1
|
Sharifi M, Bahrami SH. Review on application of herbal extracts in biomacromolecules-based nanofibers as wound dressings and skin tissue engineering. Int J Biol Macromol 2024; 277:133666. [PMID: 38971295 DOI: 10.1016/j.ijbiomac.2024.133666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The skin, which covers an area of 2 square meters of an adult human, accounts for about 15 % of the total body weight and is the body's largest organ. It protects internal organs from external physical, chemical, and biological attacks, prevents excess water loss from the body, and plays a role in thermoregulation. The skin is constantly exposed to various damages so that wounds can be acute or chronic. Although wound healing includes hemostasis, inflammatory, proliferation, and remodeling, chronic wounds face different treatment problems due to the prolonged inflammatory phase. Herbal extracts such as Nigella Sativa, curcumin, chamomile, neem, nettle, etc., with varying properties, including antibacterial, antioxidant, anti-inflammatory, antifungal, and anticancer, are used for wound healing. Due to their instability, herbal extracts are loaded in wound dressings to facilitate skin wounds. To promote skin wounds, skin tissue engineering was developed using polymers, bioactive molecules, and biomaterials in wound dressing. Conventional wound dressings, such as bandages, gauzes, and films, can't efficiently respond to wound healing. Adhesion to the wounds can worsen the wound conditions, increase inflammation, and cause pain while removing the scars. Ideal wound dressings have good biocompatibility, moisture retention, appropriate mechanical properties, and non-adherent and proper exudate management. Therefore, by electrospinning for wound healing applications, natural and synthesis polymers are utilized to fabricate nanofibers with high porosity, high surface area, and suitable mechanical and physical properties. This review explains the application of different herbal extracts with different chemical structures in nanofibrous webs used for wound care.
Collapse
Affiliation(s)
- Mohaddeseh Sharifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Luo JF, Zhou H, Lio CK. Akebia Saponin D Inhibits the Inflammatory Reaction by Inhibiting the IL-6-STAT3-DNMT3b Axis and Activating the Nrf2 Pathway. Molecules 2022; 27:molecules27196236. [PMID: 36234773 PMCID: PMC9614599 DOI: 10.3390/molecules27196236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Akebia saponin D (ASD) is derived from the Dipsacus asper Wall. ex Henry, which is a traditional Chinese medicine commonly used to treat rheumatic arthritis (RA). However, the in-depth mechanism of the anti-inflammatory effect of ASD is still unclear. This study aimed to preliminarily explore the anti-inflammatory effect of ASD and the underlying mechanisms from the perspective of DNA methylation and inflammation-related pathways. We found that ASD significantly reduced the production of multiple inflammatory mediators, including nitric oxide (NO) and prostaglandin E2 (PGE2), in LPS-induced RAW264.7 cells. The expression of DNA methyltransferase (DNMT) 3b and inducible nitric oxide synthase (iNOS) was also obviously inhibited by the ASD treatment. The protein and mRNA levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also significantly inhibited by ASD. ASD inhibited the macrophage M1 phenotype, inhibited the high level of DNMT3b, and downregulated the signal transducer and activator of the transcription 3 (STAT3) pathway to exert its anti-inflammatory activity. Furthermore, DNMT3b siRNA and Nrf2 siRNA significantly promoted the anti-inflammatory effect of ASD. Our study demonstrates for the first time that ASD inhibits the IL-6-STAT3-DNMT3b axis and activates the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway to achieve its inhibitory effect on inflammatory reactions.
