1
|
Yuan Y, Cui Y, Zhao D, Yuan Y, Zhao Y, Li D, Jiang X, Zhao G. Complement networks in gene-edited pig xenotransplantation: enhancing transplant success and addressing organ shortage. J Transl Med 2024; 22:324. [PMID: 38566098 PMCID: PMC10986007 DOI: 10.1186/s12967-024-05136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
The shortage of organs for transplantation emphasizes the urgent need for alternative solutions. Xenotransplantation has emerged as a promising option due to the greater availability of donor organs. However, significant hurdles such as hyperacute rejection and organ ischemia-reperfusion injury pose major challenges, largely orchestrated by the complement system, and activated immune responses. The complement system, a pivotal component of innate immunity, acts as a natural barrier for xenotransplantation. To address the challenges of immune rejection, gene-edited pigs have become a focal point, aiming to shield donor organs from human immune responses and enhance the overall success of xenotransplantation. This comprehensive review aims to illuminate strategies for regulating complement networks to optimize the efficacy of gene-edited pig xenotransplantation. We begin by exploring the impact of the complement system on the effectiveness of xenotransplantation. Subsequently, we delve into the evaluation of key complement regulators specific to gene-edited pigs. To further understand the status of xenotransplantation, we discuss preclinical studies that utilize gene-edited pigs as a viable source of organs. These investigations provide valuable insights into the feasibility and potential success of xenotransplantation, offering a bridge between scientific advancements and clinical application.
Collapse
Affiliation(s)
- Yinglin Yuan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan Cui
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dayue Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Yuan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanshuang Zhao
- Department of Pharmacy, The People's Hospital of Leshan, Leshan, China
| | - Danni Li
- Department of Pharmacy, Longquanyi District of Chengdu Maternity & Child Health Care Hospital, Chengdu, China
| | - Xiaomei Jiang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Lu TY, Xu XL, Du XG, Wei JH, Yu JN, Deng SL, Qin C. Advances in Innate Immunity to Overcome Immune Rejection during Xenotransplantation. Cells 2022; 11:cells11233865. [PMID: 36497122 PMCID: PMC9735653 DOI: 10.3390/cells11233865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transplantation is an effective approach for treating end-stage organ failure. There has been a long-standing interest in xenotransplantation as a means of increasing the number of available organs. In the past decade, there has been tremendous progress in xenotransplantation accelerated by the development of rapid gene-editing tools and immunosuppressive therapy. Recently, the heart and kidney from pigs were transplanted into the recipients, which suggests that xenotransplantation has entered a new era. The genetic discrepancy and molecular incompatibility between pigs and primates results in barriers to xenotransplantation. An increasing body of evidence suggests that innate immune responses play an important role in all aspects of the xenogeneic rejection. Simultaneously, the role of important cellular components like macrophages, natural killer (NK) cells, and neutrophils, suggests that the innate immune response in the xenogeneic rejection should not be underestimated. Here, we summarize the current knowledge about the innate immune system in xenotransplantation and highlight the key issues for future investigations. A better understanding of the innate immune responses in xenotransplantation may help to control the xenograft rejection and design optimal combination therapies.
Collapse
Affiliation(s)
- Tian-Yu Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Xue-Ling Xu
- National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xu-Guang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jin-Hua Wei
- Cardiovascular Surgery Department, Center of Laboratory Medicine, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jia-Nan Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Correspondence: (S.-L.D.); (C.Q.)
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Changping National Laboratory (CPNL), Beijing 102206, China
- Correspondence: (S.-L.D.); (C.Q.)
