1
|
Pires LM, Santos MFC, Figueiredo LR, Faleiros R, Badoco FR, Silva KB, Ambrósio SR, Bastos JK, Dos Santos RA, Veneziani RCS. Polyprenylated Benzophenones from Brazilian Red Propolis: Analytical Characterization and Anticancer Activity. Chem Biodivers 2024:e202401288. [PMID: 39231299 DOI: 10.1002/cbdv.202401288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
The present work describes the extraction of a polyprenylated benzophenone-rich extract from Brazilian red propolis (ERPB), the development and validation of an RP-HPLC-UV method to characterize it, and its evaluation against breast cancer cell lines MCF-7 and MDA-MB-231, as well as the normal counterpart MCF-10 A. A mixture of gutifferone E and xanthochymol (1+2), and isolated oblongifolin B (3) were used as chemical standards for ERPB and were also evaluated. The concentrations of 1+2 and 3 corresponded to 16.68 % and 42.25 % of the total content of the extract, respectively, and the validation parameters evaluated were satisfactorily met. The cytotoxic effects of ERPB were assessed, and the obtained IC50 values were 19.58 μg/mL (MCF-10 A), 11.56 μg/mL (MCF-7), and 5.22 μg/mL (MDA-MB-231). In conclusion, ERPB exhibits promising cytotoxic effects on the tested breast cell lines. However, further investigation to elucidate its potential therapeutic applications and safety profile should be conducted.
Collapse
Affiliation(s)
- Loren M Pires
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Mario F C Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Laisla R Figueiredo
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Renata Faleiros
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Fernanda R Badoco
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Karolinne B Silva
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Sérgio R Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Raquel A Dos Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Rodrigo C S Veneziani
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, CEP, 14404-600, Franca, SP, Brazil
| |
Collapse
|
2
|
Ribeiro AB, de Melo MRS, de Melo Junqueira M, Rodrigues MGL, de Souza TO, Fernandes G, Santos MFC, Ambrósio SR, Bastos JK, Tavares DC. Efficacy and safety of guttiferone E in melanoma-bearing mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5265-5274. [PMID: 38270618 DOI: 10.1007/s00210-024-02962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Melanoma, an aggressive and potentially fatal skin cancer, is constrained by immunosuppression, resistance, and high toxicity in its treatment. Consequently, there is an urgent need for innovative antineoplastic agents. Therefore, this study investigated the antimelanoma potential of guttiferone E (GE). In an allogeneic murine B16 melanoma model, GE was administered subcutaneously and intraperitoneally. Antitumor evaluation included tumor volume/weight measurements and histopathological and immunohistochemical analysis. Furthermore, the toxicity of the treatments was evaluated through body/organ weights, biochemical parameters, and genotoxicity. Subcutaneous administration of 20 mg/kg of GE resulted in a significant reduction in both tumor volume and weight, effectively suppressing melanoma cell proliferation as evidenced by a decrease in mitotic figures. The tumor growth inhibition rate was equivalent to 54%. This treatment upregulated cleaved caspase-3, indicating apoptosis induction. On the other hand, intraperitoneal administration of GE showed no antimelanoma effect. Remarkably, GE treatments exhibited no toxicity, evidenced by non-significant differences in body weight gain, as well as organ weight, biochemical parameters of nephrotoxicity and hepatotoxicity, and genotoxic damage. This study revealed, for the first time, the efficacy of subcutaneous administration of GE in reducing melanoma, in the absence of toxicity. Furthermore, it was observed that the apoptotic signaling pathway is involved in the antimelanoma property of GE. These findings offer valuable insights for further exploring GE's therapeutic applications in melanoma treatment.
Collapse
Affiliation(s)
- Arthur Barcelos Ribeiro
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil.
| | - Matheus Reis Santos de Melo
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Marcela de Melo Junqueira
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Mônica Garcia Leal Rodrigues
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Thiago Olimpio de Souza
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Gabriela Fernandes
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | | | - Sérgio Ricardo Ambrósio
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Denise Crispim Tavares
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil.
| |
Collapse
|
3
|
de Melo MRS, Ribeiro AB, Fernandes G, Squarisi IS, de Melo Junqueira M, Batista AA, da Silva MM, Tavares DC. Ruthenium(II) complex with 2-mercaptothiazoline ligand induces selective cytotoxicity involving DNA damage and apoptosis in melanoma cells. J Biol Inorg Chem 2024; 29:159-168. [PMID: 38182820 DOI: 10.1007/s00775-023-02036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/26/2023] [Indexed: 01/07/2024]
Abstract
Melanoma is the most aggressive and lethal type of skin cancer due to its characteristics such as high metastatic potential and low response rate to existing treatment modalities. In this way, new drug prototypes are being studied to solve the problem of treating patients with melanoma. Among these, ruthenium-based metallopharmaceuticals may be promising alternatives due to their antitumor characteristics and low systemic toxicity. In this context, the present study evaluated the antineoplastic effect of the ruthenium complex [Ru(mtz)(dppe)2]PF6-2-mercaptothiazoline-di-1,2-bis(diphenylphosphine) ethaneruthenium(II), namely RuMTZ, on human melanoma (A-375) and murine (B16-F10) cells, considering different approaches. Through XTT colorimetric and clonogenic efficiency assays, the complex revealed the selective cytotoxic activity, with the lowest IC50 (0.4 µM) observed for A375 cells. RuMTZ also induced changes in cell morphology, increased cell population in the sub-G0 phase and inhibiting cell migration. The levels of γH2AX and cleaved caspase 3 proteins were increased in both cell lines treated with RuMTZ. These findings indicated that the cytotoxic activity of RuMTZ on melanoma cells is related, at least in part, to the induction of DNA damage and apoptosis. Therefore, RuMTZ exhibited promising antineoplastic activity against melanoma cells.
Collapse
Affiliation(s)
| | | | - Gabriela Fernandes
- Laboratory of Mutagenesis, University of Franca, Franca, São Paulo, 14404-600, Brazil
| | - Iara Silva Squarisi
- Laboratory of Mutagenesis, University of Franca, Franca, São Paulo, 14404-600, Brazil
| | | | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Monize Martins da Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | | |
Collapse
|