Collapse
Affiliation(s)
- Jin-Fang Luo
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang 550025, China
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
- Correspondence:
| | - Chon-Kit Lio
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medcine and Immune Disease Research, Guangzhou 510006, China
| |
Collapse
|
3
|
Deng T, Xu X, Fu J, Xu Y, Qu W, Pi J, Wang H. Application of ARE-reporter systems in drug discovery and safety assessment. Toxicol Appl Pharmacol 2022; 454:116243. [PMID: 36115658 DOI: 10.1016/j.taap.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The human body is continuously exposed to xenobiotics and internal or external oxidants. The health risk assessment of exogenous chemicals remains a complex and challenging issue. Alternative toxicological test methods have become an essential strategy for health risk assessment. As a core regulator of constitutive and inducible expression of antioxidant response element (ARE)-dependent genes, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in maintaining cellular redox homeostasis. Consistent with the properties of Nrf2-mediated antioxidant response, Nrf2-ARE activity is a direct indicator of oxidative stress and thus has been used to identify and characterize oxidative stressors and redox modulators. To screen and distinguish chemicals or environmental insults that affect the cellular antioxidant activity and/or induce oxidative stress, various in vitro cell models expressing distinct ARE reporters with high-throughput and high-content properties have been developed. These ARE-reporter systems are currently widely applied in drug discovery and safety assessment. In the present review, we provide an overview of the basic structures and applications of various ARE-reporter systems employed for discovering Nrf2-ARE modulators and characterizing oxidative stressors.
Collapse
Affiliation(s)
- Tianqi Deng
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaoge Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Huihui Wang
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Kang DY, Sp N, Bae SW, Jang KJ. Methylsulfonylmethane relieves cobalt chloride-induced hypoxic toxicity in C2C12 myoblasts. Life Sci 2022; 301:120619. [PMID: 35561750 DOI: 10.1016/j.lfs.2022.120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
Abstract
AIMS In biology and medicine, hypoxia refers to reduced oxygen tension or oxygen starvation resulting from various environmental or pathological conditions. Prolonged hypoxia may lead to an imbalance in protein production and a loss of muscle mass in animals. The physiological response to hypoxia includes oxidative stress-induced activation of complex cell-signaling networks such as hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K), and Janus kinase/signal transducer and activator of transcription (JAK-STAT). Methylsulfonylmethane (MSM) is a natural sulfur compound that regulates HIF-1α expression and provides cytoprotection from oxidative stress. In this study, we explored the anti-hypoxic activity and cytoprotective effect of MSM in cobalt chloride (CoCl2)-induced hypoxic C2C12 mouse myoblast culture. MATERIALS AND METHODS We used western blotting, real time PCR, flow cytometry for molecular signaling studies and we also used MTT assay and ChIP assay along with comet assay for cellular processes. KEY FINDINGS MSM prevented the CoCl2 induced cytotoxicity. Molecular markers of hypoxia, induced by CoCl2, were normalized or reduced by MSM, which also inhibited the effect of CoCl2-induced JAK2/STAT5b/Cyclin D1 and PI3K/AKT signaling. CoCl2-induced oxidative stress results in activation of the NRF2/HO-1-mediated cell survival pathway and inhibition of DNA repair, both of which were prevented by MSM. SIGNIFICANCE We suggest MSM can be considered as a candidate drug for reducing the effects of hypoxia in both animals and humans.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea; Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea.
| |
Collapse
|
5
|
Xiao Q, Liu Y, Jiang G, Liu Y, Huang Y, Liu W, Zhang Z. Heteroleptic Gold(I)-bisNHC complex with excellent activity in vitro, ex vivo and in vivo against endometrial cancer. Eur J Med Chem 2022; 236:114302. [DOI: 10.1016/j.ejmech.2022.114302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2023]
|
6
|
