1
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
2
|
Wang J, Huang L, Huang Y, Jiang Y, Zhang L, Feng G, Liu L. Therapeutic effect of the injectable thermosensitive hydrogel loaded with SHP099 on intervertebral disc degeneration. Life Sci 2020; 266:118891. [PMID: 33310047 DOI: 10.1016/j.lfs.2020.118891] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 02/05/2023]
Abstract
AIMS Intervertebral disc (IVD) degeneration (IDD), a common musculoskeletal disease with limited self-healing ability, is challenging to treat. The development of innovative therapies to reverse IDD depends on the elucidation of its regulatory mechanisms. Therefore, the role of Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2) in the pathogenesis of IDD and the therapeutic effect of its small-molecule inhibitor, SHP099, were investigated. MATERIALS AND METHODS The expression of SHP2 by nucleus pulposus (NP) cells in IVD was investigated in vitro and in vivo, and its molecular mechanism in IDD was explored using transfection technology. Injectable N-isopropylacrylamide-based thermosensitive hydrogels were synthesized for SHP099 delivery. KEY FINDINGS SHP2 was highly expressed in degenerated IVDs, where its overexpression in NP cells inhibited the expression of Sry-related HMG box-9 (Sox9), leading to the decreased expression of key proteins (collagen II and aggrecan) and consequently to IDD. SHP099 reversed the degeneration of NP cells in vitro. Moreover, its administration in rats via the injectable thermosensitive hydrogel had a therapeutic effect on IDD. SIGNIFICANCE Our results suggest that SHP2 is a key factor in IDD progression, and SHP099 inhibits both its expression and NP cell degeneration. Therefore, SHP099 delivery via injectable thermosensitive hydrogels is a potential treatment strategy for IDD.
Collapse
Affiliation(s)
- Jingcheng Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Leizhen Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yulin Jiang
- Analytical and Testing Center, State Key Laboratory of Oral Diseases, School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Analytical and Testing Center, State Key Laboratory of Oral Diseases, School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Stem Cells for the Treatment of Intervertebral Disk Degeneration. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Penolazzi L, Lambertini E, Bergamin LS, Roncada T, De Bonis P, Cavallo M, Piva R. MicroRNA-221 silencing attenuates the degenerated phenotype of intervertebral disc cells. Aging (Albany NY) 2019; 10:2001-2015. [PMID: 30130742 PMCID: PMC6128426 DOI: 10.18632/aging.101525] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the role of an antichondrogenic factor, MIR221 (miR-221), in intervertebral disc degeneration (IDD), and provide basic information for the development of a therapeutic strategy for the disc repair based on specific nucleic acid based drugs, such as miR-221 silencing. We established a relatively quick protocol to minimize artifacts from extended in vitro culture, without selecting the different types of cells from intervertebral disc (IVD) or completely disrupting extracellular matrix (ECM), but by using the whole cell population with a part of resident ECM. During the de-differentiation process miR-221 expression significantly increased. We demonstrated the effectiveness of miR-221 silencing in driving the cells towards chondrogenic lineage. AntagomiR-221 treated cells showed in fact a significant increase of expression of typical chondrogenic markers including COL2A1, ACAN and SOX9, whose loss is associated with IDD. Moreover, antagomiR-221 treatment restored FOXO3 expression and increased TRPS1 expression levels attenuating the severity grade of degeneration, and demonstrating in a context of tissue degeneration and inflammation not investigated before, that FOXO3 is target of miR-221. Data of present study are promising in the definition of new molecules useful as potential intradiscal injectable biological agents.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Tosca Roncada
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Pasquale De Bonis
- Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy
| | - Michele Cavallo
- Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.,Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Penolazzi L, Lambertini E, Scussel Bergamin L, Gandini C, Musio A, De Bonis P, Cavallo M, Piva R. Reciprocal Regulation of TRPS1 and miR-221 in Intervertebral Disc Cells. Cells 2019; 8:cells8101170. [PMID: 31569377 PMCID: PMC6829335 DOI: 10.3390/cells8101170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc (IVD), a moderately moving joint located between the vertebrae, has a limited capacity for self-repair, and treating injured intervertebral discs remains a major challenge. The development of innovative therapies to reverse IVD degeneration relies primarily on the discovery of key molecules that, occupying critical points of regulatory mechanisms, can be proposed as potential intradiscal injectable biological agents. This study aimed to elucidate the underlying mechanism of the reciprocal regulation of two genes differently involved in IVD homeostasis, the miR-221 microRNA and the TRPS1 transcription factor. Human lumbar IVD tissue samples and IVD primary cells were used to specifically evaluate gene expression and perform functional analysis including the luciferase gene reporter assay, chromatin immunoprecipitation, cell transfection with hTRPS1 overexpression vector and antagomiR-221. A high-level expression of TRPS1 was significantly associated with a lower pathological stage, and TRPS1 overexpression strongly decreased miR-221 expression, while increasing the chondrogenic phenotype and markers of antioxidant defense and stemness. Additionally, TRPS1 was able to repress miR-221 expression by associating with its promoter and miR-221 negatively control TRPS1 expression by targeting the TRPS1-3'UTR gene. As a whole, these results suggest that, in IVD cells, a double-negative feedback loop between a potent chondrogenic differentiation suppressor (miR-221) and a regulator of axial skeleton development (TRPS1) exists. Our hypothesis is that the hostile degenerated IVD microenvironment may be counteracted by regenerative/reparative strategies aimed at maintaining or stimulating high levels of TRPS1 expression through inhibition of one of its negative regulators such as miR-221.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Leticia Scussel Bergamin
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Carlotta Gandini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Antonio Musio
- Department of Neurosurgery, S. Anna University Hospital, 44124 Ferrara, Italy.
| | - Pasquale De Bonis
- Department of Neurosurgery, S. Anna University Hospital, 44124 Ferrara, Italy.
| | - Michele Cavallo
- Department of Neurosurgery, S. Anna University Hospital, 44124 Ferrara, Italy.
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
- Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
6
|
Loibl M, Wuertz‐Kozak K, Vadala G, Lang S, Fairbank J, Urban JP. Controversies in regenerative medicine: Should intervertebral disc degeneration be treated with mesenchymal stem cells? JOR Spine 2019; 2:e1043. [PMID: 31463457 PMCID: PMC6711491 DOI: 10.1002/jsp2.1043] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/31/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Low back pain (LBP) can significantly reduce the quality of life of patients, and has a considerable economic and social impact worldwide. It is commonly associated with disc degeneration, even though many people with degenerate discs are asymptomatic. Degenerate disc disease (DDD), is thus a common term for intervertebral disc (IVD) degeneration associated with LBP. Degeneration is thought to lead to LBP because of nerve ingrowth into the degenerate disc, inflammation, or because degradation of extracellular matrix (ECM) alters spinal biomechanics inappropriately. Thus, while the objectives of some interventions for LBP are to control pain intensity, other interventions aim to deal with the consequences of disc degeneration through stabilizing the disc surgically, by inserting artificial discs or by repairing the disc biologically and preventing progressive IVD degeneration. Despite tremendous research efforts, treatment of LBP through the use of regenerative interventions aiming to repair the IVD is still controversial. The use of mesenchymal stem cells for IVD regeneration in a patient-based case will be discussed by an ensemble of clinicians and researchers.
