1
|
Magadum A, Renikunta HV, Singh N, Estaras C, Kishore R, Engel FB. Live cell screening identifies glycosides as enhancers of cardiomyocyte cell cycle activity. Front Cardiovasc Med 2022; 9:901396. [PMID: 36225954 PMCID: PMC9549374 DOI: 10.3389/fcvm.2022.901396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Promoting cardiomyocyte proliferation is a promising strategy to regenerate the heart. Yet, so far, it is poorly understood how cardiomyocyte proliferation is regulated, and no factor identified to promote mammalian cardiomyocyte proliferation has been translated into medical practice. Therefore, finding a novel factor will be vital. Here, we established a live cell screening based on mouse embryonic stem cell-derived cardiomyocytes expressing a non-functional human geminin deletion mutant fused to Azami Green (CM7/1-hgem-derived cardiomyocytes). We screened for a subset of compounds of the small molecule library Spectrum Collection and identified 19 potential inducers of stem cell-derived cardiomyocyte proliferation. Furthermore, the pro-proliferative potential of identified candidate compounds was validated in neonatal and adult rat cardiomyocytes as well as human induced pluripotent stem cell-derived cardiomyocytes. 18 of these compounds promoted mitosis and cytokinesis in neonatal rat cardiomyocytes. Among the top four candidates were two cardiac glycosides, peruvoside and convallatoxin, the flavonoid osajin, and the selective α-adrenoceptor antagonist and imidazoline I1 receptor ligand efaroxan hydrochloride. Inhibition of PTEN and GSK-3β enhanced cell cycle re-entry and progression upon stimulation with cardiac glycosides and osajin, while inhibition of IP3 receptors inhibited the cell cycle-promoting effect of cardiac glycosides. Collectively, we established a screening system and identified potential compounds to promote cardiomyocyte proliferation. Our data suggest that modulation of calcium handling and metabolism promotes cardiomyocyte proliferation, and cardiac glycosides might, besides increasing myocardial contraction force, contribute to cardiac repair by inducing cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Ajit Magadum
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Ajit Magadum
| | - Harsha V. Renikunta
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Cardiology, Charité Berlin - University Medicine, Berlin, Germany
| | - Neha Singh
- Department of Sports Biosciences, Central University of Rajasthan, Ajmer, India
| | - Conchi Estaras
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Raj Kishore
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, Philadelphia, PA, United States
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Felix B. Engel
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Erlangen, Germany
- Felix B. Engel
| |
Collapse
|
2
|
Shen CL, Mo H, Dunn DM, Watkins BA. Tocotrienol Supplementation Led to Higher Serum Levels of Lysophospholipids but Lower Acylcarnitines in Postmenopausal Women: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. Front Nutr 2022; 8:766711. [PMID: 35004805 PMCID: PMC8740329 DOI: 10.3389/fnut.2021.766711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a major health problem in postmenopausal women. Herein we evaluated the effects of 12-week tocotrienols (TT) supplementation on serum metabolites in postmenopausal, osteopenic women. Eighty-nine participants (59.7 ± 6.8 yr, BMI 28.7 ± 5.7 kg/m2) were assigned to 3 treatments: placebo (860 mg olive oil/day), 300mg TT (300 mg TT/day), and 600mg TT (600 mg TT/day) for 12 weeks. TT consisted of 90% δ-TT and 10% γ-TT. In this metabolomic study, we evaluated the placebo and 600mgTT at baseline and 12 weeks. As expected, TT and its metabolite levels were higher in the supplemented group after 12 weeks. At baseline, there were no differences in demographic parameters or comprehensive metabolic panels (CMP). Metabolomics analysis of serum samples revealed that 48 biochemicals were higher and 65 were lower in the 600mg TT group at 12 weeks, compared to baseline. The results confirmed higher serum levels of tocotrienols and lysophospholipids, but lower acylcarnitines and catabolites of tryptophan and steroids in subjects given 600mg TT. In summary, 12-week TT supplementation altered many serum metabolite levels in postmenopausal women. The present study supports our previous findings that TT supplementation helps reduce bone loss in postmenopausal osteopenic women by suppressing inflammation and oxidative stress. Furthermore, the body incorporates TT which restructures biomembranes and modifies phospholipid metabolism, a response potentially linked to reduced inflammation and oxidative stress.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Huanbiao Mo
- Nutrition, Georgia State University, Atlanta, GA, United States