Aziz MA, Khan AH, Pieroni A. Ethnoveterinary plants of Pakistan: a review. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2020; 16:25. [PMID: 32414421 PMCID: PMC7227227 DOI: 10.1186/s13002-020-00369-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/07/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Ethnoveterinary medicine is crucial in many rural areas of the world since people living in remote and marginal areas rely significantly on traditional herbal therapies to treat their domestic animals. In Pakistan, communities residing in remote areas, and especially those still attached to pastoralist traditions, have considerable ethnoveterinary herbal knowledge and they sometimes use this knowledge for treating their animals. The main aim of the study was to review the literature about ethnoveterinary herbals being used in Pakistan in order to articulate potential applications in modern veterinary medicine. Moreover, the review aimed to analyze possible cross-cultural and cross regional differences. METHODS We considered the ethnobotanical data of Pakistan published in different scientific journals from 2004 to 2018. A total of 35 studies were found on ethnoveterinary herbal medicines in the country. Due to the low number of field studies, we considered all peer-reviewed articles on ethnoveterinary herbal practices in the current review. All the ethnobotanical information included in these studies derived from interviews which were conducted with shepherds/animals breeders as well as healers. RESULTS Data from the reviewed studies showed that 474 plant species corresponding to 2386 remedies have been used for treating domestic animals in Pakistan. The majority of these plants belong to Poaceae (41 species) followed by the Asteraceae (32 species) and Fabaceae (29 species) botanical families, thus indicating a possible prevalence of horticultural-driven gathering patterns. Digestive problems were the most commonly treated diseases (25%; 606 remedies used), revealing the preference that locals have for treating mainly minor animal ailments with herbs. The least known veterinary plants recorded in Pakistan were Abutilon theophrasti, Agrostis gigantea, Allardia tomentosa, Aristida adscensionis, Bothriochloa bladhii, Buddleja asiatica, Cocculus hirsutus, Cochlospermum religiosum, Cynanchum viminale, Dactylis glomerata, Debregeasia saeneb, Dichanthium annulatum, Dracocephalum nuristanicum, Flueggea leucopyrus, Launaea nudicaulis, Litsea monopetala, Sibbaldianthe bifurca, Spiraea altaica, and Thalictrum foetidum. More importantly, cross-cultural comparative analysis of Pathan and non-Pathan ethnic communities showed that 28% of the veterinary plants were mentioned by both communities. Cross-regional comparison demonstrated that only 10% of the plant species were used in both mountain and plain areas. Reviewed data confirm therefore that both ecological and cultural factors play a crucial role in shaping traditional plant uses. CONCLUSION The herbal ethnoveterinary heritage of Pakistan is remarkable, possibly because of the pastoral origins of most of its peoples. The integration of the analyzed complex bio-cultural heritage into daily veterinary practices should be urgently fostered by governmental and non-governmental institutions dealing with rural development policies in order to promote the use of local biodiversity for improving animal well-being and possibly the quality of animal food products as well.
Collapse
Affiliation(s)
- Muhammad Abdul Aziz
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, I-12042 Pollenzo, Bra, Cuneo, Italy.
| | - Amir Hasan Khan
- Department of Botany, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| | - Andrea Pieroni
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, I-12042 Pollenzo, Bra, Cuneo, Italy
| |
Collapse
|
7
|
Ethnopharmacological Properties and Medicinal Uses of Litsea cubeba. PLANTS 2019; 8:plants8060150. [PMID: 31159425 PMCID: PMC6631214 DOI: 10.3390/plants8060150] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023]
Abstract
The genus Litsea is predominant in tropical and subtropical regions of India, China, Taiwan, and Japan. The plant possesses medicinal properties and has been traditionally used for curing various gastro-intestinal ailments (e.g., diarrhea, stomachache, indigestion, and gastroenteritis) along with diabetes, edema, cold, arthritis, asthma, and traumatic injury. Besides its medicinal properties, Litsea is known for its essential oil, which has protective action against several bacteria, possesses antioxidant and antiparasitic properties, exerts acute and genetic toxicity as well as cytotoxicity, and can even prevent several cancers. Here we summarize the ethnopharmacological properties, essentials oil, medicinal uses, and health benefits of an indigenous plant of northeast India, emphasizing the profound research to uplift the core and immense potential present in the conventional medicine of the country. This review is intended to provide insights into the gaps in our knowledge that need immediate focus on in-situ conservation strategies of Litsea due to its non-domesticated and dioecious nature, which may be the most viable approach and intense research for the long-term benefits of society and local peoples.
