Matsuishi Y, Mathis BJ, Shimojo N, Kawano S, Inoue Y. Evaluating the Therapeutic Efficacy and Safety of Landiolol Hydrochloride for Management of Arrhythmia in Critical Settings: Review of the Literature.
Vasc Health Risk Manag 2020;
16:111-123. [PMID:
32308404 PMCID:
PMC7138627 DOI:
10.2147/vhrm.s210561]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background
Landiolol hydrochloride, a highly cardio-selective beta-1 blocker with an ultra-short-acting half-life of 4 minutes, was originally approved by Japan for treatment of intraoperative tachyarrhythmias. This review aims to provide an integrated overview of the current state of knowledge of landiolol hydrochloride in the management of arrhythmia in critical settings.
Methods
We searched MEDLINE, EMBASE, and the Cochrane Library to retrieve relevant articles with a total of 65 records identified.
Results
The high β1 selectivity (β1/β2 ratio of 255:1) of landiolol causes a more rapid heart rate (HR) decrease compared to esmolol while avoiding decreases in mean arterial blood pressure. Recently, it has been found useful in left ventricular dysfunction patients and fatal arrhythmia requiring emergency treatment. Recent random clinical trials (RCT) have revealed therapeutic and prophylactic effects on arrhythmia, and very low-dose landiolol might be effective for preventing postoperative atrial fibrillation (POAF) and sinus tachycardia. Likewise, landiolol is an optimal choice for perioperative tachycardia treatment during cardiac surgery. The high β1 selectivity of landiolol is useful in heart failure patients as a first-line therapy for tachycardia and arrhythmia as it avoids the typical depression of cardiac function seen in other β-blockers. Application in cardiac injury after percutaneous coronary intervention (PCI), protection for vital organs (lung, kidney, etc.) during sepsis, and stabilizing hemodynamics in pediatric patients are becoming the new frontier of landiolol use.
Conclusion
Landiolol is useful as a first-line therapy for the prevention of POAF after cardiac/non-cardiac surgery, fatal arrhythmias in heart failure patients and during PCI. Moreover, the potential therapeutic effect of landiolol for sepsis in pediatric patients is currently being explored. As positive RCT results continue to be published, new clinical uses and further clinical studies in various settings by cardiologists, intensivists and pediatric cardiologists are being conducted.
Collapse