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Cardiac glycosides with target at direct and indirect interactions with nuclear receptors. Biomed Pharmacother 2020; 127:110106. [PMID: 32248001 DOI: 10.1016/j.biopha.2020.110106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiac glycosides are compounds isolated from plants and animals and have been known since ancient times. These compounds inhibit the activity of the sodium potassium pump in eukaryotic cells. Cardiac glycosides were used as drugs in heart ailments to increase myocardial contraction force and, at the same time, to lower frequency of this contraction. An increasing number of studies have indicated that the biological effects of these compounds are not limited to inhibition of sodium-potassium pump activity. Furthermore, an increasing number of data have shown that they are synthesized in tissues of mammals, where they may act as a new class of steroid hormones or other hormones by mimicry to modulate various signaling pathways and influence whole organisms. Thus, we discuss the interactions of cardiac glycosides with the nuclear receptor superfamily of transcription factors activated by low-weight molecular ligands (including hormones) that regulate many functions of cells and organisms. Cardiac glycosides of endogenous and exogenous origin by interacting with nuclear receptors can affect the processes regulated by these transcription factors, including hormonal management, immune system, body defense, and carcinogenesis. They can also be treated as initial structures for combinatorial chemistry to produce new compounds (including drugs) with the desired properties.
Collapse
|
4
|
Cheng KC, Chang WT, Li Y, Cheng YZ, Cheng JT, Chen ZC. GW0742 activates peroxisome proliferator-activated receptor δ to reduce free radicals and alleviate cardiac hypertrophy induced by hyperglycemia in cultured H9c2 cells. J Cell Biochem 2018; 119:9532-9542. [PMID: 30129179 DOI: 10.1002/jcb.27270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/26/2018] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ), the predominant PPAR subtype in the heart, is known to regulate cardiac function. PPARδ activation may inhibit cardiac hypertrophy in H9c2 cells while the potential mechanism has not been elucidated. Then, H9c2 cells incubated with high glucose to induce hypertrophy were used to investigate using GW0742 to activate PPARδ. The fluorescence assays were applied to determine the changes in cell size, cellular calcium levels, and free radicals. Western blot analyses for hypertrophic signals and assays of messenger RNA (mRNA) levels for hypertrophic biomarkers were performed. In H9c2 cells, GW0742 inhibited cardiac hypertrophy. In addition, increases in cellular calcium and hypertrophic signals, including calcineurin and nuclear factor of activated T-cells, were reduced by GW0742. This reduction was parallel to the decrease in the mRNA levels of biomarkers, such as brain/B-type natriuretic peptides and β-myosin heavy chain. These effects of GW0742 were dose-dependently inhibited by GSK0660 indicating an activation of PPARδ by GW0742 to alleviate cardiac hypertrophy. Moreover, free radicals produced by hyperglycemia were also markedly inhibited by GW0742 and were later reversed by GSK0660. GW0742 promoted the expression of thioredoxin, an antioxidant enzyme. Direct inhibition of reactive oxygen species by GW0742 was also identified in the oxidant potassium bromate stimulated H9c2 cells. Taken together, these findings suggest that PPARδ agonists can inhibit free radicals, resulting in lower cellular calcium for reduction of hypertrophic signaling to alleviate cardiac hypertrophy in H9c2 cells. Therefore, PPARδ activation can be used to develop agent(s) for treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Wei-Ting Chang
- Department of Cardiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yung-Ze Cheng
- Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan.,Graduate Institute of Medical Science, Chang Jung Christian University, Gueiren, Tainan, Taiwan
| | - Zhih-Cherng Chen
- Department of Cardiology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Pharmacy, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| |
Collapse
|
5
|
Merit of ginseng in the treatment of heart failure in type 1-like diabetic rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:484161. [PMID: 24745017 PMCID: PMC3976851 DOI: 10.1155/2014/484161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/06/2014] [Indexed: 12/30/2022]
Abstract