| |
Collapse
|
3
|
Zhou Q, Li T, Wang K, Zhang Q, Geng Z, Deng S, Cheng C, Wang Y. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13:928173. [PMID: 35967435 PMCID: PMC9367636 DOI: 10.3389/fimmu.2022.928173] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Transplantation is often the last resort for end-stage organ failures, e.g., kidney, liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting factor for successful transplantation in humans. Except living donations, other alternatives are needed, e.g., xenotransplantation of pig organs. However, immune rejection remains the major challenge to overcome in xenotransplantation. There are three different xenogeneic types of rejections, based on the responses and mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be strictly distinguished from each other in pathological process. In this review, we comprehensively discussed the mechanism of these immunological rejections and summarized the strategies for preventing them, such as generation of gene knock out donors by different genome editing tools and the use of immunosuppressive regimens. We also addressed organ-specific barriers and challenges needed to pave the way for clinical xenotransplantation. Taken together, this information will benefit the current immunological research in the field of xenotransplantation.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Kaiwen Wang
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Qi Zhang
- School of Medicine, University of Electronics and Technology of China, Chengdu, China
| | - Zhuowen Geng
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
- *Correspondence: Chunming Cheng, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
- *Correspondence: Chunming Cheng, ; Yi Wang,
| |
Collapse
|
4
|
Maeda A, Kogata S, Toyama C, Lo PC, Okamatsu C, Yamamoto R, Masahata K, Kamiyama M, Eguchi H, Watanabe M, Nagashima H, Okuyama H, Miyagawa S. The Innate Cellular Immune Response in Xenotransplantation. Front Immunol 2022; 13:858604. [PMID: 35418992 PMCID: PMC8995651 DOI: 10.3389/fimmu.2022.858604] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
Xenotransplantation is very attractive strategy for addressing the shortage of donors. While hyper acute rejection (HAR) caused by natural antibodies and complement has been well defined, this is not the case for innate cellular xenogeneic rejection. An increasing body of evidence suggests that innate cellular immune responses contribute to xenogeneic rejection. Various molecular incompatibilities between receptors and their ligands across different species typically have an impact on graft outcome. NK cells are activated by direct interaction as well as by antigen dependent cellular cytotoxicity (ADCC) mechanisms. Macrophages are activated through various mechanisms in xenogeneic conditions. Macrophages recognize CD47 as a "marker of self" through binding to SIRPα. A number of studies have shown that incompatibility of porcine CD47 against human SIRPα contributes to the rejection of xenogeneic target cells by macrophages. Neutrophils are an early responder cell that infiltrates xenogeneic grafts. It has also been reported that neutrophil extracellular traps (NETs) activate macrophages as damage-associated pattern molecules (DAMPs). In this review, we summarize recent insights into innate cellular xenogeneic rejection.
Collapse
Affiliation(s)
- Akira Maeda
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan.,Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Pei-Chi Lo
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahito Watanabe
- International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan.,International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| |
Collapse
|
5
|
C3 complement inhibition prevents antibody-mediated rejection and prolongs renal allograft survival in sensitized non-human primates. Nat Commun 2021; 12:5456. [PMID: 34526511 PMCID: PMC8443599 DOI: 10.1038/s41467-021-25745-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Sensitized kidney transplant recipients experience high rates of antibody-mediated rejection due to the presence of donor-specific antibodies and immunologic memory. Here we show that transient peri-transplant treatment with the central complement component C3 inhibitor Cp40 significantly prolongs median allograft survival in a sensitized nonhuman primate model. Despite donor-specific antibody levels remaining high, fifty percent of Cp40-treated primates maintain normal kidney function beyond the last day of treatment. Interestingly, presence of antibodies of the IgM class associates with reduced median graft survival (8 vs. 40 days; p = 0.02). Cp40 does not alter lymphocyte depletion by rhesus-specific anti-thymocyte globulin, but inhibits lymphocyte activation and proliferation, resulting in reduced antibody-mediated injury and complement deposition. In summary, Cp40 prevents acute antibody-mediated rejection and prolongs graft survival in primates, and inhibits T and B cell activation and proliferation, suggesting an immunomodulatory effect beyond its direct impact on antibody-mediated injury. Donor-specific antibodies in sensitized recipients may cause kidney transplant rejection. Here the authors show that complement component C3 inhibition prolongs graft survival by inhibiting T and B cell proliferation/activation and hence tissue injury, despite antibody levels remaining unaffected.
