1
|
Zhang H, Zheng H, Wang Q, Ma Z, Liu W, Xu L, Li D, Zhu Y, Xue Y, Mei L, Huang X, Guo Z, Ke X. Sinomenine hydrochloride improves DSS-induced colitis in mice through inhibition of the TLR2/NF-κB signaling pathway. Clin Res Hepatol Gastroenterol 2024; 48:102411. [PMID: 38992426 DOI: 10.1016/j.clinre.2024.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Sinomenine hydrochloride (SH) has anti-inflammatory and immunosuppressive effects, and its effectiveness in inflammatory diseases, such as rheumatoid arthritis, has been demonstrated. However, whether SH has a therapeutic effect on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice and its mechanism of action have not been clarified. This study aimed to investigate the therapeutic effects and mechanism of action of SH on UC. METHODS Twenty-four mice were randomly divided into control, model, SH low-dose (SH-L, 20mg/kg), and SH high-dose (SH-H, 60mg/kg) groups with six mice in each group. Disease activity index (DAI), colonic mucosal damage index, and colonic histopathology scores were calculated. The expression levels of related proteins, genes, and downstream inflammatory factors in the Toll-like receptor 2/NF-κB (TLR2/NF-κB) signaling pathway were quantified. RESULTS SH inhibited weight loss, decreased DAI and histopathological scores, decreased the expression levels of TLR2, MyD88, P-P65, P65 proteins, and TLR2 genes, and also suppressed the expression of inflammatory factors TNF-α, IL-1 β, and IL-6 in the peripheral blood of mice. CONCLUSION The therapeutic effect of SH on DSS-induced UC in mice may be related to the inhibition of the TLR2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Hailun Zheng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Qizhi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Zhenzeng Ma
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Wei Liu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Linxia Xu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Dapeng Li
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Yu Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Yongju Xue
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Letian Mei
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Xixiang Huang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, No. 616, Bianyangsan Road, Suzhou, Anhui 234000, China.
| | - Xiquan Ke
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China.
| |
Collapse
|
2
|
Liang Y, Meng Z, Ding XL, Jiang M. Effects of proton pump inhibitors on inflammatory bowel disease: An updated review. World J Gastroenterol 2024; 30:2751-2762. [PMID: 38899331 PMCID: PMC11185295 DOI: 10.3748/wjg.v30.i21.2751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is believed to be caused by various factors, including abnormalities in disease susceptibility genes, environmental factors, immune factors, and intestinal bacteria. Proton pump inhibitors (PPIs) are the primary drugs used to treat acid-related diseases. They are also commonly prescribed to patients with IBD. Recent studies have suggested a potential association between the use of certain medications, such as PPIs, and the occurrence and progression of IBD. In this review, we summarize the potential impact of PPIs on IBD and analyze the underlying mechanisms. Our findings may provide insights for conducting further investigations into the effects of PPIs on IBD and serve as an important reminder for physicians to exercise caution when prescribing PPIs to patients with IBD.
