1
|
Fatima S, Mohapatra L, Mishra D, Tripathi AS, Khan A. Nipecotic Acid Ameliorates Letrozole Induced Poly Cystic Ovarian Syndrome in Female Virgin Wistar Rats by Modulating Hypothalamic-Pituitary-Gonadal (HPG) Axis Regulated by GABA. Reprod Sci 2025:10.1007/s43032-024-01771-w. [PMID: 39794617 DOI: 10.1007/s43032-024-01771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
PCOS is a common endocrine disorder in women particularly in their reproductive age. GABA has been implicated in the pathogenesis of PCOS through its central role in the hypothalamus. Hence, in this study we investigated the effect of Nipecotic acid (NPA) in Letrozole induced PCOS in female Wistar rats as NPA has been proven as a GABA uptake inhibitor. In this study 30 female Wistar rats were divided into 5 groups each group containing 6 animals and treated as follows-Healthy control: Vehicle, 0.5% carboxymethylcellulose (CMC); Diseased control: Letrozole 1 mg/kg orally in 0.5% CMC; Test group-1: Letrozole + NPA (2.5 mg/kg i.p.); Test group-2: Letrozole + NPA (5 mg/kg i.p.) and Standard group: Letrozole + Clomiphene citrate (1 mg/kg in 0.5% CMC orally). Body weight, feed intake, water intake and vaginal smear was recorded on daily basis till the completion of the treatment tenure, whereas serum oestrogen, testosterone and GABA; ovary and uterus histopathology; lipid profile; OGTT; GsH, MDA and TNF-alpha in ovary tissue were estimated in the end of the treatment tenure. NPA treated groups demonstrated an improvement in the irregularities of the oestrous cycle with respect to PCOS control group. Further, NPA at both doses significantly (p < 0.001) reduced oxidative stress and inflammation in the ovary. It significantly (p < 0.001) reduced the serum testosterone and significantly (p < 0.001) elevated the serum oestrogen level. Histopathological reports depicted NPA reduced follicular cysts and promoted ovulation. These results emphasize the possibility of NPA as a treatment option for PCOS related reproductive and metabolic disorders, addressing the unmet need for effective PCOS management.
Collapse
Affiliation(s)
- Samreen Fatima
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, India
| | - Lucy Mohapatra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, India.
| | - Deepak Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, India
| | - Alok S Tripathi
- Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| | - Anwar Khan
- Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Ahmed HS. The Multifaceted Role of L-Type Amino Acid Transporter 1 at the Blood-Brain Barrier: Structural Implications and Therapeutic Potential. Mol Neurobiol 2024:10.1007/s12035-024-04506-9. [PMID: 39325101 DOI: 10.1007/s12035-024-04506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
L-type amino acid transporter 1 (LAT1) is integral to the transport of large neutral amino acids across the blood-brain barrier (BBB), playing a crucial role in brain homeostasis and the delivery of therapeutic agents. This review explores the multifaceted role of LAT1 in neurological disorders, including its structural and functional aspects at the BBB. Studies using advanced BBB models, such as induced pluripotent stem cell (iPSC)-derived systems and quantitative proteomic analyses, have demonstrated LAT1's significant impact on drug permeability and transport efficiency. In Alzheimer's disease, LAT1-mediated delivery of anti-inflammatory and neuroprotective agents shows promise in overcoming BBB limitations. In Parkinson's disease, LAT1's role in transporting L-DOPA and other therapeutic agents highlights its potential in enhancing treatment efficacy. In phenylketonuria, studies have revealed polymorphisms and genetic variations of LAT1, which could be correlated to disease severity. Prodrugs of valproic acid, pregabalin, and gabapentin help use LAT1-mediated transport to increase the therapeutic activity and bioavailability of the prodrug in the brain. LAT1 has also been studied in neurodevelopment disorders like autism spectrum disorders and Rett syndrome, along with neuropsychiatric implications in depression. Its implications in neuro-oncology, especially in transporting therapeutic agents into cancer cells, show immense future potential. Phenotypes of LAT1 have also shown variations in the general population affecting their ability to respond to painkillers and anti-inflammatory drugs. Furthermore, LAT1-targeted approaches, such as functionalized nanoparticles and prodrugs, show promise in overcoming chemoresistance and enhancing drug delivery to the brain. The ongoing exploration of LAT1's structural characteristics and therapeutic applications reiterates its critical role in advancing treatments for neurological disorders.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
3
|
Dhanawat M, Garima, Wilson K, Gupta S, Chalotra R, Gupta N. Convection-enhanced Diffusion: A Novel Tactics to Crack the BBB. Curr Drug Deliv 2024; 21:1515-1528. [PMID: 38275045 DOI: 10.2174/0115672018266501231207095127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Although the brain is very accessible to nutrition and oxygen, it can be difficult to deliver medications to malignant brain tumours. To get around some of these issues and enable the use of therapeutic pharmacological substances that wouldn't typically cross the blood-brain barrier (BBB), convection-enhanced delivery (CED) has been developed. It is a cutting-edge strategy that gets beyond the blood-brain barrier and enables targeted drug administration to treat different neurological conditions such as brain tumours, Parkinson's disease, and epilepsy. Utilizing pressure gradients to spread the medicine across the target area is the main idea behind this diffusion mechanism. Through one to several catheters positioned stereotactically directly within the tumour mass, around the tumour, or in the cavity created by the resection, drugs are given. This method can be used in a variety of drug classes, including traditional chemotherapeutics and cutting-edge investigational targeted medications by using positive-pressure techniques. The drug delivery volume must be optimized for an effective infusion while minimizing backflow, which causes side effects and lowers therapeutic efficacy. Therefore, this technique provides a promising approach for treating disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Meenakshi Dhanawat
- Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Garima
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Kashish Wilson
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Sumeet Gupta
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Nidhi Gupta
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| |
Collapse
|
4
|
Bhosale A, Paul G, Mazahir F, Yadav A. Theoretical and applied concepts of nanocarriers for the treatment of Parkinson's diseases. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Zhang S, Gan L, Cao F, Wang H, Gong P, Ma C, Ren L, Lin Y, Lin X. The barrier and interface mechanisms of the brain barrier, and brain drug delivery. Brain Res Bull 2022; 190:69-83. [PMID: 36162603 DOI: 10.1016/j.brainresbull.2022.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
Three different barriers are formed between the cerebrovascular and the brain parenchyma: the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the cerebrospinal fluid-brain barrier (CBB). The BBB is the main regulator of blood and central nervous system (CNS) material exchange. The semipermeable nature of the BBB limits the passage of larger molecules and hydrophilic small molecules, Food and Drug Administration (FDA)-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Although the complexity of the BBB affects CNS drug delivery, understanding the composition and function of the BBB can provide a platform for the development of new methods for CNS drug delivery. This review summarizes the classification of the brain barrier, the composition and role of the basic structures of the BBB, and the transport, barrier, and destruction mechanisms of the BBB; discusses the advantages and disadvantages of different drug delivery methods and prospects for future drug delivery strategies.
