1
|
Yang LH, Liu XS, Liu C, Wang SY, Xie LY. Ring-Opening Sulfonylation of Cyclic Sulfonium Salts with Sodium Sulfinates under Transition-Metal- and Additive-Free Conditions. J Org Chem 2024; 89:12668-12680. [PMID: 39121341 DOI: 10.1021/acs.joc.4c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Incorporating a sulfonyl group into parent molecules has been shown to effectively improve their synthetic applications and bioactivities. In this study, we present a straightforward and practical approach for the ring-opening reaction of alkenyl-aryl sulfonium salts with sodium sulfinates to produce a range of sulfur-containing alkyl sulfones. This method offers the benefits of mild reaction conditions, easily accessible raw materials, wide substrate applicability, good functional group compatibility, and operational simplicity. Importantly, the resulting products can be readily converted into sulfoxides, sulfones, sulfoximines, and some heterocyclic compounds.
Collapse
Affiliation(s)
- Li-Hua Yang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Xin-Si Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Chu Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Si-Yu Wang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
2
|
Singh B, Ansari AJ, Malik N, Ramasastry SSV. An interrupted Corey-Chaykovsky reaction of designed azaarenium salts: synthesis of complex polycyclic spiro- and fused cyclopropanoids. Chem Sci 2023; 14:6963-6969. [PMID: 37389246 PMCID: PMC10306106 DOI: 10.1039/d3sc01578e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Simultaneous dearomatizing spirannulation of pyridinium salts is still in its infancy. Here, we present an organized skeletal remodeling of designed pyridinium salts by utilizing an interrupted Corey-Chaykovsky reaction to access unprecedented and structurally intriguing molecular architectures such as the vicinal bis-spirocyclic indanones and spirannulated benzocycloheptanones. This hybrid strategy rationally merges the nucleophilic features of sulfur ylides with the electrophilic pyridinium salts to achieve the regio- and stereoselective synthesis of new classes of cyclopropanoids. The plausible mechanistic pathways were derived from experimental results and control experiments.
Collapse
Affiliation(s)
- Bara Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India https://web.iisermohali.ac.in/faculty/sastry/
| | - Arshad J Ansari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India https://web.iisermohali.ac.in/faculty/sastry/
| | - Nirmal Malik
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India https://web.iisermohali.ac.in/faculty/sastry/
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India https://web.iisermohali.ac.in/faculty/sastry/
| |
Collapse
|
3
|
Wang J, Li QY, Wang SS, Wu XY, Li X, Liu PN. Rhodium-Catalyzed 1,4-Aryl Rearrangement of Sulfur Ylide for the Synthesis of 2-Pyridyl Thioethers. Org Lett 2023; 25:703-707. [PMID: 36688636 DOI: 10.1021/acs.orglett.3c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report a novel rhodium-catalyzed rearrangement involving N-substituted 2-thiopyridones and diazoesters. This reaction proceeds through the rhodium-catalyzed formation of sulfur ylides, followed by a direct C-N bond cleavage to achieve N-to-C 1,4-pyridyl migration. The protocol can be used to construct various thiopyridines possessing tetrasubstituted carbon stereocenters in moderate to excellent yields, which expands the transformation pattern of sulfur ylide intermediates in rearrangement reactions.
Collapse
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qing-Yang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shan-Shan Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xin-Yan Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Fu D, Xu J. Halide-promoted pyridinylation of α-acylmethylides with 2-halo-1-methylpyridinium iodides as reagents. Org Biomol Chem 2023; 21:1008-1013. [PMID: 36602179 DOI: 10.1039/d2ob02078e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Halide-promoted pyridinylation between α-acyl sulfonylmethylides and 2-halo-1-methylpyridinium iodides in a transition-metal-free protocol is described. A broad range of α-acyl sulfonylmethylides were transformed to bifunctionalized vinylsulfones in moderate to good yields, thereby providing a facile and practical approach for constructing methylthio- and pyridinoxyl-substituted vinylsulfones. The substrates can be extended to other acyl methylides. The reaction was shown to entail the formation of a C-O bond and consecutive breaking of C-S, C-Cl and C-N bonds.