Collapse
Affiliation(s)
- Markus Loibl
- Department of Spine SurgerySchulthess KlinikZürichSwitzerland
- Department of Trauma SurgeryRegensburg University Medical CenterRegensburgGermany
| | - Karin Wuertz‐Kozak
- Institute for Biomechanics, Department of Health Sciences and TechnologyETH Zürich, ZürichSwitzerland
- Spine Center, Schön Klinik MünchenMunichGermany
- Academic Teaching Hospital and Spine Research InstituteParacelsus Private Medical UniversitySalzburgAustria
- Department of Health ScienceUniversity of PotsdamPotsdamGermany
| | - Gianluca Vadala
- Department of Orthopaedic and Trauma SurgeryCampus Bio‐Medico University of RomeRomeItaly
| | - Siegmund Lang
- Department of Trauma SurgeryRegensburg University Medical CenterRegensburgGermany
| | - Jeremy Fairbank
- Nuffield Department of OrthopaedicsRheumatology and Musculoskeletal Sciences (NDORMS), University of OxfordOxfordUK
| | - Jill P. Urban
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Samartzis D, Alini M, An HS, Karppinen J, Rajasekaran S, Vialle L, Wang JC, de Kleuver M. Precision Spine Care: A New Era of Discovery, Innovation, and Global Impact. Global Spine J 2018; 8:321-322. [PMID: 29977715 PMCID: PMC6022953 DOI: 10.1177/2192568218774044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
| | | | - Howard S. An
- Rush University Medical Center, Chicago, IL, USA
| | - Jaro Karppinen
- Oulu University Hospital and University of Oulu, Oulu, Finland;,Finnish Institute of Occupational Health, Oulu, Finland
| | | | - Luiz Vialle
- Pontificia Universidade Catolica do Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
8
|
Vedicherla S, Buckley CT. Cell-based therapies for intervertebral disc and cartilage regeneration- Current concepts, parallels, and perspectives. J Orthop Res 2017; 35:8-22. [PMID: 27104885 DOI: 10.1002/jor.23268] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/08/2016] [Indexed: 02/04/2023]
Abstract
Lower back pain from degenerative disc disease represents a global health burden, and presents a prominent opportunity for regenerative therapeutics. While current regenerative therapies such as autologous disc chondrocyte transplantation (ADCT), allogeneic juvenile chondrocyte implantation (NuQu®), and immunoselected allogeneic adipose derived precursor cells (Mesoblast) show exciting clinical potential, limitations remain. The heterogeneity of preclinical approaches and the paucity of clinical guidance have limited translational outcomes in disc repair, lagging almost a decade behind cartilage repair. Advances in cartilage repair have evolved to single step approaches with improved orthopedic repair and regeneration. Elements from cartilage regeneration endeavors could be adopted and applied to harness translatable approaches and deliver a clinically and economically feasible regenerative surgery for back pain. In this article, we trace the developments behind the translational success of cartilage repair, examine elements to consider in achieving disc regeneration, and the need for surgical redesign. We further discuss clinical parameters, objectives, and coordination required to deliver improved regenerative surgery. Cell source, processing, and delivery modalities are key issues to be addressed in considering surgical redesign. Advances in biomanufacturing, tissue cryobanking, and point of care cell processing technology may enable intraoperative solutions for single step procedures. To maximize translational success a triad partnership between clinicians, industry, and researchers will be critical in providing instructive clinical guidelines for design as well as practical and economic considerations. This will allow a consensus in research ventures and add regenerative surgery into the algorithm in managing and treating a debilitating condition such as back pain. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:8-22, 2017.
Collapse
Affiliation(s)
- Srujana Vedicherla
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,School of Medicine, Trinity College Dublin, Ireland
| | - Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
9
|
Abstract
Locomotive syndrome is a condition of reduced mobility due to impairment of locomotive organs. Since upright bipedal walking involves minutely controlled movement patterns, impairment of any aspect of the locomotive organs has the potential to adversely affect it. In addition to trauma, chronic diseases of the locomotive organs, which progress with repeated bouts of acute exacerbations, are common causes of the locomotive syndrome. In Japan's super-aging society, many people are likely to experience locomotive syndrome in the later part of their lives. Exercise intervention is effective in improving motor function, but because the subjects are elderly people with significant degenerative diseases of the locomotor organs, caution should be taken in choosing the type and intensity of exercise. The present review discusses the definition, current burden, diagnosis and interventions pertaining to the locomotive syndrome. The concept and measures are spreading throughout Japan as one of the national health policy targets.
Collapse
|