Mei H, Li J, Liu S, Jeyaraj A, Zhuang J, Wang Y, Chen X, Yuan Q, Li X. The Role of Green Tea on the Regulation of Gut Microbes and Prevention of High-Fat Diet-Induced Metabolic Syndrome in Mice.
Foods 2023;
12:2953. [PMID:
37569222 PMCID:
PMC10418490 DOI:
10.3390/foods12152953]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Green tea is a popular non-alcoholic beverage consumed worldwide and has been shown to be beneficial for human health. However, further exploration is needed to fully understand its function in reducing obesity and regulating gut microbes. Here, we investigated the modulatory effects of green tea and its functional components on high-fat diet (HF)-induced metabolic alterations and gut microbiota in obese mice. Our results showed that 1%, 2%, and 4% of green tea promotes weight loss, with the 2% and 4% groups exhibiting distinct gut microflora clusters compared to the HF group. These results were comparable to those observed in the tea polyphenols (TPP)-treated group, suggesting the TPP in green tea plays a crucial role in body weight control and gut microbiota regulation. Additionally, 32 bacteria were identified as potential obesity markers via 16S rRNA gene sequencing. The 16SrDNA gene is a chromosomal gene present in all bacterial species, highly conserved in structure and function, that can reflect the differences between different taxa. The 16S rRNA-based analysis revealed that Akkermansia, a gut-beneficial bacteria, significantly increased in the TPP group.
Collapse