Collapse
Affiliation(s)
- Duo Fu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
5
|
Bastidas Ángel AY, Campos PRO, Alberto EE. Synthetic application of chalcogenonium salts: beyond sulfonium. Org Biomol Chem 2023; 21:223-236. [PMID: 36503911 DOI: 10.1039/d2ob01822e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of chalcogenonium salts in organic synthesis has grown enormously in the past decades since the discovery of the methyltransferase enzyme cofactor S-adenosyl-L-methionine (SAM), featuring a sulfonium center as the reactive functional group. Chalcogenonium salts can be employed as alkylating agents, sources of ylides and carbon-centered radicals, partners for metal-catalyzed cross-coupling reactions and organocatalysts. Herein, we will focus the discussion on heavier chalcogenonium salts (selenonium and telluronium), presenting their utility in synthetic organic transformations and, whenever possible, drawing comparisons in terms of reactivity and selectivity with the respective sulfonium analogues.
Collapse
Affiliation(s)
- Alix Y Bastidas Ángel
- Grupo de Síntese e Catálise Orgânica - GSCO, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Philipe Raphael O Campos
- Grupo de Síntese e Catálise Orgânica - GSCO, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Eduardo E Alberto
- Grupo de Síntese e Catálise Orgânica - GSCO, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Tang M, Wei Y, Huang S, Xie LG. Regio- and Stereoselective Synthesis of β-Methylthio Vinyl Triflates. Org Lett 2022; 24:7026-7030. [PMID: 36129306 DOI: 10.1021/acs.orglett.2c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinyl triflates are commonly employed as electrophilic vinyl sources in complex synthesis. The triflation of enolates is commonly required for the preparation of vinyl triflates, generally under strongly basic conditions. Herein, the reaction between alkynes and dimethyl(methylthio)sulfonium trifluoromethanesulfonate is presented, which leads to the development of a facile synthesis of β-methylthio vinyl triflates in a chemo-, regio-, and stereoselective manner under neutral and extremely simple conditions.
Collapse
Affiliation(s)
- Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongjiao Wei
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
7
|
Caiuby CAD, Furniel LG, Burtoloso ACB. Asymmetric transformations from sulfoxonium ylides. Chem Sci 2022; 13:1192-1209. [PMID: 35222906 PMCID: PMC8809404 DOI: 10.1039/d1sc05708a] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Sulfoxonium ylides are important surrogates for diazo compounds, and their use in industry as safer alternatives has been evaluated during recent years. Beyond the known classical transformations, these ylides have also been used in a surprising plethora of novel and intrinsic chemical reactions, especially in recent years. Bench stability and handling are also an advantage of this class of organosulfur molecules. Despite this, efficient asymmetric transformations, specifically catalytic enantioselective versions, have only recently been reported, and there are specific reasons for this. This perspective article covers this topic from the first studies up to the latest advances, giving personal perspectives and showing the main challenges in this area in the coming years.
Collapse
Affiliation(s)
- Clarice A D Caiuby
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| | - Lucas G Furniel
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| | - Antonio C B Burtoloso
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| |
Collapse
|
8
|
Jiang X. Cluster Preface: Perspectives on Organoheteroatom and Organometallic Chemistry. Synlett 2021. [DOI: 10.1055/s-0040-1720387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Xuefeng Jiang is a professor at East China Normal University. He received his B.S. degree in 2003 from Northwest University (China). He then joined Professor Shengming Ma’s research group at the Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, where he received his Ph.D. degree in 2008. From 2008 to 2011, Xuefeng worked as a postdoctoral researcher on the total synthesis of natural products in the research group of Professor K. C. Nicolaou at The Scripps Research Institute (TSRI). His independent research interests have focused on green organosulfur chemistry and methodology-oriented total synthesis.
Collapse
|