1
|
You X, Ye Y, Lin S, Zhang Z, Guo H, Ye H. Identification of key genes and immune infiltration in osteoarthritis through analysis of zinc metabolism-related genes. BMC Musculoskelet Disord 2024; 25:227. [PMID: 38509535 PMCID: PMC10956297 DOI: 10.1186/s12891-024-07347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) represents a prominent etiology of considerable pain and disability, and conventional imaging methods lack sensitivity in diagnosing certain types of OA. Therefore, there is a need to identify highly sensitive and efficient biomarkers for OA diagnosis. Zinc ions feature in the pathogenesis of OA. This work aimed to investugate the role of zinc metabolism-related genes (ZMRGs) in OA and the diagnostic characteristics of key genes. METHODS We obtained datasets GSE169077 and GSE55235 from the Gene Expression Omnibus (GEO) and obtained ZMRGs from MSigDB. Differential expression analysis was conducted on the GSE169077 dataset using the limma R package to identify differentially expressed genes (DEGs), and the intersection of DEGs and ZMRGs yielded zinc metabolism differential expression-related genes (ZMRGs-DEGs). The clusterProfiler R package was employed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of ZMRGs-DEGs. Potential small molecule drugs were predicted using the CMap database, and immune cell infiltration and function in OA individuals were analyzed using the ssGSEA method. Protein-protein interaction (PPI) networks were constructed to detect Hub genes among ZMRGs-DEGs. Hub gene expression levels were analyzed in the GSE169077 and GSE55235 datasets, and their diagnostic characteristics were assessed using receiver operating characteristic (ROC) curves. The gene-miRNA interaction network of Hub genes was explored using the gene-miRNA interaction network website. RESULTS We identified 842 DEGs in the GSE169077 dataset, and their intersection with ZMRGs resulted in 46 ZMRGs-DEGs. ZMRGs-DEGs were primarily enriched in functions such as collagen catabolic processes, extracellular matrix organization, metallopeptidase activity, and pathways like the IL-17 signaling pathway, Nitrogen metabolism, and Relaxin signaling pathway. Ten potential small-molecule drugs were predicted using the CMap database. OA patients exhibited distinct immune cell abundance and function compared to healthy individuals. We identified 4 Hub genes (MMP2, MMP3, MMP9, MMP13) through the PPI network, which were highly expressed in OA and demonstrated good diagnostic performance. Furthermore, two closely related miRNAs for each of the 4 Hub genes were identified. CONCLUSION 4 Hub genes were identified as potential diagnostic biomarkers and therapeutic targets for OA.
Collapse
Affiliation(s)
- Xiaoxuan You
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, 362000, Fujian, China
| | - Yanbo Ye
- Suzhou University Medical Department, Suzhou, 215000, Jiangsu, China
| | - Shufeng Lin
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, 362000, Fujian, China
| | - Zefeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, 362000, Fujian, China
| | - Huiyang Guo
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, 362000, Fujian, China
| | - Hui Ye
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
2
|
He H, Chen Y, Liang H, Che W, Chen H, Chen Y, Peng F, Wu B. Circular RNA circCHSY1 silencing inhibits the malignant progression of esophageal squamous cell carcinoma. Discov Oncol 2024; 15:84. [PMID: 38514579 PMCID: PMC10957834 DOI: 10.1007/s12672-024-00935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND CircRNAs play a crucial role in the regulation of various cancers. This study aims to investigate the involvement of circCHSY1 in the development of esophageal squamous cell carcinoma (ESCC). METHODS RNA levels were quantified using qRT-PCR, and protein levels were measured by western blot. The stability of circCHSY1 was analyzed using RNase R. The functional effect of circCHSY1 on cell behavior was evaluated by CCK-8, EdU, flow cytometry, transwell, tube formation, and xenograft tumor model assays. The associations among circCHSY1, miR-1229-3p, and Tectonic-1 (TCTN1) were certified by bioinformatics analysis, dual-luciferase reporter assay, and RNA pull-down assay. RESULTS CircCHSY1 was up-regulated in both ESCC tissues and cell lines in comparison with the control groups. Knockdown of circCHSY1 inhibited the proliferation, migration, invasion, and tube formation and promoted apoptosis of ESCC cells. Mechanistically, circCHSY1 targeted miR-1229-3p, which was downregulated in ESCC tissues and cells. Inhibition of miR-1229-3p attenuated the effects mediated by circCHSY1 suppression. Besides, miR-1229-3p bound to TCTN1, and TCTN1 overexpression restored miR-1229-3p-induced effects in ESCC cells. Animal experiments revealed that circCHSY1 silencing suppressed tumor tumorigenesis in vivo. CONCLUSION CircCHSY1 contributed to ESCC cell malignancy, and the underlying mechanism involved the circCHSY1/miR-1229-3p/TCTN1 axis, providing potential therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Haiquan He
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Ying Chen
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Hanping Liang
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Weibi Che
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Huilong Chen
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Ying Chen
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Fengyuan Peng
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China
| | - Bomeng Wu
- Department of Thoracic Surgery, Gaozhou People's Hospital, No. 89, Xiguan road, Gaozhou, 525200, China.
| |
Collapse
|
3
|
Li P, Xiao W. Circ_0005758 impedes gastric cancer progression through miR-1229-3p/GCNT4 feedback loop. Toxicol In Vitro 2022; 85:105454. [PMID: 35970245 DOI: 10.1016/j.tiv.2022.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/13/2022] [Accepted: 08/07/2022] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) have been reported to have roles in the carcinogenesis of gastric cancer (GC). Circ_0005758 was discovered to be decreased in GC, here, the detailed functions and molecular mechanism of circ_0005758 in GC progression were investigated. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure the levels of genes and proteins. The biological functions of circ_0005758 on GC progression were investigated by using in vitro assays, including 5-ethynyl-2'-deoxyuridine (EDU), transwell, tube formation and flow cytometry, and in vivo murine xenograft model. The binding between miR-1229-3p and circ_0005758 or GCNT4 (Glucosaminyl (N-Acetyl) Transferase 4) was confirmed using dual-luciferase reporter assay and pull-down assay. Circ_0005758 expression was decreased in GC tissues and cells, re-expression of circ_0005758 induced apoptosis and suppressed proliferation, migration, invasion and angiogenesis in GC cells in vitro, and impeded xenograft tumor growth in nude mice. Mechanistically, circ_0005758 sequestered miR-1229-3p to release GCNT4 expression, indicating the circ_0005758/miR-1229-3p/GCNT4 competing endogenous RNA (ceRNA) network GC cells. Besides, an increased miR-1229-3p level and a decreased GCNT4 expression were observed in GC. Rescue experiments demonstrated that miR-1229-3p up-regulation or GCNT4 down-regulation attenuated the anticancer effects of circ_0005758 re-expression on GC cells. Circ_0005758 acts as a tumor suppressor to impede gastric cancer progression via miR-1229-3p/GCNT4 axis, implying that therapeutic targeting of circ_0005758 may better to prevent gastric cancer.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of Gastroenterology, the First Affiliated Hospital of Hengyang Medical College, University of South China, China
| | - Weisheng Xiao
- Department of Gastroenterology, the First Affiliated Hospital of Hengyang Medical College, University of South China, China.
| |
Collapse
|