1
|
Grunshaw T, Wood SH, Sproules S, Parrott A, Nordon A, Shapland PDP, Wheelhouse KMP, Tomkinson NCO. A Mechanistic Investigation of the N-Hydroxyphthalimide Catalyzed Benzylic Oxidation Mediated by Sodium Chlorite. J Org Chem 2024; 89:7933-7945. [PMID: 38748510 PMCID: PMC11165572 DOI: 10.1021/acs.joc.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
A detailed investigation into the mechanistic course of N-hydroxyphthalimide catalyzed oxidation of benzylic centers using sodium chlorite as the stoichiometric oxidant is reported. Through a combination of experimental, spectroscopic, and computational techniques, the transformation is interrogated, providing improved reaction conditions and an enhanced understanding of the mechanism. Performing the transformation in the presence of acetic acid or a pH 4.5 buffer leads to extended reaction times but improves the catalyst lifetime, leading to the complete consumption of the starting material. Chlorine dioxide is identified as the active oxidant that is able to oxidize the N-hydroxyphthalimide anion to the phthalimide-N-oxyl radical, the proposed catalytically active species, which is able to abstract a hydrogen atom from the substrate. A second molecule of chlorine dioxide reacts with the resultant radical and, after loss of hypochlorous acid, leads to the observed product. Through a broad variety of techniques including UV/vis, EPR and Raman spectroscopy, isotopic labeling, and the use of radical traps, evidence for the mechanism is presented that is supported through electronic structural calculations.
Collapse
Affiliation(s)
- Thomas Grunshaw
- Department
Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow G1 1XL, U.K.
- GlaxoSmithKline
R&D, Gunnels Wood
Road, Stevenage SG1 2NY, U.K.
| | - Susanna H. Wood
- Department
Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Stephen Sproules
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Andrew Parrott
- Department
Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Alison Nordon
- Department
Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow G1 1XL, U.K.
| | | | | | - Nicholas C. O. Tomkinson
- Department
Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
2
|
Hamada S, Sumida M, Yamazaki R, Kobayashi Y, Furuta T. Oxidative Deprotection of Benzyl Protecting Groups for Alcohols by an Electronically Tuned Nitroxyl-Radical Catalyst. J Org Chem 2023; 88:12464-12473. [PMID: 37586039 DOI: 10.1021/acs.joc.3c01217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The oxidative deprotection of benzyl (Bn) groups using nitroxyl-radical catalyst 1 and co-oxidant phenyl iodonium bis(trifluoroacetate) (PIFA) is reported. This catalyst is highly active for the oxidation of benzylic ethers because of the electronic tuning on account of the electron-withdrawing ester groups next to the catalytically active center. This catalytic system promotes deprotections at ambient temperature and has a broad substrate scope, including substrates possessing hydrogenation-sensitive functional groups, while the deprotection hardly proceeds when using well-known nitroxyl-radical catalysts such as 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO). The 1/PIFA system also promotes the deprotection of several benzylic protecting groups, including 2-naphthylmethyl (NAP) and 4-methylbenzyl (MBn) groups. Catalyst 1 was also effective for the direct synthesis of ketones and aldehydes from Bn ethers via deprotected alcohols using an excess of the co-oxidant PIFA.
Collapse
Affiliation(s)
- Shohei Hamada
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Maiko Sumida
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Rikako Yamazaki
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yusuke Kobayashi
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takumi Furuta
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
3
|
Zhao Q, Wang Y, Wang Y, Hu Q, Yao J, Wen Z, Li H. Control of Selectivity in FeCl 3 -Catalyzed Aerobic Oxidation of Cycloketones. Chem Asian J 2023; 18:e202201101. [PMID: 36519526 DOI: 10.1002/asia.202201101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The FeCl3 -catalyzed aerobic oxidation of ketones always gives rise to the α-C-C cleavage product, having challenges to afford hydroxyl keto compounds. Here we report an effective control of the main product from keto acid to α-hydroxyl ketone, by reducing the concentration of FeCl3 catalyst, together with the use of DMSO as the solvent. In addition, mechanistic investigations suggested the same FeCl3 -coordinated peroxide intermediate for both hydroxylation and C-C cleavage routes, and emphasize the role of DMSO as both ligand and reductant. This work provides a new approach for selective aerobic oxidation under Lewis acid catalysis.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Yongtao Wang
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
- Center of Chemistry for Frontier Technologies, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Yu Wang
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Qixuan Hu
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Jia Yao
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Zeyu Wen
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Haoran Li
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
- State Key Laboratory of Chemical Engineering and College of Chemical and Biological Engineering, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| |
Collapse
|
4
|
Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Redox-active molecules as organocatalysts for selective oxidative transformations - an unperceived organocatalysis field. Beilstein J Org Chem 2022; 18:1672-1695. [PMID: 36570566 PMCID: PMC9749543 DOI: 10.3762/bjoc.18.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Organocatalysis is widely recognized as a key synthetic methodology in organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C-C bond-forming processes, such as aldol reactions, Michael reactions, cycloaddition reactions, etc. Organophotoredox catalysis has emerged recently as another important catalysis type which has gained much attention and has been quite well-reviewed. At the same time, there are a significant number of other processes, especially oxidative, catalyzed by redox-active organic molecules in the ground state (without light excitation). Unfortunately, many of such processes are not associated in the literature with the organocatalysis field and thus many achievements are not fully consolidated and systematized. The present article is aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone/peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here.
Collapse
Affiliation(s)
- Elena R Lopat’eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Lapshin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
5
|
Wang Y, Sun W, Lu R, Wen Z, Yao J, Li H. Inorganic Bases Enhanced Organocatalysis for Aerobic αHydroxylation of Aliphatic Cycloketones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yongtao Wang
- Zhejiang University Department of Chemistry CHINA
| | - Wenjing Sun
- Zhejiang University Department of Chemistry CHINA
| | - Rui Lu
- Zhejiang University Department of Chemistry CHINA
| | - Zeyu Wen
- Zhejiang University Department of Chemistry CHINA
| | - Jia Yao
- Zhejiang University Department of Chemistry CHINA
| | - Haoran Li
- Zhejiang University Department of Chemistry Zheda Road 310027 Hangzhou CHINA
| |
Collapse
|
6
|
Nagy BS, Kappe CO, Ötvös SB. N
‐Hydroxyphthalimide Catalyzed Aerobic Oxidation of Aldehydes under Continuous Flow Conditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bence S. Nagy
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| | - Sándor B. Ötvös
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| |
Collapse
|