The present study investigated the merit of ginseng in the improvement of heart failure in diabetic rats and the role of peroxisome proliferator-activated receptors δ (PPAR δ ). We used streptozotocin-induced diabetic rat (STZ-rat) to screen the effects of ginseng on cardiac performance and PPAR δ expression. Changes of body weight, water intake, and food intake were compared in three groups of age-matched rats; the normal control (Wistar rats) received vehicle, STZ-rats received vehicle and ginseng-treated STZ-rats. We also determined cardiac performances in addition to blood glucose level in these animals. The protein levels of PPAR δ in hearts were identified using Western blotting analysis. In STZ-rats, cardiac performances were decreased but the food intake, water intake, and blood glucose were higher than the vehicle-treated control. After a 7-day treatment of ginseng in STZ-rats, cardiac output was markedly enhanced without changes in diabetic parameters. This treatment with ginseng also increased the PPAR δ expression in hearts of STZ-rats. The related signal of cardiac contractility, troponin I phosphorylation, was also raised. Ginseng-induced increasing of cardiac output was reversed by the cotreatment with PPAR δ antagonist GSK0660. Thus, we suggest that ginseng could improve heart failure through the increased PPAR δ expression in STZ-rats.
Collapse
|
6
|
Ginseng is useful to enhance cardiac contractility in animals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:723084. [PMID: 24689053 PMCID: PMC3932289 DOI: 10.1155/2014/723084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/25/2013] [Indexed: 12/24/2022]
Abstract
Ginseng has been shown to be effective on cardiac dysfunction. Recent evidence has highlighted the mediation of peroxisome proliferator-activated receptors (PPARs) in cardiac function. Thus, we are interested to investigate the role of PPARδ in ginseng-induced modification of cardiac contractility. The isolated hearts in Langendorff apparatus and hemodynamic analysis in catheterized rats were applied to measure the actions of ginseng ex vivo and in vivo. In normal rats, ginseng enhanced cardiac contractility and hemodynamic dP/dt(max) significantly. Both actions were diminished by GSK0660 at a dose enough to block PPARδ. However, ginseng failed to modify heart rate at the same dose, although it did produce a mild increase in blood pressure. Data of intracellular calcium level and Western blotting analysis showed that both the PPARδ expression and troponin I phosphorylation were raised by ginseng in neonatal rat cardiomyocyte. Thus, we suggest that ginseng could enhance cardiac contractility through increased PPARδ expression in cardiac cells.
Collapse
|
7
|
Picatoste B, Ramírez E, Caro-Vadillo A, Iborra C, Egido J, Tuñón J, Lorenzo Ó. Sitagliptin reduces cardiac apoptosis, hypertrophy and fibrosis primarily by insulin-dependent mechanisms in experimental type-II diabetes. Potential roles of GLP-1 isoforms. PLoS One 2013; 8:e78330. [PMID: 24302978 PMCID: PMC3840053 DOI: 10.1371/journal.pone.0078330] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/11/2013] [Indexed: 12/31/2022] Open
Abstract
Background Myocardial fibrosis is a key process in diabetic cardiomyopathy. However, their underlying mechanisms have not been elucidated, leading to a lack of therapy. The glucagon-like peptide-1 (GLP-1) enhancer, sitagliptin, reduces hyperglycemia but may also trigger direct effects on the heart. Methods Goto-Kakizaki (GK) rats developed type-II diabetes and received sitagliptin, an anti-hyperglycemic drug (metformin) or vehicle (n=10, each). After cardiac structure and function assessment, plasma and left ventricles were isolated for biochemical studies. Cultured cardiomyocytes and fibroblasts were used for invitro assays. Results Untreated GK rats exhibited hyperglycemia, hyperlipidemia, plasma GLP-1 decrease, and cardiac cell-death, hypertrophy, fibrosis and prolonged deceleration time. Moreover, cardiac pro-apoptotic/necrotic, hypertrophic and fibrotic factors were up-regulated. Importantly, both sitagliptin and metformin lessened all these parameters. In cultured cardiomyocytes and cardiac fibroblasts, high-concentration of palmitate or glucose induced cell-death, hypertrophy and fibrosis. Interestingly, GLP-1 and its insulinotropic-inactive metabolite, GLP-1(9-36), alleviated these responses. In addition, despite a specific GLP-1 receptor was only detected in cardiomyocytes, GLP-1 isoforms attenuated the pro-fibrotic expression in cardiomyocytes and fibroblasts. In addition, GLP-1 receptor signalling may be linked to PPARδ activation, and metformin may also exhibit anti-apoptotic/necrotic and anti-fibrotic direct effects in cardiac cells. Conclusions Sitagliptin, via GLP-1 stabilization, promoted cardioprotection in type-II diabetic hearts primarily by limiting hyperglycemia e hyperlipidemia. However, GLP-1 and GLP-1(9-36) promoted survival and anti-hypertrophic/fibrotic effects on cultured cardiac cells, suggesting cell-autonomous cardioprotective actions.
