Bin Shahari MS, Junaid A, Tiekink ERT, Dolzhenko AV. 6-Aryl-4-cycloamino-1,3,5-triazine-2-amines: synthesis, antileukemic activity, and 3D-QSAR modelling.
RSC Adv 2024;
14:8264-8282. [PMID:
38469184 PMCID:
PMC10925993 DOI:
10.1039/d3ra08091a]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Despite significant progress in immunotherapy and chimeric antigen receptor T cell therapy of leukemia, chemotherapy is the major treatment option for the disease. Therefore, the development of potent and safe drugs for standard and targeted chemotherapy of leukemia remains an important task for medicinal chemists. A library of 94 diverse 6-aryl-4-cycloamino-1,3,5-triazine-2-amines was prepared using a one-pot microwave-assisted protocol, which involves a three-component reaction of cyanoguanidine, aromatic aldehydes and cyclic amines, and subsequent dehydrogenative aromatization of the dihydrotriazine intermediates in the presence of alkali. The cytotoxic properties of prepared compounds were evaluated against the leukemic Jurkat T cell line and the selectivity of the 24 most active compounds was also assessed using a normal fibroblast MRC-5 cell line, indicating selective antiproliferative activity against leukemic cells. The structure-activity relationship was analysed, and the prepared 3D-QSAR model was found to predict the antileukemic activity of the compounds with reasonable accuracy. In the cell morphology study, both apoptosis and necrosis features were observed in Jurkat T cells after treatment with the most active compound.
Collapse