better dissolution behavior (65.88% within 24 h) as compared to QT–NC (50.71%) and QT coarse powder (20.15%). After oral administration, the AUC0–t of QT–NSSPE was increased by 2.76-times and 1.38 times compared with QT coarse powder and QT–NC. It could be concluded that NSSPE is a promising oral delivery system for improving the oral bioavailability of QT.
Collapse
|
13
|
Ainurofiq A, Hidayat Y, Lestari EYP, Kumalasari MMW, Choiri S. Resveratrol Nanocrystal Incorporated into Mesoporous Material: Rational Design and Screening through Quality-by-Design Approach. NANOMATERIALS 2022; 12:nano12020214. [PMID: 35055241 PMCID: PMC8779882 DOI: 10.3390/nano12020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
Bioflavonoids from grape seeds feature powerful antioxidant and immunostimulant activities, but they present problems related to solubility and bioavailability. Nanocrystal (NC) incorporated into a mesoporous carrier is a promising strategy to address these issues. However, the preparation of this formulation involves the selection of factors affecting its critical quality attributes. Hence, this study aimed to develop an NC formulation incorporating resveratrol into a soluble mesoporous carrier based on rational screening design using a systematic and continuous development process, the quality-by-design paradigm. A mesoporous soluble carrier was prepared by spray-drying mannitol and ammonium carbonate. The NC was obtained by introducing the evaporated solvent containing a drug/polymer/surfactant and mesoporous carrier to the medium. A 26-2 fractional factorial design (FFD) approach was carried out in the screening process to understand the main effect factors. The type and concentration of polymer and surfactant, resveratrol loading, and solvent were determined on the NC characteristics. The results indicated that drug loading, particle size, and solubility were mainly affected by RSV loading, PEG concentration, and Kolliphor EL concentration. The polymer contributed dominantly to reducing the particle size and enhancing solubility in this screening design. The presence of surfactants in this system made it possible to prolong the supersaturation process. According to the 26-2 FFD, the factors selected to be further developed using a statistical technique according to the quality-by design-approach, Box Behnken Design, were Kolliphor EL, PEG400, and RSV loading.
Collapse
Affiliation(s)
- Ahmad Ainurofiq
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta 57126, Indonesia;
| | - Yuniawan Hidayat
- Department of Chemistry, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta 57126, Indonesia;
| | - Eva Y. P. Lestari
- Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta 57126, Indonesia; (E.Y.P.L.); (M.M.W.K.)
| | - Mayasri M. W. Kumalasari
- Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta 57126, Indonesia; (E.Y.P.L.); (M.M.W.K.)
| | - Syaiful Choiri
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta 57126, Indonesia;
- Correspondence:
| |
Collapse
|
14
|
Zhang N, Zhang C, Liu J, Fan C, Yin J, Wu T. An oral hydrogel carrier for delivering resveratrol into intestine-specific target released with high encapsulation efficiency and loading capacity based on structure-selected alginate and pectin. Food Funct 2022; 13:12051-12066. [DOI: 10.1039/d2fo01889f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Resveratrol (RES) has many beneficial effects on the human body, but it is always unstable, resulting in low oral bioavailability, especially in the gastrointestinal tract.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Chuanbo Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jiaming Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Chaozhong Fan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jinjin Yin
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| |
Collapse
|
15
|
Yang Z, McClements DJ, Peng X, Qiu C, Long J, Zhao J, Xu Z, Meng M, Chen L, Jin Z. Co-encapsulation of quercetin and resveratrol in zein/carboxymethyl cellulose nanoparticles: characterization, stability and in vitro digestion. Food Funct 2022; 13:11652-11663. [DOI: 10.1039/d2fo02718f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formation and investigation of zein/carboxymethyl cellulose composite nanoparticles to co-deliver quercetin and resveratrol.
Collapse
Affiliation(s)
- Zhongyu Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan, 528436, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan, 528436, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
16
|
Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients 2021; 13:nu13093095. [PMID: 34578972 PMCID: PMC8470508 DOI: 10.3390/nu13093095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Stilbenoids are interesting natural compounds with pleiotropic in vitro and in vivo activity. Their well-documented biological properties include anti-inflammatory effects, anticancer effects, effects on longevity, and many others. Therefore, they are nowadays commonly found in foods and dietary supplements, and used as a part of treatment strategy in various types of diseases. Bioactivity of stilbenoids strongly depends on different types of factors such as dosage, food composition, and synergistic effects with other plant secondary metabolites such as polyphenols or vitamins. In this review, we summarize the existing in vitro, in vivo, and clinical data from published studies addressing the optimization of bioavailability of stilbenoids. Stilbenoids face low bioavailability due to their chemical structure. This can be improved by the use of novel drug delivery systems or enhancers, which are discussed in this review. Current in vitro and in vivo evidence suggests that both approaches are very promising and increase the absorption of the original substance by several times. However, data from more clinical trials are required.
Collapse
|
17
|
Ahmed OAA, El-Bassossy HM, El-Sayed HM, El-Hay SSA. Rp-HPLC Determination of Quercetin in a Novel D-α-Tocopherol Polyethylene Glycol 1000 Succinate Based SNEDDS Formulation: Pharmacokinetics in Rat Plasma. Molecules 2021; 26:1435. [PMID: 33800848 PMCID: PMC7961457 DOI: 10.3390/molecules26051435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Despite its proven efficacy in diverse metabolic disorders, quercetin (QU) for clinical use is still limited because of its low bioavailability. D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) is approved as a safe pharmaceutical adjuvant with marked antioxidant and anti-inflammatory activities. In the current study, several QU-loaded self-nanoemulsifying drug delivery systems (SNEDDS) were investigated to improve QU bioavailability. A reversed phase high performance liquid chromatography (RP-HPLC) method was developed, for the first time, as a simple and sensitive technique for pharmacokinetic studies of QU in the presence of TPGS SNEDDS formula in rat plasma. The analyses were performed on a Xterra C18 column (4.6 × 100 mm, 5 µm) and UV detection at 280 nm. The analytes were separated by a gradient system of methanol and phosphate buffer of pH 3. The developed RP-HPLC method showed low limit of detection (LODs) of 7.65 and 22.09 ng/mL and LOQs of 23.19 and 66.96 ng/mL for QU and TPGS, respectively, which allowed their determination in real rat plasma samples. The method was linear over a wide range, (30-10,000) and (100-10,000) ng/mL for QU and TPGS, respectively. The selected SNEDDS formula, containing 50% w/w TPGS, 30% polyethylene glycol 200 (PEG 200), and 20% w/w pumpkin seed oil (PSO), showed a globule size of 320 nm and -28.6 mV zeta potential. Results of the pharmacokinetic studies showed 149.8% improvement in bioavailability of QU in SNEDDS relative to its suspension. The developed HPLC method proved to be simple and sensitive for QU and TPGS simultaneous determination in rat plasma after oral administration of the new SNEDDS formula.
Collapse
Affiliation(s)
- Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hany M. El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Heba M. El-Sayed
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-S.); (S.S.A.E.-H.)
| | - Soad S. Abd El-Hay
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-S.); (S.S.A.E.-H.)
| |
Collapse
|