1
|
Li J, Wang G, Guo W, Jiang J, Wang J. H 8-BINOL-Derived Chiral η 6-Benzene Ligands: New Opportunities for the Ruthenium-Catalyzed Asymmetric C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202405782. [PMID: 38679580 DOI: 10.1002/anie.202405782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Given the tremendous success of (p-cymene)RuII-catalyzed C-H activation over the past 20 years, the community has long been aware that the development of chiral η6-benzene (Ben) ligands should be a potent strategy for achieving the attractive but incredibly underdeveloped ruthenium(II)-catalyzed asymmetric C-H activation. However, it has rarely been achieved due to the severe difficulty in developing proper chiral Ben ligands. In particular, designing chiral Ben ligands by connecting a benzene fragment to a chiral framework including benzene rings remained an unsolved challenge until this effort. Here we present a novel class of axially chiral Ben ligands derived from readily available (S)-5,5',6,6',7,7',8,8'-octahydro-1,1'-bi-2-naphthol ((S)-H8-BINOL) in 4-8 steps. Notably, when coordinated with ruthenium, such chiral Ben ligand containing three benzene rings only forms one of the three possible isomeric BenRuII complexes. The related chiral BenRuII catalysts could effectively catalyze the asymmetric C-H activation of N-sulfonyl ketimines with alkynes, affording a range of chiral spirocyclic sultams in up to 99 % yield with up to >99 % ee. These catalysts are expected to find broad applications in future.
Collapse
Affiliation(s)
- Junxuan Li
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, and Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Guodong Wang
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, and Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Weicong Guo
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, and Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jijun Jiang
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, and Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun Wang
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, and Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Liang H, Guo W, Li J, Jiang J, Wang J. Chiral Arene Ligand as Stereocontroller for Asymmetric C-H Activation. Angew Chem Int Ed Engl 2022; 61:e202204926. [PMID: 35445516 DOI: 10.1002/anie.202204926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 12/20/2022]
Abstract
Development of chiral ligands is the most fundamental task in metal-catalyzed asymmetric synthesis. In the last 60 years, various kinds of ligands have been sophisticatedly developed. However, it remains a long-standing challenge to develop practically useful chiral η6 -arene ligands, thereby seriously hampering the asymmetric synthesis promoted by arene-metal catalysts. Herein, we report the design and synthesis of a class of readily tunable, C2 -symmetric chiral arene ligands derived from [2.2]paracyclophane. Its ruthenium(II) complexes have been prepared and successfully applied in the enantioselective C-H activation to afford a series of axially chiral isoquinolones (up to 99 % yield and 96 % ee). This study not only lays chemists' longstanding doubts about whether it is possible to use chiral arene ligands to stereocontrol ruthenium(II)-catalyzed asymmetric C-H activation, but also opens up a new avenue to achieve asymmetric C-H activation.
Collapse
Affiliation(s)
- Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Weicong Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Junxuan Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Liang H, Guo W, Li J, Jiang J, Wang J. Chiral Arene Ligand as Stereocontroller for Asymmetric C−H Activation**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Weicong Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Junxuan Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|