1
|
Milborne B, Arjuna A, Islam MT, Arafat A, Layfield R, Thompson A, Ahmed I. Yttrium-Enriched Phosphate Glass-Ceramic Microspheres for Bone Cancer Radiotherapy Treatment. ACS OMEGA 2024; 9:50933-50944. [PMID: 39758667 PMCID: PMC11696403 DOI: 10.1021/acsomega.4c02825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 01/07/2025]
Abstract
This study presents the development and characterization of high yttrium-content phosphate-based glass-ceramic microspheres for potential applications in bone cancer radiotherapy treatment. The microspheres produced via flame spheroidization, followed by sieving, revealed a lack of aggregation and a narrow size distribution (45-125 μm) achieved across different yttrium oxide to glass ratio samples. Energy dispersive X-ray (EDX) analysis showed a significant increase in yttrium content within the microspheres with increasing yttrium oxide to glass ratio samples, ranging from approximately 1-39 mol % for 10Y-50Y microspheres, respectively. Concurrently, a proportional decrease in the phosphate, calcium, and magnesium content was observed. Further EDX mapping showed a homogeneous distribution of all elements throughout the microspheres, indicating uniform composition. X-ray diffraction profiles confirmed the amorphous nature of the starting P40 glass microspheres, while yttrium-containing microspheres exhibited crystalline peaks corresponding to cubic and hexagonal Y2O3 and Y(PO4) phases, indicating the formation of glass-ceramic materials. Ion release studies revealed the reduction of all ion release rates from yttrium-containing microspheres compared with P40 microspheres. The pH of the surrounding media was also stable at approximately pH 7 over time, highlighting the chemical durability of the microspheres' produced. In vitro cytocompatibility studies demonstrated that both indirect and direct cell culture methods showed favorable cellular responses. The metabolic and alkaline phosphatase activity assays indicated comparable or enhanced cell responses on yttrium-containing microspheres compared to the initial P40 glass microspheres. Overall, these findings showed that significantly high yttrium-content phosphate glass-ceramic microspheres could be produced as versatile biomaterials offering potential applications for combined bone cancer radiotherapy treatment and bone regeneration.
Collapse
Affiliation(s)
- Ben Milborne
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Andi Arjuna
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
- Faculty
of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Md Towhidul Islam
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Abul Arafat
- School
of Engineering, University of Wolverhampton,
Telford Innovation Campus, Telford TF2 9NT, U.K.
| | - Robert Layfield
- School
of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, U.K.
| | - Alexander Thompson
- Biodiscovery
Institute, Division of Cancer and Stem Cells, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Ifty Ahmed
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
2
|
Salem R, Padia SA, Lam M, Chiesa C, Haste P, Sangro B, Toskich B, Fowers K, Herman JM, Kappadath SC, Leung T, Sze DY, Kim E, Garin E. Clinical, dosimetric, and reporting considerations for Y-90 glass microspheres in hepatocellular carcinoma: updated 2022 recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging 2023; 50:328-343. [PMID: 36114872 PMCID: PMC9816298 DOI: 10.1007/s00259-022-05956-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE In light of recently published clinical reports and trials, the TheraSphere Global Dosimetry Steering Committee (DSC) reconvened to review new data and to update previously published clinical and dosimetric recommendations for the treatment of hepatocellular carcinoma (HCC). METHODS The TheraSphere Global DSC is comprised of health care providers across multiple disciplines involved in the treatment of HCC with yttrium-90 (Y-90) glass microsphere-based transarterial radioembolization (TARE). Literature published between January 2019 and September 2021 was reviewed, discussed, and adjudicated by the Delphi method. Recommendations included in this updated document incorporate both the results of the literature review and the expert opinion and experience of members of the committee. RESULTS Committee discussion and consensus led to the expansion of recommendations to apply to five common clinical scenarios in patients with HCC to support more individualized efficacious treatment with Y-90 glass microspheres. Existing clinical scenarios were updated to reflect recent developments in dosimetry approaches and broader treatment paradigms evolving for patients presenting with HCC. CONCLUSION Updated consensus recommendations are provided to guide clinical and dosimetric approaches for the use of Y-90 glass microsphere TARE in HCC, accounting for disease presentation, tumor biology, and treatment intent.
Collapse
Affiliation(s)
- Riad Salem
- Department of Radiology, Northwestern Feinberg School of Medicine, 676 N. St. Clair, Suite 800, Chicago, IL, USA.