Collapse
|
8
|
Li AL, Li GH, Li YR, Wu XY, Ren DM, Lou HX, Wang XN, Shen T. Lignan and flavonoid support the prevention of cinnamon against oxidative stress related diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:143-153. [PMID: 30668393 DOI: 10.1016/j.phymed.2018.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Oxidative stress contributes to the pathogenesis of many human diseases. Cinnamon is a worldwide used spice, dietary supplement and traditional medicine, and is used for the therapy of oxidative stress related diseases. A well-established concept is that the functions of cinnamon preventing oxidative stress-induced diseases are attributed to the occurrence of cinnamaldehyde and its analogues. HYPOTHESIS In our continuous searching of natural molecules with antioxidant capacity, we have found that cinnamaldehyde and its analogues in cinnamon are weak inhibitors of oxidative stress, and thus we speculate that there are novel and/or potent molecules inhibiting oxidative stress in cinnamon. STUDY DESIGN AND METHODS A systemic phytochemical investigation of cinnamon using column chromatography was performed to identify the chemical constituents of cinnamon, and then their capacity of inhibiting oxidative stress and action of mechanism targeting Nrf2 pathway were investigated using diverse bioassay, including NAD(P)H: quinone reductase (QR) assay, immunoblot analysis, luciferase reporter gene assay, immunofluorescence and flow cytometry. RESULTS Cinnamon improved the intracellular antioxidant capacity. A systemic phytochemical investigation of cinnamon gave the isolation of twenty-two chemical ingredients. The purified constituents were tested for their potential inhibitory effects against oxidative stress. Besides cinnamaldehyde analogues, a lignan pinoresinol (PRO) and a flavonol (-)-(2R,3R)-5,7-dimethoxy-3', 4'-methylenedioxy-flavan-3-ol (MFO) were firstly identified to be inhibitors of oxidative stress. Further study indicated that PRO and MFO activated Nrf2-mediated antioxidant response, and protected human lung epithelial cells against sodium arsenite [As(III)]-induced oxidative insults. CONCLUSION The lignan PRO and the flavonoid MFO are two novel Nrf2 activators protecting tissues against oxidative insults, and these two constituents support the application of cinnamon as an agent against oxidative stress related diseases.
Collapse
Affiliation(s)
- Ai-Ling Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Guo-Hui Li
- Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, PR China
| | - Yan-Ru Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xue-Yi Wu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China.
| |
Collapse
|
9
|
Aung HM, Huangteerakul C, Panvongsa W, Jensen AN, Chairoungdua A, Sukrong S, Jensen LT. Interrogation of ethnomedicinal plants for synthetic lethality effects in combination with deficiency in the DNA repair endonuclease RAD1 using a yeast cell-based assay. JOURNAL OF ETHNOPHARMACOLOGY 2018; 223:10-21. [PMID: 29777901 DOI: 10.1016/j.jep.2018.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. AIM OF THE STUDY To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1∆ yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. RESULTS Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1∆ yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. CONCLUSIONS B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF).
Collapse
Affiliation(s)
- Hsu Mon Aung
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand
| | | | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Amornrat N Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Suchada Sukrong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand.
| |
Collapse
|
10
|
Luo JF, Shen XY, Lio CK, Dai Y, Cheng CS, Liu JX, Yao YD, Yu Y, Xie Y, Luo P, Yao XS, Liu ZQ, Zhou H. Activation of Nrf2/HO-1 Pathway by Nardochinoid C Inhibits Inflammation and Oxidative Stress in Lipopolysaccharide-Stimulated Macrophages. Front Pharmacol 2018; 9:911. [PMID: 30233360 PMCID: PMC6131578 DOI: 10.3389/fphar.2018.00911] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
The roots and rhizomes of Nardostachys chinensis have neuroprotection and cardiovascular protection effects. However, the specific mechanism of N. chinensis is not yet clear. Nardochinoid C (DC) is a new compound with new skeleton isolated from N. chinensis and this study for the first time explored the anti-inflammatory and anti-oxidant effect of DC. The results showed that DC significantly reduced the release of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW264.7 cells. The expression of pro-inflammatory proteins including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were also obviously inhibited by DC in LPS-activated RAW264.7 cells. Besides, the production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also remarkably inhibited by DC in LPS-activated RAW264.7 