1
|
Kuncorojakti S, Pratama AZA, Antujala CA, Harijanto CTB, Arsy RK, Kurniawan PA, Tjahjono Y, Hendriati L, Widodo T, Aswin A, Diyantoro D, Wijaya AY, Rodprasert W, Susilowati H. Acceleration of wound healing using adipose mesenchymal stem cell secretome hydrogel on partial-thickness cutaneous thermal burn wounds: An in vivo study in rats. Vet World 2024; 17:1545-1554. [PMID: 39185045 PMCID: PMC11344119 DOI: 10.14202/vetworld.2024.1545-1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/21/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim The intricate healing process involves distinct sequential and overlapping phases in thermal injury. To maintain the zone of stasis in Jackson's burn wound model, proper wound intervention is essential. The extent of research on the histoarchitecture of thermal wound healing and the application of mesenchymal stem cell (MSC)-free-based therapy is limited. This study aimed to assess the efficacy of MSC-secretome-based hydrogel for treating partial-thickness cutaneous thermal burn wounds. Materials and Methods Eighteen male Wistar rats were divided into three groups, namely the hydrogel base (10 mg), hydrogel secretome (10 mg) and Bioplacenton™ (10 mg) treatment groups. All groups were treated twice a day (morning and evening) for 7 days. Skin tissue samples from the animals were processed for histological evaluation using the formalin-fixed paraffin-embedded method on days 3 and 7. Results This study's findings showed that secretome hydrogel expedited thermal burn wound healing, decreasing residual burn area, boosting collagen deposition and angiogenesis, guiding scar formation, and influencing the inflammation response facilitated by polymorphonuclear leukocytes and macrophages. Conclusion The secretome hydrogel significantly improves healing outcomes in partial-thickness cutaneous thermal burn wounds. The administration of secretome hydrogel accelerates the reduction of the residual burn area and promotes fibroblast proliferation and collagen density. The repairment of histo-architecture of the damaged tissue was also observed such as the reduction of burn depth, increased angiogenesis and epidermal scar index while the decreased dermal scar index. Furthermore, the secretome hydrogel can modulate the immunocompetent cells by decreasing the polymorphonuclear and increasing the mononuclear cells. Thus, it effectively and safely substitutes for thermal injury stem cell-free therapeutic approaches. The study focuses on the microscopical evaluation of secretome hydrogel; further research to investigate at the molecular level may be useful in predicting the beneficial effect of secretome hydrogel in accelerating wound healing.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | | | - Cahya Asri Antujala
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | | | - Rozak Kurnia Arsy
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Putut Andika Kurniawan
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Yudy Tjahjono
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Lucia Hendriati
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Teguh Widodo
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Ahmad Aswin
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Diyantoro Diyantoro
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Andi Yasmin Wijaya
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Helen Susilowati
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Zhang JT, Wu MF, Ma MH, Zhao L, Zhu JY, Nian H, Li FL. Research on the wound healing effect of Shengji Huayu Formula ethanol extract-derived fractions in streptozotocin-induced diabetic ulcer rats. BMC Complement Med Ther 2023; 23:67. [PMID: 36859252 PMCID: PMC9976525 DOI: 10.1186/s12906-023-03894-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Diabetic ulcer is a common complication of diabetes. It is characterized by a long-term disease course and high recurrence rate. Shengji Huayu Formula (SHF) is an effective formula for treating diabetic ulcers. However, the specific effective parts of SHF remain unclear. Clarifying the active polar site of SHF would be helpful to refine research on the components in SHF that promote wound healing. This research aims to focus on evaluating the activity of polar fractions. METHODS A diabetic rat model was established by intraperitoneally injecting streptozotocin (STZ) and was adopted to confirm the therapeutic effect of SHF. Four different polarity parts were extracted from SHF and prepared into a cream to evaluate the activity. High-performance liquid chromatography (HPLC) was used to detect chemical constituents in chloroform extracts. RESULTS It was discovered that dracorhodin, aloe-emodin, rhein, imperatorin, emodin, isoimperatorin, chrysophanol, physcion, and tanshinone IIA were the main components of the chloroform extract from SHF. The results revealed that chloroform extract could effectively accelerate diabetic wound healing by promoting collagen regeneration and epidermal repair. Chloroform extract of SHF could stimulate the generation of vascular endothelial growth factor (VEGF). The results are also indicated that the effective active fraction was the chloroform part, and the method of detecting the main chemical constituents in the active part was successfully established. CONCLUSION SHF could improve diabetic ulcers by promoting granulation tissue synthesis. In this study, four polar parts (petroleum ether, chloroform, ethylacetate, n-butanol) were extracted from a 95% ethanol extract. In contrast, chloroform polar parts showed a higher wound closure rate, stimulated more collagen regeneration and promoted more production of vascular endothelial cells. In conclusion, the chloroform extract of SHF was the effective polar part in ameliorating diabetic wound healing.
Collapse
Affiliation(s)
- Jing-Ting Zhang
- grid.412540.60000 0001 2372 7462Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China ,grid.412540.60000 0001 2372 7462Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Yueyang, 200437 China ,grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, 200080 China
| | - Min-Feng Wu
- grid.8547.e0000 0001 0125 2443Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, 200040 China
| | - Ming-Hua Ma
- grid.460149.e0000 0004 1798 6718Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090 China
| | - Liang Zhao
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908 China
| | - Jian-Yong Zhu
- grid.412540.60000 0001 2372 7462Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Yueyang, 200437, China.
| | - Fu-Lun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|