Collapse
Affiliation(s)
- Shanshan Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| | - Lin Gan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Fengye Cao
- Yiyang The First Hospital of Traditional Chinese Medicine, Yiyang, Hunan Province, 413000, China
| | - Hao Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Peng Gong
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Congcong Ma
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Li Ren
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Yubo Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xianming Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
6
|
Tang B, Xie X, Yang R, Zhou S, Hu R, Feng J, Zheng Q, Zan X. Decorating hexahistidine-metal assemblies with tyrosine enhances the ability of proteins to pass through corneal biobarriers. Acta Biomater 2022; 153:231-242. [PMID: 36126912 DOI: 10.1016/j.actbio.2022.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 11/01/2022]
Abstract
In recent decades, the use of protein drugs has increased dramatically for almost every clinical indication, including autoimmunity and cancer infection, given their high specificity and limited side effects. However, their easy deactivation by the surrounding microenvironment and limited ability to pass through biological barriers pose large challenges to the use of these agents for therapeutic effects; these deficits could be greatly improved by nanodelivery using platforms with suitable physicochemical properties. Here, to assess the effect of the hydrophilicity of nanoparticles on their ability to penetrate biological barriers, the hydrophobic amino acid tyrosine (Y) was decorated onto hexahistidine peptide, and two nanosized YHmA and HmA particles were generated, in which Avastin (Ava, a protein drug) was encapsulated by a coassembly strategy. In vitro and in vivo tests demonstrated that these nanoparticles effectively retained the bioactivity of Ava and protected Ava from proteinase K hydrolysis. Importantly, YHmA displayed a considerably higher affinity to the ocular surface than HmA, and YHmA also exhibited the ability to transfer proteins across the barriers of the anterior segment, which greatly improved the bioavailability of the encapsulated Ava and produced surprisingly good therapeutic outcomes in a model of corneal neovascularization. STATEMENT OF SIGNIFICANCE: Improving the ability to penetrate tissue barriers and averting inactivation caused by surrounding environments, are the keys to broaden the application of protein drugs. By decorating hydrophobic amino acid, tyrosine (Y), on hexahistidine peptide, YHmA encapsulated protein drug Ava with high efficiency by co-assembly strategy. YHmA displayed promising ability to maintain bioactivity of Ava during encapsulation and delivery, and protected Ava from proteinase K hydrolysis. Importantly, YHmA transferred Ava across the corneal epithelial barrier and greatly improved its bioavailability, producing surprisingly good therapeutic outcomes in a model of corneal neovascularization. Our results contributed to not only the strategy to overcome shortcomings of protein drugs, but also suggestion on hydrophilicity as a nonnegligible factor in nanodrug penetration through biobarriers.
Collapse
Affiliation(s)
- Bojiao Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, PR China
| | - Xiaoling Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Ronggui Hu
- Department of Anesthesiology, Wenzhou Key Laboratory of perioperative medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jiayao Feng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Qinxiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, PR China.
| |
Collapse
|
7
|
Singh K, Kumar P, Bhatia R, Mehta V, Kumar B, Akhtar MJ. Nipecotic acid as potential lead molecule for the development of GABA uptake inhibitors; structural insights and design strategies. Eur J Med Chem 2022; 234:114269. [DOI: 10.1016/j.ejmech.2022.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 11/04/2022]
|
8
|
Xiong B, Wang Y, Chen Y, Xing S, Liao Q, Chen Y, Li Q, Li W, Sun H. Strategies for Structural Modification of Small Molecules to Improve Blood-Brain Barrier Penetration: A Recent Perspective. J Med Chem 2021; 64:13152-13173. [PMID: 34505508 DOI: 10.1021/acs.jmedchem.1c00910] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development of central nervous system (CNS) drugs, the blood-brain barrier (BBB) restricts many drugs from entering the brain to exert therapeutic effects. Although many novel delivery methods of large molecule drugs have been designed to assist transport, small molecule drugs account for the vast majority of the CNS drugs used clinically. From this perspective, we review studies from the past five years that have sought to modify small molecules to increase brain exposure. Medicinal chemists make it easier for small molecules to cross the BBB by improving diffusion, reducing efflux, and activating carrier transporters. On the basis of their excellent work, we summarize strategies for structural modification of small molecules to improve BBB penetration. These strategies are expected to provide a reference for the future development of small molecule CNS drugs.
Collapse
Affiliation(s)
- Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuanyuan Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghong Liao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Wei Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|