cells. DC also suppressed inflammation indicators including COX-2, PGE2, TNF-α, and IL-6 in LPS-stimulated THP-1 macrophages. Furthermore, DC inhibited the macrophage M1 phenotype and the production of reactive oxygen species (ROS) in LPS-activated RAW264.7 cells. Mechanism studies showed that DC mainly activated nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, increased the level of anti-oxidant protein heme oxygenase-1 (HO-1) and thus produced the anti-inflammatory and anti-oxidant effects, which were abolished by Nrf2 siRNA and HO-1 inhibitor. These findings suggested that DC could be a new Nrf2 activator for the treatment and prevention of diseases related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jin-Fang Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xiu-Yu Shen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chon Kit Lio
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chun-Song Cheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jian-Xin Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yun-Da Yao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying Xie
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Pei Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Therapeutic Potential of Salviae Miltiorrhizae Radix et Rhizoma against Human Diseases Based on Activation of Nrf2-Mediated Antioxidant Defense System: Bioactive Constituents and Mechanism of Action. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7309073. [PMID: 30050659 PMCID: PMC6040253 DOI: 10.1155/2018/7309073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/17/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress plays a central role in the pathogenesis of many human diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating the intracellular antioxidant response and is an emerging target for the prevention and therapy of oxidative stress-related diseases. Salviae Miltiorrhizae Radix et Rhizoma (SMRR) is a traditional Chinese medicine (TCM) and is commonly used for the therapy of cardiac cerebral diseases. Cumulative evidences indicated that the extract of SMRR and its constituents, represented by lipophilic diterpenoid quinones and hydrophilic phenolic acids, were capable of activating Nrf2 and inhibiting oxidative stress. These bioactive constituents demonstrated a therapeutic potential against human diseases, exemplified by cardiovascular diseases, neurodegenerative diseases, diabetes, nephropathy, and inflammation, based on the induction of Nrf2-mediated antioxidant response and the inhibition of oxidative stress. In the present review, we introduced the SMRR and Nrf2 signaling pathway, summarized the constituents with an Nrf2-inducing effect isolated from SMRR, and discussed the molecular mechanism and pharmacological functions of the SMRR extract and its constituents.
Collapse
|
12
|
Ingredients from Litsea garrettii as Potential Preventive Agents against Oxidative Insult and Inflammatory Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7616852. [PMID: 29743984 PMCID: PMC5884198 DOI: 10.1155/2018/7616852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/19/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
Oxidative stress and inflammation undoubtedly contribute to the pathogenesis of many human diseases. The nuclear transcription factor erythroid 2-related factor (Nrf2) and the nuclear factor κB (NF-κB) play central roles in regulation of oxidative stress and inflammation and thus are targets for developing agents against oxidative stress- and inflammation-related diseases. Our previous study indicated that the EtOH extract of Litsea garrettii protected human bronchial epithelial cells against oxidative insult via the activation of Nrf2. In the present study, a systemic phytochemical investigation of L. garrettii led to the isolation of twenty-one chemical ingredients, which were further evaluated for their inhibitions on oxidative stress and inflammation using NAD(P)H:quinone reductase (QR) assay and nitric oxide (NO) production assay. Of these ingredients, 3-methoxy-5-pentyl-phenol (MPP, 5) was identified as an Nrf2 activator and an NF-κB inhibitor. Further studies demonstrated the following: (i) MPP upregulated the protein levels of Nrf2, NAD(P)H:quinone oxidoreductase 1 (NQO1), and glutamate-cysteine ligase regulatory subunit (GCLM); enhanced the nuclear translocation and stabilization of Nrf2; and inhibited arsenic [As(III)]-induced oxidative insult in normal human lung epithelial Beas-2B cells. And (ii) MPP suppressed the nuclear translocation of NF-κB p65 subunit; inhibited the lipopolysaccharide- (LPS-) stimulated increases of NF-κB p65 subunit, COX-2, iNOS, TNF-α, and IL-1β; and blocked the LPS-induced biodegrade of IκB-α in RAW 264.7 murine macrophages. Taken together, MPP displayed potential preventive effects against inflammation- and oxidative stress-related diseases.