Collapse
Affiliation(s)
- Belén Picatoste
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
| | - Elisa Ramírez
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
| | | | - Cristian Iborra
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
| | - Jesús Egido
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
| | - José Tuñón
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
| | - Óscar Lorenzo
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Lo SH, Lee KS, Chen LJ, Cheng JT, Chen CH. Increase of PPARδ by dopamine mediated via DA-1 receptor-linked phospholipase C pathway in neonatal rat cardiomyocytes. Auton Neurosci 2013; 177:211-6. [PMID: 23701913 DOI: 10.1016/j.autneu.2013.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Role of peroxisome proliferator-activated receptor δ (PPARδ) in cardiac contraction has recently been established. Dopamine is one of the agents used to treat heart failure in clinics. But the mediation of PPARδ in cardiac action of dopamine is still unclear. METHODS The present study is aimed to clarify this point using neonatal rat cardiomyocytes to investigate the changes of PPARδ expression and cardiac troponin I (cTnI) phosphorylation by Western blotting analysis. Antagonists of receptors, inhibitor of phospholipase C (PLC) (U73122), calcium chelator (BAPTA-AM), and inhibitor of protein kinase A (PKAI) were also applied. We silenced PPARδ by RNAi to identify the major role of PPARδ in dopamine-induced actions. RESULTS Dopamine increases PPARδ expression and cardiac troponin I (cTnI) phosphorylation in a time- and dose-dependent manner in neonatal rat cardiomyocytes. Moreover, both actions of dopamine were blocked by DA1 receptor antagonist and PLC inhibitor but not by PKAI. The increase of cTnI phosphorylation by dopamine was also inhibited in cardiomyocytes silenced by RNAi of PPARδ. CONCLUSION We suggest that dopamine can enhance cardiac contraction mainly through an activation of DA1 receptor-linked PLC pathway to increase cellular calcium ions for the increase of PPARδ expression.
Collapse
Affiliation(s)
- Shih-Hsiang Lo
- Department of Internal Medicine - Cardiology, Taipei City Hospital - Zhongxing Branch, Datong Dist., Taipei City 10341, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Doxorubicin-Induced Cardiac Toxicity Is Mediated by Lowering of Peroxisome Proliferator-Activated Receptor δ Expression in Rats. PPAR Res 2013; 2013:456042. [PMID: 23533379 PMCID: PMC3603302 DOI: 10.1155/2013/456042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/29/2012] [Accepted: 01/29/2013] [Indexed: 12/22/2022] Open
Abstract
The present study investigates the changes of peroxisome proliferator-activated receptors δ (PPARδ) expression and troponin phosphorylation in heart of rats which were treated with doxorubicin (DOX). Wistar rats which were treated with DOX according to a previous method. The protein levels of PPARδ and troponin phosphorylation were measured using Western blot. The PPARδ expression in heart was markedly reduced in DOX-treated rats showing a marked decrease in cardiac dP/dT and cardiac output. Also, cardiac troponin phosphorylation was lowered in DOX-treated rats. Meanwhile, combined treatment with the agonist of PPARδ (GW0742) reversed the decrease of cardiac dP/dT and cardiac output in DOX-treated rats. Then, primary cultured cardiomyocytes from neonatal rats were used to measure the changes of calcium concentration in cells. In addition to both decrease of PPARδ expression and troponin phosphorylation in neonatal cardiomyocytes by DOX, a marked decrease of calcium concentration was also observed. Our results suggest the mediation of cardiac PPARδ in DOX-induced cardiotoxicity in rats. Thus, activation of PPARδ may restore the expression of p-TnI and the cardiac performance in DOX-induced cardio toxicity in rats.
