1
|
Rubel CZ, He WJ, Wisniewski SR, Engle KM. Benchtop Nickel Catalysis Invigorated by Electron-Deficient Diene Ligands. Acc Chem Res 2024; 57:312-326. [PMID: 38236260 DOI: 10.1021/acs.accounts.3c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
ConspectusDue to the rarity of precious metals like palladium, nickel catalysis is becoming an increasingly important player in organic synthesis, especially for the formation of bonds with sp3-hybridized carbon centers. Traditionally, catalytic processes involving active Ni(0) species have relied on Ni(COD)2 or in situ reduction of Ni(II) salts. However, Ni(COD)2 is an air- and temperature-sensitive material that requires use in an inert-atmosphere glovebox, and in situ reduction protocols of Ni(II) salts using metallic or organometallic reductants add additional complications to reaction development.This Account chronicles the development of air-stable Ni(0) precursors as replacements for Ni(COD)2 or in situ reduction. Based on Schrauzer's seminal discovery of Ni(COD)(DQ) as an air-stable zerovalent organonickel complex, our research laboratories at Scripps Research and Bristol Myers Squibb have developed a class of precatalysts based on the Ni(COD)(EDD) (EDD = electron-deficient diene) framework, relying on the steric and electronic properties of the supporting diene to render the metal center stable to air, moisture, and even silica gel but reactive to ligand substitution and redox changes.The stable Ni(0) complexes can be accessed through ligand exchange with Ni(COD)2, through reduction of Ni(acac)2 using DIBAL-H, or electrochemically via cathodic reduction of Ni(acac)2 to Ni(COD)2, followed by addition of an EDD ligand in one pot. As a toolkit, the complexes demonstrate reactivity that is equivalent or enhanced compared to Ni(COD)2, catalyzing C-C and C-N cross-couplings, Miyaura borylations, C-H activations, and other transformations. Since the initial report on Ni(COD)(DQ), its reactivity in C(sp2)-CN activation, metallophotoredox, and electric field-induced cross-coupling have also been demonstrated.By incorporating the precatalyst toolkit into reaction discovery campaigns, our laboratories have been able to perform C(sp3)-S(alkyl) couplings and metallonitrenoid carboamination, both of which represent challenging transformations that were inaccessible with traditional phosphine, nitrogen, or electron-deficient olefin ligands. Computational and experimental studies demonstrate how the quinone ligands are hemilabile, adopting η1(O)-bound geometries to relieve steric strain or stabilize transition states and intermediates; redox-active, able to transiently oxidize the metal center; and electron-withdrawing or -donating, depending on metal oxidation state and coordination geometry. These studies show how the ligands enable key steps in catalysis beyond imparting air-stability.Since our report documenting the catalytic activity of Ni(COD)(DQ), many other laboratories have also observed unique reactivity with this precatalyst. Ni(COD)(DQ) was found to offer superior reactivity to Ni(COD)2 in C-N cross coupling to form N,N-diaryl sulfonamides and in preparation of biaryls from aryl halides and benzene through a Ni-mediated, base-assisted homolytic aromatic substitution.
Collapse
Affiliation(s)
- Camille Z Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Wen-Ji He
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| |
Collapse
|
2
|
Dong Z, Tang Q, Xu C, Chen L, Ji H, Zhou S, Song L, Chen LA. Directed Asymmetric Nickel-Catalyzed Reductive 1,2-Diarylation of Electronically Unactivated Alkenes. Angew Chem Int Ed Engl 2023; 62:e202218286. [PMID: 36719253 DOI: 10.1002/anie.202218286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
Transition-metal catalyzed intermolecular 1,2-diarylation of electronically unactivated alkenes has emerged as an extensive research topic in organic synthesis. However, most examples are mainly limited to terminal alkenes. Furthermore, transition-metal catalyzed asymmetric 1,2-diarylation of unactivated alkenes still remains unsolved and is a formidable challenge. Herein, we describe a highly efficient directed nickel-catalyzed reductive 1,2-diarylation of unactivated internal alkenes with high diastereoselectivities. More importantly, our further effort towards enantioselective 1,2-diarylation of the unactivated terminal and challenging internal alkenes is achieved, furnishing various polyarylalkanes featuring benzylic stereocenters in high yields and with good to high enantioselectivities and high diastereoselectivities. Interestingly, the generation of cationic Ni-catalyst by adding alkali metal fluoride is the key to increased efficiency of this enantioselective reaction.