Collapse
|
13
|
Secondary Plant Metabolites for Sun Protective Cosmetics: From Pre-Selection to Product Formulation. COSMETICS 2018. [DOI: 10.3390/cosmetics5020032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
14
|
Zhou MX, Li GH, Sun B, Xu YW, Li AL, Li YR, Ren DM, Wang XN, Wen XS, Lou HX, Shen T. Identification of novel Nrf2 activators from Cinnamomum chartophyllum H.W. Li and their potential application of preventing oxidative insults in human lung epithelial cells. Redox Biol 2017; 14:154-163. [PMID: 28942193 PMCID: PMC5608562 DOI: 10.1016/j.redox.2017.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022] Open
Abstract
Human lung tissue, directly exposed to the environmental oxidants and toxicants, is apt to be harmed to bring about acute or chronic oxidative insults. The nuclear factor erythroid 2-related factor 2 (Nrf2) represents a central cellular defense mechanism, and is a target for developing agents against oxidative insult-induced human lung diseases. Our previous study found that the EtOH extract of Cinnamomum chartophyllum protected human bronchial epithelial cells against oxidative insults via Nrf2 activation. In this study, a systemic phytochemical investigation of the aerial parts of C. chartophyllum led to the isolation of thirty chemical constituents, which were further evaluated for their Nrf2 inducing potential using NAD(P)H: quinone reductase (QR) assay. Among these purified constituents, a sesquiterpenoid bearing α, β-unsaturated ketone group, 3S-(+)-9-oxonerolidol (NLD), and a diphenyl sharing phenolic groups, 3, 3′, 4, 4′-tetrahydroxydiphenyl (THD) significantly activated Nrf2 and its downstream genes, NAD(P)H quinone oxidoreductase 1 (NQO-1), and γ-glutamyl cysteine synthetase (γ-GCS), and enhanced the nuclear translocation and stabilization of Nrf2 in human lung epithelial cells. Importantly, NLD and THD had no toxicities under the Nrf2 inducing doses. THD also demonstrated a potential of interrupting Nrf2-Keap1 protein–protein interaction (PPI). Furthermore, NLD and THD protected human lung epithelial cells against sodium arsenite [As(III)]-induced cytotoxicity. Taken together, we conclude that NLD and THD are two novel Nrf2 activators with potential application of preventing acute and chronic oxidative insults in human lung tissue. The chemical compositions of Cinnamomum chartophyllum are firstly identified. The active ingredients supporting the biological functions of C. chartophyllum are verified. NLD and THD are identified to be Nrf2 activators for the first time. NLD and THD protect human lung epithelial cells against As(III)-induced cytotoxicity.
Collapse
Affiliation(s)
- Ming-Xing Zhou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Guo-Hui Li
- Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, PR China
| | - Bin Sun
- National Glycoengineering Research Center, Shandong University, Jinan 250012, PR China
| | - You-Wei Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Ai-Ling Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Yan-Ru Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xue-Sen Wen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China.
| |
Collapse
|
15
|
Zhou MX, Wei X, Li AL, Wang AM, Lu LZ, Yang Y, Ren DM, Wang XN, Wen XS, Lou HX, Shen T. Screening of traditional Chinese medicines with therapeutic potential on chronic obstructive pulmonary disease through inhibiting oxidative stress and inflammatory response. Altern Ther Health Med 2016; 16:360. [PMID: 27623767 PMCID: PMC5022167 DOI: 10.1186/s12906-016-1347-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/10/2016] [Indexed: 12/23/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a major public health problem and gives arise to severe chronic morbidity and mortality in the world. Inflammatory response and oxidative stress play dominant roles in the pathological mechanism of COPD, and have been regarded to be two important targets for the COPD therapy. Traditional Chinese medicines (TCMs) possess satisfying curative effects on COPD under guidance of the TCM theory in China, and merit in-depth investigations as a resource of lead compounds. Methods One hundred ninety-six of TCMs were collected, and extracted to establish a TCM extract library, and then further evaluated for their potency on inhibitions of oxidative stress and inflammatory response using NADP(H):quinone oxidoreductase (QR) assay and nitric oxide (NO) production assay, respectively. Results Our investigation observed that 38 of the tested TCM extracts induced QR activity in hepa 1c1c7 murine hepatoma cells, and 55 of them inhibited NO production in RAW 264.7 murine macrophages at the tested concentrations. Noteworthily, 20 of TCM extracts simultaneously inhibited oxidative stress and inflammatory responses. Conclusion The observed bioactive TCMs, particularly these 20 TCMs with dual inhibitory effects, might be useful for the treatment of COPD. More importantly, the results of the present research afford us an opportunity to discover new lead molecules as COPD therapeutic agents from these active TCMs. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1347-y) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Wang YS, Wen ZQ, Li BT, Zhang HB, Yang JH. Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: An update. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:66-107. [PMID: 26812679 DOI: 10.1016/j.jep.2016.01.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Litsea is one of the most diverse genera of evergreen trees or shrubs belong to Lauraceae, and comprises roughly 400 species of tree that are distributed abundantly throughout tropical and subtropical Asia, North and South America. Litsea species have been used globally in traditional medicine for the treatment of various diseases including influenza, stomach aches, diarrhea, diabetes, vomiting, bone pain, inflammation, illness related to the central nervous system and other ailments. The purpose of this review is to provide updated, comprehensive and categorized information on the ethnobotany, phytochemistry and pharmacological research of Litsea species in order to explore their therapeutic potential and evaluate future research opportunities. MATERIALS AND METHODS All the available information on Litsea species was actualised by systematically searching the scientific literatures including Chinese, Korean, Japanese, Indian, and South American herbal classics, library catalogs and scientific databases (PubMed, SciFinder, Web of Science, Google Scholar, VIP and Wanfang). The Plant List, International Plant Name index and Scientific Database of China Plant Species were used to validate scientific names. RESULTS 407 secondary metabolites have been reported from Litsea species. Litsea Species are sources of secondary metabolites with interesting chemical structures (alkaloids, lactones, sesquiterpenes, flavonoids, lignans, and essential oils) and significant bioactivities. Crude extracts, fractions and phytochemical constituents isolated from Litsea show a wide spectrum of in vitro and in vivo pharmacological activities including anticancer, anti-inflammatory, antimicrobial, antioxidant, antidiabetic, anti-HIV, insecticidal, etc. CONCLUSIONS From data collected in this review, the genus Litsea comprises a wide range of therapeutically promising and valuable plants, and has attracted much attention owing to its multiple functions. Many traditional uses of Litsea species have now been validated by modern pharmacology research. Deep and systematic phytochemical investigation of the genus Litsea and the pharmacological properties, especially its mechanism of action and toxicology, to illustrate its ethnomedicinal use, explore the therapeutic potential and support further health-care product development will undoubtedly be the focus of further research. Therefore, detailed and extensive studies and clinical evaluation of Litsea species should be carried out in future for the safety approval of therapeutic applications.
Collapse
Affiliation(s)
- Yun-Song Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Zheng-Qi Wen
- First Affiliated Hospital of Kunming Medical University, Kunming 650031, PR China
| | - Bi-Tao Li
- First Affiliated Hospital of Kunming Medical University, Kunming 650031, PR China
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Jing-Hua Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
17
|
Zhao L, Wen Q, Yang G, Huang Z, Shen T, Li H, Ren D. Apoptosis induction of dehydrobruceine B on two kinds of human lung cancer cell lines through mitochondrial-dependent pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:114-122. [PMID: 26926172 DOI: 10.1016/j.phymed.2015.12.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/07/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Brucea javanica is an effective traditional medicine listed in Chinese Pharmacopoeia. In China, the seed oil of B. javanica has long been used as commercially available drug for the treatment of tumor in clinic. Dehydrobruceine B (DHB) is a quassinoid isolated from B. javanica. PURPOSE The aim of the present study is to investigate the apoptotic effects induced by DHB in human lung cancer A549 and NCI-H292 cells. The involvement of a mitochondria-mediated intrinsic pathway in the pro-apoptotic action of DHB was also investigated. MATERIAL AND METHODS Cell viability was determined by MTT assay. Cell cycle and apoptosis were assessed by flow cytometry analysis. Mitochondrial membrane potential (MMP) was examined through JC-1 staining. The protein translocation in cells was examined by immunostaining. The expression levels of proteins which are closely related to mitochondria-mediated apoptosis pathway were measured by immunoblot analysis. RESULTS Treatment with DHB decreased cell viability, induced apoptosis and blocked cell cycle at S phase. DHB-induced apoptosis was found to be mediated through mitochondrial intrinsic pathway, evidenced by the loss of MMP, the release of cytochrome c into cytosol, and the cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP). CONCLUSION DHB triggers apoptosis in A549 and NCI-H292 cells via mitochondrial pathway, making it a promising candidate as a therapeutic agent for lung carcinoma.