Collapse
Affiliation(s)
- Yu Liang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Zhen Meng
- Department of Intervention, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xue-Li Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Man Jiang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
3
|
Chrétien B, Brazo P, Da Silva A, Sassier M, Dolladille C, Lelong-Boulouard V, Alexandre J, Fedrizzi S. Infections associated with clozapine: a pharmacovigilance study using VigiBase ®. Front Pharmacol 2023; 14:1260915. [PMID: 37849735 PMCID: PMC10577313 DOI: 10.3389/fphar.2023.1260915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction: Clozapine is primarily reserved for treatment-resistant schizophrenia due to safety concerns associated with its use. Infections have been reported with clozapine, which may lead to elevated serum levels of the drug. However, the existing literature on this topic is limited. Therefore, we conducted a study using VigiBase® to investigate the potential over-reporting of infections associated with clozapine, to explore the presence of dose-dependency, and to investigate the underlying mechanism. Methods: Disproportionality analyses were performed using VigiBase to assess the association between clozapine and all types of infections, the association between clozapine-associated infections and neutropenia, the association between clozapine-associated infections and agranulocytosis, the dose-effect relationship between clozapine and infections, and the interaction between clozapine and the main strong CYP450 inhibitors using reports carried out until 11 April 2023. Results: A statistically significant signal of infections was observed with clozapine, as indicated by an information component of 0.43 [95% CI: (0.41-0.45)]. The most commonly reported infections were respiratory and gastrointestinal in nature. Neutropenia showed weaker association with clozapine-associated reports of infections compared to other clozapine-associated reports [X2 (1, N = 204,073) = 454; p < 0.005], while agranulocytosis demonstrated a stronger association with clozapine-associated reports of infections [X2 (1, N = 204,073) = 56; p < 0.005]. No evidence of dose-dependency was observed. Among the 17 tested CYP inhibitors, significant drug-drug interactions were found with clarithromycin, metronidazole, valproic acid, lansoprazole, omeprazole, amiodarone, and esomeprazole. Discussion: Our study revealed a significant safety signal between clozapine use and infections, predominantly respiratory and gastrointestinal infections. The co-administration of clozapine with valproic acid or proton pump inhibitors may potentially contribute to an increased risk of infection. Further vigilance is warranted in clinical practice, and consideration of therapeutic drug monitoring of clozapine in cases involving concomitant use of these drugs or in the presence of infections may be beneficial.
Collapse
Affiliation(s)
- Basile Chrétien
- Department of Pharmacology, Caen University Hospital, Caen, France
| | - Perrine Brazo
- Department of Psychiatry, Esquirol Center, Caen University Hospital, Caen, France
- Normandie Université, UNICAEN, EA7466, Imagerie et Stratégies Thérapeutiques de la Schizophrénie (ISTS), Caen, France
| | | | - Marion Sassier
- Department of Pharmacology, Caen University Hospital, Caen, France
| | - Charles Dolladille
- Department of Pharmacology, Caen University Hospital, Caen, France
- Normandy University, UNICAEN, Inserm U1086 Anticipe, Caen, France
| | - Véronique Lelong-Boulouard
- Department of Pharmacology, Caen University Hospital, Caen, France
- Normandy University, UNICAEN, UFR Santé, INSERM UMR 1075, COMETE-MOBILITES “Vieillissement, Pathologie, Santé”, Caen, France
| | - Joachim Alexandre
- Department of Pharmacology, Caen University Hospital, Caen, France
- Normandie Université, UNICAEN, EA7466, Imagerie et Stratégies Thérapeutiques de la Schizophrénie (ISTS), Caen, France
| | - Sophie Fedrizzi
- Department of Pharmacology, Caen University Hospital, Caen, France
| |
Collapse
|
4
|