Collapse
|
10
|
Cheng YZ, Chen LJ, Lee WJ, Chen MF, Jung Lin H, Cheng JT. Increase of myocardial performance by Rhodiola-ethanol extract in diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:234-239. [PMID: 23044195 DOI: 10.1016/j.jep.2012.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/22/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhodiola rosea (also known as golden root or roseroot) is a perennial plant of the Crassulaceae family that grows in the Arctic and in the mountainous regions of Europe, Asia, and North America. The rhizome and roots of this plant have been long used as traditional medicine in Eastern Europe and Asia for enhancing physical and mental performance. AIM OF THE STUDY The present study is designed to investigate the cardiac action of Rhodiola-ethanol extract in streptozotocin-induced diabetic rats (STZ-diabetic rats) with heart failure. MATERIALS AND METHODS Diabetes was induced in Wistar rats by injection of streptozotocin. We measured the changes of body weight, water intake, and food intake in three groups of age-matched rats; the normal control received vehicle, STZ-diabetic rat received Rhodiola-ethanol extract or vehicle. Cardiac output, heart rate, blood pressure, and hemodynamic dP/dt in addition to plasma insulin and glucose level were also determined. The mRNA and protein levels of PPARδ were measured using real-time PCR and Western blotting, respectively. RESULTS Food intake, water intake and blood glucose were raised in STZ-diabetic rats showing lower body weight and plasma insulin, as compared with the control. Also, cardiac output, heart rate, blood pressure and hemodynamic dP/dt were markedly reduced in STZ-diabetic rats indicating the heart failure physiologically. After a 21-day treatment with Rhodiola-ethanol extract, cardiac output was raised in STZ-rats while the diabetic parameters were not modified. The PPARδ expression of both mRNA and protein was markedly elevated in the heart of STZ-rats receiving treatment with Rhodiola-ethanol extract. Also, the increased phosphorylation level of cardiac troponin-I was restored by this treatment with Rhodiola-ethanol extract. Otherwise, increase of cardiac output by Rhodiola-ethanol extract was blocked by antagonist of PPARδ in STZ-diabetic rats. CONCLUSIONS Our results suggest that ethanol extract of Rhodiola has an ability to increase the cardiac output in STZ-diabetic rats showing heart failure. Also, increase of PPAR-δ is responsible for this action of Rodiola-ethanol extract.