Collapse
Affiliation(s)
- Lijuan Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, PR China
| | - Qing Wen
- Department of Pharmacy, Jinan Central Hospital, Shandong University, 105 Jiefang Road, Jinan 250013, PR China
| | - Guotao Yang
- Department of thoracic surgery, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, PR China
| | - Zhuqing Huang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, PR China
| | - Tao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, PR China
| | - Haizhen Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, PR China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, PR China.
| |
Collapse
|
18
|
Tao S, Rojo de la Vega M, Quijada H, Wondrak GT, Wang T, Garcia JGN, Zhang DD. Bixin protects mice against ventilation-induced lung injury in an NRF2-dependent manner. Sci Rep 2016; 6:18760. [PMID: 26729554 PMCID: PMC4700431 DOI: 10.1038/srep18760] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022] Open
Abstract
Mechanical ventilation (MV) is a therapeutic intervention widely used in the clinic to assist patients that have difficulty breathing due to lung edema, trauma, or general anesthesia. However, MV causes ventilator-induced lung injury (VILI), a condition characterized by increased permeability of the alveolar-capillary barrier that results in edema, hemorrhage, and neutrophil infiltration, leading to exacerbated lung inflammation and oxidative stress. This study explored the feasibility of using bixin, a canonical NRF2 inducer identified during the current study, to ameliorate lung damage in a murine VILI model. In vitro, bixin was found to activate the NRF2 signaling pathway through blockage of ubiquitylation and degradation of NRF2 in a KEAP1-C151 dependent manner; intraperitoneal (IP) injection of bixin led to pulmonary upregulation of the NRF2 response in vivo. Remarkably, IP administration of bixin restored normal lung morphology and attenuated inflammatory response and oxidative DNA damage following MV. This observed beneficial effect of bixin derived from induction of the NRF2 cytoprotective response since it was only observed in Nrf2+/+ but not in Nrf2−/− mice. This is the first study providing proof-of-concept that NRF2 activators can be developed into pharmacological agents for clinical use to prevent patients from lung injury during MV treatment.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | | | - Hector Quijada
- Arizona Respiratory Center and Department of Medicine, University of Arizona, Tucson, AZ 85721
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Ting Wang
- Arizona Respiratory Center and Department of Medicine, University of Arizona, Tucson, AZ 85721
| | - Joe G N Garcia
- Arizona Respiratory Center and Department of Medicine, University of Arizona, Tucson, AZ 85721
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| |
Collapse
|
19
|
Johnson DA, Johnson JA. Nrf2--a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med 2015; 88:253-267. [PMID: 26281945 PMCID: PMC4809057 DOI: 10.1016/j.freeradbiomed.2015.07.147] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022]
Abstract
The brain is very sensitive to changes in redox status; thus maintaining redox homeostasis in the brain is critical for the prevention of accumulating oxidative damage. Aging is the primary risk factor for developing neurodegenerative diseases. In addition to age, genetic and environmental risk factors have also been associated with disease development. The primary reactive insults associated with the aging process are a result of oxidative stress (OS) and nitrosative stress (NS). Markers of increased oxidative stress, protein and DNA modification, inflammation, and dysfunctional proteostasis have all been implicated in contributing to the progression of neurodegeneration. The ability of the cell to combat OS/NS and maintain a clearance mechanism for misfolded aggregating proteins determines whether or not it will survive. A critical pathway in this regard is the Nrf2 (nuclear factor erythroid 2-related factor 2)- antioxidant response element (ARE) pathway. Nrf2 activation has been shown to mitigate a number of pathologic mechanisms associated with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. This review will focus on the role of Nrf2 in these diseases and the potential for Nrf2 activation to attenuate disease progression.
Collapse
Affiliation(s)
- Delinda A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
20
|
Hu QF, Ye YQ, Xia CF, Yang JX, Yang YC, Gao XM, Du G, Yang HY, Li YK. Isocoumarins from the Bark of Lindera Caudata. HETEROCYCLES 2014. [DOI: 10.3987/com-14-13068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|