Collapse
Affiliation(s)
- Zhan Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qiongyao Tang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Changyu Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Li Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Haiting Ji
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Sitian Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Liangliang Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
3
|
Li ZQ, He WJ, Ni HQ, Engle KM. Directed, nickel-catalyzed 1,2-alkylsulfenylation of alkenyl carbonyl compounds. Chem Sci 2022; 13:6567-6572. [PMID: 35756518 PMCID: PMC9172569 DOI: 10.1039/d2sc01563c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/30/2022] [Indexed: 12/20/2022] Open
Abstract
We report a regioselective, nickel-catalyzed syn-1,2-carbosulfenylation of non-conjugated alkenyl carbonyl compounds with alkyl/arylzinc nucleophiles and tailored N-S electrophiles. This method allows the simultaneous installation of a variety of C(sp3) and S(Ar) (or Se(Ar)) groups onto unactivated alkenes, which complements previously developed 1,2-carbosulfenylation methodology in which only C(sp2) nucleophiles are compatible. A bidentate directing auxiliary controls regioselectivity, promotes high syn-stereoselectivity with a variety of E- and Z-internal alkenes, and enables the use of an array of electrophilic sulfenyl (and seleno) electrophiles. Among compatible electrophiles, those with N-alkyl-benzamide leaving groups were found to be especially effective, as determined through comprehensive structure-reactivity mapping.
Collapse
Affiliation(s)
- Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Wen-Ji He
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| |
Collapse
|
4
|
Kleinmans R, Apolinar O, Derosa J, Karunananda MK, Li ZQ, Tran VT, Wisniewski SR, Engle KM. Ni-Catalyzed 1,2-Diarylation of Alkenyl Ketones: A Comparative Study of Carbonyl-Directed Reaction Systems. Org Lett 2021; 23:5311-5316. [PMID: 34213351 DOI: 10.1021/acs.orglett.1c01447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A nickel-catalyzed 1,2-diarylation of alkenyl ketones with aryl iodides and arylboronic esters is reported. Ketones with a variety of substituents serve as effective directing groups, offering high levels of regiocontrol. A representative product is diversified into a wide range of useful products that are not readily accessible via existing 1,2-diarylation reactions. Preliminary mechanistic studies shed light on the binding mode of the substrate, and Hammett analysis reveals the effect of electronic factors on initial rates.
Collapse
Affiliation(s)
- Roman Kleinmans
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Omar Apolinar
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Joseph Derosa
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Malkanthi K Karunananda
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Van T Tran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Landge VG, Grant AJ, Fu Y, Rabon AM, Payton JL, Young MC. Palladium-Catalyzed γ,γ'-Diarylation of Free Alkenyl Amines. J Am Chem Soc 2021; 143:10352-10360. [PMID: 34161068 DOI: 10.1021/jacs.1c04261] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The direct difunctionalization of alkenes is an effective way to construct multiple C-C bonds in one-pot using a single functional group. The regioselective dicarbofunctionalization of alkenes is therefore an important area of research to rapidly obtain complex organic molecules. Herein, we report a palladium-catalyzed γ,γ'-diarylation of free alkenyl amines through interrupted chain walking for the synthesis of Z-selective alkenyl amines. Notably, while 1,3-dicarbofunctionalization of allyl groups is well precedented, the present disclosure allows 1,3-dicarbofunctionalization of highly substituted allylamines to give highly Z-selective trisubsubstituted olefin products. This cascade reaction operates via an unprotected amine-directed Mizoroki-Heck (MH) pathway featuring a β-hydride elimination to selectively chain walk to furnish a new terminal olefin which then generates the cis-selective alkenyl amines around the sterically crowded allyl moiety. This operationally simple protocol is applicable to a variety of cyclic, branched, and linear secondary and tertiary alkenylamines, and has a broad substrate scope with regard to the arene coupling partner as well. Mechanistic studies have been performed to help elucidate the mechanism, including the presence of a likely unproductive side C-H activation pathway.
Collapse
Affiliation(s)
- Vinod G Landge
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America
| | - Aaron J Grant
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America
| | - Yu Fu
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America
| | - Allison M Rabon
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America
| | - John L Payton
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America.,Department of Chemistry, Kenyon College, 106 College Park Dr., Gambier, Ohio 43022, United States of America
| | - Michael C Young
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America
| |
Collapse
|
6
|
Lutz S, Nattmann L, Nöthling N, Cornella J. 16-Electron Nickel(0)-Olefin Complexes in Low-Temperature C(sp2)–C(sp3) Kumada Cross-Couplings. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sigrid Lutz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Lukas Nattmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|