Ali FEM, Hassanein EHM, El-Bahrawy AH, Hemeda MS, Atwa AM. Neuroprotective effect of lansoprazole against cisplatin-induced brain toxicity: Role of Nrf2/ARE and Akt/P53 signaling pathways. J Chem Neuroanat 2023; 132:102299. [PMID: 37271475 DOI: 10.1016/j.jchemneu.2023.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Cisplatin is a chemotherapeutic agent usually used in treating different patterns of malignancies. One of the significant apparent complications of cisplatin chemotherapy is brain toxicity. The present study was conducted to evaluate the protective effects of lansoprazole on cisplatin-induced cortical intoxication. Thirty-two rats were allocated into four groups (8 rats/group); group I: received only a vehicle for 10 days, group II: lansoprazole was administered (50 mg/kg) via oral gavage for 10 days, group III: On 5th day of the experiment, rats were given cisplatin (10 mg/kg) i.p. once to induce cortical injury. Group IV: rats were given lansoprazole for 5 days before cisplatin and 5 days afterward. Lansoprazole administration significantly improved cisplatin-induced behavioral changes, as evidenced by decreasing the immobility time in forced swimming and open field tests. Besides, lansoprazole improved cortical histological changes, restored cortical redox balance, enhanced Nrf2/ARE expression, cisplatin-induced neuronal apoptosis, and dampened cisplatin inflammation. In addition, lansoprazole modulated cortical Akt/p53 signal. The present work was the first to show that lansoprazole co-administration reduced cortical toxicity in cisplatin-treated rats via multiple signaling pathways. The current findings provided crucial information for developing novel protective strategies to reduce cisplatin cortical toxicity.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ali H El-Bahrawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed S Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
5
|
da Paz Martins AS, de Andrade KQ, de Araújo ORP, da Conceição GCM, da Silva Gomes A, Goulart MOF, Moura FA. Extraintestinal Manifestations in Induced Colitis: Controversial Effects of N-Acetylcysteine on Colon, Liver, and Kidney. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8811463. [PMID: 37577725 PMCID: PMC10423092 DOI: 10.1155/2023/8811463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) characterized by continuous inflammation in the colonic mucosa. Extraintestinal manifestations (EIM) occur due to the disruption of the intestinal barrier and increased permeability caused by redox imbalance, dysbiosis, and inflammation originating from the intestine and contribute to morbidity and mortality. The aim of this study is to investigate the effects of oral N-acetylcysteine (NAC) on colonic, hepatic, and renal tissues in mice with colitis induced by dextran sulfate sodium (DSS). Male Swiss mice received NAC (150 mg/kg/day) in the drinking water for 30 days before and during (DSS 5% v/v; for 7 days) colitis induction. On the 38th day, colon, liver, and kidney were collected and adequately prepared for the analysis of oxidative stress (superoxide dismutase (SOD), catalase (CAT), glutathione reduced (GSH), glutathione oxidized (GSSG), malondialdehyde (MDA), and hydrogen peroxide (H2O2)) and inflammatory biomarkers (myeloperoxidase (MPO) -, tumor necrosis factor alpha - (TNF-α, and interleukin-10 (IL-10)). In colon, NAC protected the histological architecture. However, NAC did not level up SOD, in contrast, it increased MDA and pro-inflammatory effect (increased of TNF-α and decreased of IL-10). In liver, colitis caused both oxidative (MDA, SOD, and GSH) and inflammatory damage (IL-10). NAC was able only to increase GSH and GSH/GSSG ratio. Kidney was not affected by colitis; however, NAC despite increasing CAT, GSH, and GSH/GSSG ratio promoted lipid peroxidation (increased MDA) and pro-inflammatory action (decreased IL-10). Despite some beneficial antioxidant effects of NAC, the negative outcomes concerning irreversible oxidative and inflammatory damage in the colon, liver, and kidney confirm the nonsafety of the prophylactic use of this antioxidant in models of induced colitis, suggesting that additional studies are needed, and its use in humans not yet recommended for the therapeutic routine of this disease.
Collapse
Affiliation(s)
- Amylly Sanuelly da Paz Martins
- Doctoral Program of the Northeast Biotechnology Network, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | | | | | | | - Amanda da Silva Gomes
- College of Nutrition, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Marília Oliveira Fonseca Goulart
- Doctoral Program of the Northeast Biotechnology Network, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Fabiana Andréa Moura
- College of Nutrition, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- College of Medicine, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| |
Collapse
|
6
|