Collapse
|
6
|
Zhou H, Hara H, Cooper DK. The complex functioning of the complement system in xenotransplantation. Xenotransplantation 2019; 26:e12517. [PMID: 31033064 PMCID: PMC6717021 DOI: 10.1111/xen.12517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
The role of complement in xenotransplantation is well-known and is a topic that has been reviewed previously. However, our understanding of the immense complexity of its interaction with other constituents of the innate immune response and of the coagulation, adaptive immune, and inflammatory responses to a xenograft is steadily increasing. In addition, the complement system plays a function in metabolism and homeostasis. New reviews at intervals are therefore clearly warranted. The pathways of complement activation, the function of the complement system, and the interaction between complement and coagulation, inflammation, and the adaptive immune system in relation to xenotransplantation are reviewed. Through several different mechanisms, complement activation is a major factor in contributing to xenograft failure. In the organ-source pig, the detrimental influence of the complement system is seen during organ harvest and preservation, for example, in ischemia-reperfusion injury. In the recipient, the effect of complement can be seen through its interaction with the immune, coagulation, and inflammatory responses. Genetic-engineering and other therapeutic methods by which the xenograft can be protected from the effects of complement activation are discussed. The review provides an updated source of reference to this increasingly complex subject.
Collapse
Affiliation(s)
- Hongmin Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Abicht JM, Kourtzelis I, Reichart B, Koutsogiannaki S, Primikyri A, Lambris JD, Chavakis T, Holdt L, Kind A, Guethoff S, Mayr T. Complement C3 inhibitor Cp40 attenuates xenoreactions in pig hearts perfused with human blood. Xenotransplantation 2017; 24:10.1111/xen.12262. [PMID: 27677785 PMCID: PMC5358808 DOI: 10.1111/xen.12262] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/11/2016] [Accepted: 08/12/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND The complement system plays a crucial role in acute xenogeneic reactions after cardiac transplantation. We used an ex vivo perfusion model to investigate the effect of Cp40, a compstatin analog and potent inhibitor of complement at the level of C3. METHODS Fifteen wild-type pig hearts were explanted, cardiopleged, and reperfused ex vivo after 150 minutes of cold ischemia. Hearts were challenged in a biventricular working heart mode to evaluate cardiac perfusion and function. In the treatment group (n=5), the complement cascade was blocked at the level of C3 using Cp40, using diluted human blood. Untreated human and porcine blood was used for controls. RESULTS Throughout the perfusion, C3 activation was inhibited when Cp40 was used (mean of all time points: 1.11 ± 0.34% vs 3.12 ± 0.48% control activation; P<.01). Compared to xenoperfused controls, the cardiac index improved significantly in the treated group (6.5 ± 4.2 vs 3.5 ± 4.8 mL/min/g; P=.03, 180 minutes perfusion), while the concentration of lactate dehydrogenase as a maker for cell degradation was reduced in the perfusate (583 ± 187 U/mL vs 2108 ± 1145 U/mL, P=.02). Histological examination revealed less hemorrhage and edema, and immunohistochemistry confirmed less complement fragment deposition than in untreated xenoperfused controls. CONCLUSIONS Cp40 efficiently prevents C3 activation of the complement system, resulting in reduced cell damage and preserved function in wild-type porcine hearts xenoperfused ex vivo. We suggest that this compstatin analog, which blocks all main pathways of complement activation, could be a beneficial perioperative treatment in preclinical and in future clinical xenotransplantation.
Collapse
Affiliation(s)
- Jan-Michael Abicht
- Department of Anaesthesiology, Ludwig Maximilian University, Munich, Germany
| | - Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Germany
| | - Bruno Reichart
- Walter-Brendel-Centre, Ludwig Maximilian University Munich, Germany
| | - Sophia Koutsogiannaki
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Alexandra Primikyri
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine of Ludwig Maximilian University, Munich, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Germany
| | - Sonja Guethoff
- Department of Cardiovascular Surgery, Ludwig Maximilian University, Munich, Germany
| | - Tanja Mayr
- Department of Anaesthesiology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
8
|
Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3 - The "Swiss Army Knife" of innate immunity and host defense. Immunol Rev 2016; 274:33-58. [PMID: 27782325 PMCID: PMC5427221 DOI: 10.1111/imr.12500] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a preformed defense system, complement faces a delicate challenge in providing an immediate, forceful response to pathogens even at first encounter, while sparing host cells in the process. For this purpose, it engages a tightly regulated network of plasma proteins, cell surface receptors, and regulators. Complement component C3 plays a particularly versatile role in this process by keeping the cascade alert, acting as a point of convergence of activation pathways, fueling the amplification of the complement response, exerting direct effector functions, and helping to coordinate downstream immune responses. In recent years, it has become evident that nature engages the power of C3 not only to clear pathogens but also for a variety of homeostatic processes ranging from tissue regeneration and synapse pruning to clearing debris and controlling tumor cell progression. At the same time, its central position in immune surveillance makes C3 a target for microbial immune evasion and, if improperly engaged, a trigger point for various clinical conditions. In our review, we look at the versatile roles and evolutionary journey of C3, discuss new insights into the molecular basis for C3 function, provide examples of disease involvement, and summarize the emerging potential of C3 as a therapeutic target.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitrios C Mastellos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Piet Gros
- Utrecht University, Utrecht, The Netherlands
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
From orphan drugs to adopted therapies: Advancing C3-targeted intervention to the clinical stage. Immunobiology 2016; 221:1046-57. [PMID: 27353192 DOI: 10.1016/j.imbio.2016.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/23/2023]
Abstract
Complement dysregulation is increasingly recognized as an important pathogenic driver in a number of clinical disorders. Complement-triggered pathways intertwine with key inflammatory and tissue destructive processes that can either increase the risk of disease or exacerbate pathology in acute or chronic conditions. The launch of the first complement-targeted drugs in the clinic has undeniably stirred the field of complement therapeutic design, providing new insights into complement's contribution to disease pathogenesis and also helping to leverage a more personalized, comprehensive approach to patient management. In this regard, a rapidly expanding toolbox of complement therapeutics is being developed to address unmet clinical needs in several immune-mediated and inflammatory diseases. Elegant approaches employing both surface-directed and fluid-phase inhibitors have exploited diverse components of the complement cascade as putative points of therapeutic intervention. Targeting C3, the central hub of the system, has proven to be a promising strategy for developing biologics as well as small-molecule inhibitors with clinical potential. Complement modulation at the level of C3 has recently shown promise in preclinical primate models, opening up new avenues for therapeutic intervention in both acute and chronic indications fueled by uncontrolled C3 turnover. This review highlights recent developments in the field of complement therapeutics, focusing on C3-directed inhibitors and alternative pathway (AP) regulator-based approaches. Translational perspectives and considerations are discussed, particularly with regard to the structure-guided drug optimization and clinical advancement of a new generation of C3-targeted peptidic inhibitors.
Collapse
|
10
|
Kourtzelis I, Kotlabova K, Lim JH, Mitroulis I, Ferreira A, Chen LS, Gercken B, Steffen A, Kemter E, Klotzsche-von Ameln A, Waskow C, Hosur K, Chatzigeorgiou A, Ludwig B, Wolf E, Hajishengallis G, Chavakis T. Developmental endothelial locus-1 modulates platelet-monocyte interactions and instant blood-mediated inflammatory reaction in islet transplantation. Thromb Haemost 2016; 115:781-8. [PMID: 26676803 PMCID: PMC4818166 DOI: 10.1160/th15-05-0429] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/25/2015] [Indexed: 01/18/2023]
Abstract
Platelet-monocyte interactions are strongly implicated in thrombo-inflammatory injury by actively contributing to intravascular inflammation, leukocyte recruitment to inflamed sites, and the amplification of the procoagulant response. Instant blood-mediated inflammatory reaction (IBMIR) represents thrombo-inflammatory injury elicited upon pancreatic islet transplantation (islet-Tx), thereby dramatically affecting transplant survival and function. Developmental endothelial locus-1 (Del-1) is a functionally versatile endothelial cell-derived homeostatic factor with anti-inflammatory properties, but its potential role in IBMIR has not been previously addressed. Here, we establish Del-1 as a novel inhibitor of IBMIR using a whole blood-islet model and a syngeneic murine transplantation model. Indeed, Del-1 pre-treatment of blood before addition of islets diminished coagulation activation and islet damage as assessed by C-peptide release. Consistently, intraportal islet-Tx in transgenic mice with endothelial cell-specific overexpression of Del-1 resulted in a marked decrease of monocytes and platelet-monocyte aggregates in the transplanted tissues, relative to those in wild-type recipients. Mechanistically, Del-1 decreased platelet-monocyte aggregate formation, by specifically blocking the interaction between monocyte Mac-1-integrin and platelet GPIb. Our findings reveal a hitherto unknown role of Del-1 in the regulation of platelet-monocyte interplay and the subsequent heterotypic aggregate formation in the context of IBMIR. Therefore, Del-1 may represent a novel approach to prevent or mitigate the adverse reactions mediated through thrombo-inflammatory pathways in islet-Tx and perhaps other inflammatory disorders involving platelet-leukocyte aggregate formation.