Collapse
Affiliation(s)
- Yung-Ze Cheng
- Department of Emergency Medicine, Chi-Mei Medical Center, Yung Kang, Tainan City, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
11
|
Lee EY, Kim GT, Hyun M, Kim S, Seok S, Choi R, Lee MY, Chung CH. Peroxisome proliferator-activated receptor- activation ameliorates albuminuria by preventing nephrin loss and restoring podocyte integrity in Type 2 diabetes. Nephrol Dial Transplant 2012; 27:4069-79. [DOI: 10.1093/ndt/gfs358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Chen ZC, Yu BC, Chen LJ, Cheng KC, Lin HJ, Cheng JT. Characterization of the mechanisms of the increase in PPARδ expression induced by digoxin in the heart using the H9c2 cell line. Br J Pharmacol 2011; 163:390-8. [PMID: 21232041 DOI: 10.1111/j.1476-5381.2011.01212.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Digoxin has been used as an inotropic agent in heart failure for a long time. Troponin I (TnI) phosphorylation is related to cardiac contractility, and the genes are regulated by peroxisome proliferator-activated receptors (PPARs). Our previous studies indicated that cardiac abnormality related to the depressed expression of PPARδ in the hearts of STZ rats is reversed by digoxin. However, the cellular mechanisms for this effect of digoxin have not been elucidated. The aim of the present study was to investigate possible mechanisms for this effect of digoxin using the H9c2 cell line cultured in high glucose (HG) conditions. METHODS The effects of digoxin on PPARδ expression, intracellular calcium and TnI phosphorylation were investigated in cultured H9c2 cells, maintained in a HG medium, by using Western blot analysis. RESULTS Digoxin increased PPARδ expression in H9c2 cells subjected to HG conditions, and increase the intracellular calcium concentration. This effect of digoxin was blocked by BAPTA-AM at concentrations sufficient to chelate calcium ions. In addition, the calcineurin inhibitor cyclosporine A and KN93, an inhibitor of calcium/calmodulin-dependent protein kinase, inhibited this action. Digoxin also increased TnI phosphorylation and this was inhibited when PPARδ was silenced by the addition of RNAi to the cells. Similar changes were observed on the contraction of H9c2 cells. CONCLUSION The results suggest that digoxin appears, through calcium-triggered signals, to reverse the reduced expression of PPARδ in H9c2 cells caused by HG treatment.
Collapse
Affiliation(s)
- Zhih-Cherng Chen
- Department of Cardiology, Chi-Mei Medical Center, Yong Kang City, Tainan County, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Ku PM, Chen LJ, Liang JR, Cheng KC, Li YX, Cheng JT. Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility. Cardiovasc Diabetol 2011; 10:57. [PMID: 21702924 PMCID: PMC3141394 DOI: 10.1186/1475-2840-10-57] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/24/2011] [Indexed: 01/10/2023] Open
Abstract
Background Diabetic cardiomyopathy, a diabetes-specific complication, refers to a disorder that eventually leads to left ventricular hypertrophy in addition to diastolic and systolic dysfunction. In recent studies, hyperglycemia-induced reactive oxygen species (ROS) in cardiomyocytes have been linked to diabetic cardiomyopathy. GATA binding protein 4 (GATA-4) regulates the expression of many cardio-structural genes including cardiac troponin-I (cTnI). Methods Streptozotocin-induced diabetic rats and H9c2 embryonic rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on GATA-4 accumulation in the nucleus. cTnI expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of cTnI and GATA-4 by Western blot analysis. Results Cardiac output was lowered in STZ-induced diabetic rats. In addition, higher expressions of cardiac troponin I (cTnI) and phosphorylated GATA-4 were identified in these rats by Western blotting. The changes were reversed by treatment with insulin or phlorizin after correction of the blood sugar level. In H9c2 cells, ROS production owing to the high glucose concentration increased the expression of cTnI and GATA-4 phosphorylation. However, hyperglycemia failed to increase the expression of cTnI when GATA-4 was silenced by small interfering RNA (siRNA) in H9c2 cells. Otherwise, activation of ERK is known to be a signal for phosphorylation of serine105 in GATA-4 to increase the DNA binding ability of this transcription factor. Moreover, GSK3β could directly interact with GATA-4 to cause GATA-4 to be exported from the nucleus. GATA-4 nuclear translocation and GSK3β ser9 phosphorylation were both elevated by a high glucose concentration in H9c2 cells. These changes were reversed by tiron (ROS scavenger), PD98059 (MEK/ERK inhibitor), or siRNA of GATA-4. Cell contractility measurement also indicated that the high glucose concentration decreased the contractility of H9c2 cells, and this was reduced by siRNA of GATA-4. Conclusions Hyperglycemia can cause systolic dysfunction and a higher expression of cTnI in cardiomyocytes through ROS, enhancing MEK/ERK-induced GATA-4 phosphorylation and accumulation in the cell nucleus.
Collapse
Affiliation(s)
- Po-Ming Ku
- Department of Medical Research, Chi-Mei Medical Center, No, 901 Chon-Hwa Road, Yong Kang, Tainan City, Taiwan
| | | | | | | | | | | |
Collapse
|