Hassanein EHM, Ali FEM, Mohammedsaleh ZM, Atwa AM, Elfiky M. The involvement of Nrf2/HO-1/cytoglobin and Ang-II/NF-κB signals in the cardioprotective mechanism of lansoprazole against cisplatin-induced heart injury. Toxicol Mech Methods 2022; 33:316-326. [PMID: 36258671 DOI: 10.1080/15376516.2022.2137870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Cardiac toxicity is a serious adverse effect of cisplatin (CIS). Lansoprazole (LPZ) is a proton pump inhibitor with promising cardioprotective effects. Our study planned to examine the cardioprotective effect of LPZ against CIS-induced cardiac injury. To achieve this goal, thirty-two male rats were randomly allocated into 4 groups. CIS, 7 mg/kg, was injected i.p. on the 5th day of the experiment. LPZ was administered via oral gavage at a dose of 50 mg/kg. The present study revealed that CIS injection induced a remarkable cardiac injury evidenced by an increase in serum ALP, AST, CK-MB, LDH, and troponin-I levels. The cardiac oxidative damage was also observed after CIS injection and mediated by down-regulation of GSH, SOD, GST, Nrf2, HO-1, PPAR-γ, and cytoglobin levels associated with the up-regulation of MDA content. Besides, CIS injection caused a significant inflammatory reaction mediated by alteration of cardiac NF-κB, STAT-3, p-STAT-3, and IκB expressions. Additionally, cardiac Ang-II expression was significantly increased in CIS control rats, while Ang 1-7 expression was significantly reduced relative to normal rats. In contrast, LPZ administration remarkably ameliorated these changes in the heart of CIS-intoxicated rats. Collectively, LPZ potently attenuated cardiac toxicity induced by CIS via regulation of Nrf2/HO-1, PPAR-γ, cytoglobin, IκB/NF-κB/STAT-3, and Ang-II/Ang 1-7 signals.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Elfiky
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum-Menoufia, Egypt.,Anatomy Department, Faculty of Medicine, Batterjee Medical College, Jedda, Saudi Arabia
| |
Collapse
|
7
|
Xia B, Yang M, Nguyen LH, He Q, Zhen J, Yu Y, Di M, Qin X, Lu K, Kuo ZC, He Y, Zhang C, Meng W, Yuan J. Regular Use of Proton Pump Inhibitor and the Risk of Inflammatory Bowel Disease: Pooled Analysis of 3 Prospective Cohorts. Gastroenterology 2021; 161:1842-1852.e10. [PMID: 34389338 DOI: 10.1053/j.gastro.2021.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Proton pump inhibitors (PPIs) have a major impact on gut microbiome and immune function, which in turn, may increase the risk of inflammatory bowel disease (IBD). Our aim in this study was to evaluate PPI use and subsequent risk of IBD and subtypes (ie, Crohn's disease and ulcerative colitis). METHODS This was a pooled analysis of the Nurses' Health Study (NHS, n = 82,869), NHS II (n = 95,141), and UK Biobank (n = 469,397). We included participants with information on personal use of PPIs and free of IBD or cancer at baseline. We evaluated hazard ratios and 95% confidence intervals (CIs) with Cox regression adjusting for lifestyle factors, PPI indications, comorbidities, and other medications. RESULTS We documented 271 cases of IBD (median follow-up, 12 years) in the pooled NHS cohorts and 1419 cases (median follow-up, 8.1 years) in the UK Biobank. For both pooled NHS cohorts and UK Biobank, regular use of PPIs consistently showed a significantly positive association with IBD, Crohn's disease, and ulcerative colitis risk. Combined analyses of 3 cohorts showed that regular PPI users had an increased risk of IBD as compared with nonusers (hazard ratio, 1.42; 95% CI, 1.22-1.65; number needed to harm, 3770; 95% CI, 3668-4369). Direct comparison with H2 receptor antagonist, a less potent acid suppressor, showed that PPI use was also associated with higher IBD risk (hazard ratio, 1.38; 95% CI, 1.16-1.65). CONCLUSIONS Regular use of PPIs was associated with an increased risk of IBD and its subtypes. The findings should be interpreted with caution because the absolute risk was low and the clinical benefits of PPIs are substantial.
Collapse
Affiliation(s)
- Bin Xia
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Man Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long H Nguyen
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Qiangsheng He
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jie Zhen
- MRC Integrative Epidemiology Unit, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Yuanyuan Yu
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mengyang Di
- Department of Hematology and Medical Oncology, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut
| | - Xiwen Qin
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Science, Monash University, Melbourne, Australia; Victorian Heart Institute, Monash University, Melbourne, Australia; School of Population and Global Health, Faculty of Medicine, Density and Health Sciences, University of Western Australia, Perth, Australia
| | - Kuiqing Lu
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zi Chong Kuo
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|