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Dr. Ioannis Kourtzelis, Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany, Tel.: +49 351 4586250, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang J, Wang L, Xiang Y, Ricklin D, Lambris JD, Chen G. Using an in vitro xenoantibody-mediated complement-dependent cytotoxicity model to evaluate the complement inhibitory activity of the peptidic C3 inhibitor Cp40. Clin Immunol 2015; 162:37-44. [PMID: 26548839 DOI: 10.1016/j.clim.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/16/2022]
Abstract
Simple and reliable methods for evaluating the inhibitory effects of drug candidates on complement activation are essential for preclinical development. Here, using an immortalized porcine aortic endothelial cell line (iPEC) as target, we evaluated the feasibility and effectiveness of an in vitro xenoantibody-mediated complement-dependent cytotoxicity (CDC) model for evaluating the complement inhibitory activity of Cp40, a potent analog of the peptidic C3 inhibitor compstatin. The binding of human xenoantibodies to iPECs led to serum dilution-dependent cell death. Pretreatment of the human serum with Cp40 almost completely inhibited the deposition of C3 fragments and C5b-9 on the cells, resulting in a dose-dependent inhibition of CDC against the iPECs. Using the same method to compare the effects of Cp40 on complement activation in humans, rhesus and cynomolgus monkeys, we found that the inhibitory patterns were similar overall. Thus, the in vitro xenoantibody-mediated CDC assay may have considerable potential for future clinical use.
Collapse
Affiliation(s)
- Junxiang Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, Wuhan, China
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, Wuhan, China.
| |
Collapse
|
12
|
Mastellos DC, Ricklin D, Hajishengallis E, Hajishengallis G, Lambris JD. Complement therapeutics in inflammatory diseases: promising drug candidates for C3-targeted intervention. Mol Oral Microbiol 2015; 31:3-17. [PMID: 26332138 DOI: 10.1111/omi.12129] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 12/13/2022]
Abstract
There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases.
Collapse
Affiliation(s)
- D C Mastellos
- Division of Biodiagnostic Sciences and Technologies, INRASTES, National Center for Scientific Research 'Demokritos', Aghia Paraskevi Attikis, Greece
| | - D Ricklin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E Hajishengallis
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Mastellos DC, Yancopoulou D, Kokkinos P, Huber-Lang M, Hajishengallis G, Biglarnia AR, Lupu F, Nilsson B, Risitano AM, Ricklin D, Lambris JD. Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention. Eur J Clin Invest 2015; 45:423-40. [PMID: 25678219 PMCID: PMC4380746 DOI: 10.1111/eci.12419] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
There is a growing awareness that complement plays an integral role in human physiology and disease, transcending its traditional perception as an accessory system for pathogen clearance and opsonic cell killing. As the list of pathologies linked to dysregulated complement activation grows longer, it has become clear that targeted modulation of this innate immune system opens new windows of therapeutic opportunity for anti-inflammatory drug design. Indeed, the introduction of the first complement-targeting drugs has reignited a vibrant interest in the clinical translation of complement-based inhibitors. Compstatin was discovered as a cyclic peptide that inhibits complement activation by binding C3 and interfering with convertase formation and C3 cleavage. As the convergence point of all activation pathways and a molecular hub for crosstalk with multiple pathogenic pathways, C3 represents an attractive target for therapeutic modulation of the complement cascade. A multidisciplinary drug optimization effort encompassing rational 'wet' and in silico synthetic approaches and an array of biophysical, structural and analytical tools has culminated in an impressive structure-function refinement of compstatin, yielding a series of analogues that show promise for a wide spectrum of clinical applications. These new derivatives have improved inhibitory potency and pharmacokinetic profiles and show efficacy in clinically relevant primate models of disease. This review provides an up-to-date survey of the drug design effort placed on the compstatin family of C3 inhibitors, highlighting the most promising drug candidates. It also discusses translational challenges in complement drug discovery and peptide drug development and reviews concerns related to systemic C3 interception.
Collapse
Affiliation(s)
- Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, INRASTES, National Center for Scientific Research 'Demokritos', Aghia Paraskevi Attikis, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|