| | - Siddharth A Padia
- Department of Radiology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Marnix Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carlo Chiesa
- Department of Nuclear Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Paul Haste
- Department of Interventional Radiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bruno Sangro
- Liver Unit, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | - Beau Toskich
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Kirk Fowers
- Boston Scientific Corporation, Marlborough, MA, USA
| | - Joseph M Herman
- Department of Radiation Medicine, Northwell Health, New Hyde Park, NY, USA
| | - S Cheenu Kappadath
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Leung
- Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Hong Kong, Hong Kong
| | - Daniel Y Sze
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Edward Kim
- Department of Interventional Radiology, Mount Sinai, New York City, NY, USA
| | - Etienne Garin
- INSERM, INRA, Centre de Lutte Contre Le Cancer Eugène Marquis, Institut NUMECAN (Nutrition Metabolisms and Cancer), Univ Rennes, 35000, Rennes, France
| |
Collapse
|
3
|
Tong VJW, Shelat VG, Chao YK. Clinical application of advances and innovation in radiation treatment of hepatocellular carcinoma. J Clin Transl Res 2021; 7:811-833. [PMID: 34988334 PMCID: PMC8715712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) management has evolved over the past two decades, with the development of newer treatment modalities. While various options are available, unmet needs are reflected through the mixed treatment outcome for intermediate-stage HCC. As HCC is radiosensitive, radiation therapies have a significant role in management. Radiation therapies offer local control for unresectable lesions and for patients who are not surgical candidates. Radiotherapy also provides palliation in metastatic disease, and acts as a bridge to resection and transplantation in selected patients. Advancements in radiotherapy modalities offer improved dose planning and targeted delivery, allowing for better tumor response and safer dose escalations while minimizing the risks of radiation-induced liver damage. Radiotherapy modalities are broadly classified into external beam radiation therapy and selective internal radiation therapy. With emerging modalities, radiotherapy plays a complementary role in the multidisciplinary care of HCC patients. Aim We aim to provide an overview of the role and clinical application of radiation therapies in HCC management. Relevance for Patients The continuous evolution of radiotherapy techniques allows for improved therapeutic outcomes while mitigating unwanted adverse effects, making it an attractive modality in HCC management. Rigorous clinical studies, quality research and comprehensive datasets will further its application in the present era of evidence-based practice in Medicine.
Collapse
Affiliation(s)
- Valerie J. W. Tong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vishal G. Shelat
- Department of General Surgery, Tan Tock Seng Hospital, 308433, Singapore
| | - Yew Kuo Chao
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, 308433, Singapore
| |
Collapse
|
4
|
Le Fur M, Fougère O, Lepareur N, Rousseaux O, Tripier R, Beyler M. Tuning the lipophilic nature of pyclen-based 90Y3+ radiopharmaceuticals for β-radiotherapy. Metallomics 2021; 13:6445036. [PMID: 34850060 DOI: 10.1093/mtomcs/mfab070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 01/31/2023]
Abstract
Pyclen-dipicolinate chelates proved to be very efficient chelators for the radiolabeling with β--emitters such as 90Y. In this study, a pyclen-dipicolinate ligand functionalized with additional C12 alkyl chains was synthesized. The radiolabeling with 90Y proved that the addition of saturated carbon chains does not affect the efficiency of the radiolabeling, whereas a notable increase in lipophilicity of the resulting 90Y radiocomplex was observed. As a result, the compound could be extracted in Lipiodol® and encapsulated in biodegrable pegylated poly(malic acid) nanoparticles demonstrating the potential of lipophilic pyclen-dipicolinate derivatives as platforms for the design of radiopharmaceuticals for the treatment of liver or brain cancers by internal radiotherapy.
Collapse
Affiliation(s)
- Mariane Le Fur
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Olivier Fougère
- Guerbet group, Centre de Recherche d'Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Nicolas Lepareur
- Univ Rennes, Centre Eugène Marquis, Inrae, Inserm, Institut NUMECAN [(Nutrition, Métabolismes et Cancer)]-UMR_A 1341, UMR_S 1241, Avenue de la Bataille Flandres, Dunkerque CS 44229, 35042 Rennes Cedex, France
| | - Olivier Rousseaux
- Guerbet group, Centre de Recherche d'Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Maryline Beyler
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| |
Collapse
|
5
|
PSMA radioligand therapy for solid tumors other than prostate cancer: background, opportunities, challenges, and first clinical reports. Eur J Nucl Med Mol Imaging 2021; 48:4350-4368. [PMID: 34120192 PMCID: PMC8566635 DOI: 10.1007/s00259-021-05433-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
In the past decade, a growing body of literature has reported promising results for prostate-specific membrane antigen (PSMA)-targeted radionuclide imaging and therapy in prostate cancer. First clinical studies evaluating the efficacy of [177Lu]Lu-PSMA radioligand therapy (PSMA-RLT) demonstrated favorable results in prostate cancer patients. [177Lu]Lu-PSMA is generally well tolerated due to its limited side effects. While PSMA is highly overexpressed in prostate cancer cells, varying degrees of PSMA expression have been reported in other malignancies as well, particularly in the tumor-associated neovasculature. Hence, it is anticipated that PSMA-RLT could be explored for other solid cancers. Here, we describe the current knowledge of PSMA expression in other solid cancers and define a perspective towards broader clinical implementation of PSMA-RLT. This review focuses specifically on salivary gland cancer, glioblastoma, thyroid cancer, renal cell carcinoma, hepatocellular carcinoma, lung cancer, and breast cancer. An overview of the (pre)clinical data on PSMA immunohistochemistry and PSMA PET/CT imaging is provided and summarized. Furthermore, the first clinical reports of non-prostate cancer patients treated with PSMA-RLT are described.
Collapse
|